Generic and Extensible Automatic Test Data
Generation for Safety Critical Software with CHR

Ralf Gerlich, BSSE

Presentation for the
Seventh International Workshop on Constraint Handling Rules
CHR 2010

20" of July 2010
Edinburgh, Scotland

| Advanced Software Technology
Consulting & Development

I Technology & Management
BSSE System and Sattware Enginesenng

Dr. Ralf Gerlich

Diplom-Informatiker
ralf.gerlich@bsse.biz

BS5E System and Software Engineering

Auf dem Ruhblhl 181 Phone: +49 7545 911258

D-88090 Immenstaad Telefax: 449 7545 911240

Germany Mobile: +49 178 76 06 129
W http:/fwww. bsse biz/

Motivation
Overview

Implementation Issues

Experimental Evaluation

Outlook

Copyright © 2010, Ralf Gerlich. All rights reserved. 2

Testing takes up about 50% of the total

effort for software development projects.

(For safety-critical systems — e.g. in aerospace — up to 80%)

= High potential for effort reduction from
automation of software test

Software test begins with selection of test
Inputs and expected outputs

Test cases

F. P. Brooks: The Mythical Man-Month, 1995

Myers et al: The Art of Software Testing, 2004
Copyright © 2010, Ralf Gerlich. All rights reserved. 3

Test Input Selection

Given a list of portions of the Control-Flow
Graph (CFG) of a program, find an input that,
once given to the program, leads to activation

of these portions In the given order.

Examples:

o.,Execute every node at least once* (—all-nodes)

o, Traverse every edge at least once“ (—all-edges)

o,, 1raverse node u after node d1 without traversing dz,

d,d,d_ inbetween® (—all-defs)

S. Rapps, E. J. Weyuker: Data flow analysis techniques
for test data selection, ICSE '82, 1982

Copyright © 2010, Ralf Gerlich. All rights reserved. 4

Infeasible paths

g - - -
void sort(int n, int[] a) { flnn r n n
for (int 1=0;i<n;i++) { er loop depends o

int minFlam=1" outer |00p-
for (int j=i+1;j<n;j++) < =Many paths in CFG
1T (aljj<a|minelem|) minElem=j; have no associated input.

swap(a[1], a[minElem]); (infeasible paths)

¥
¥

Infeasible paths are not rare enough
to be ighored in practice.

Alternative Approach:
Avoid selection of infeasible paths by
constraint-programming techniques.

S.-D. Gouraud: AuGuSTe: a Tool for Statistical Testing —
Experimental Results, Technical Report, LRI, Paris, 2005
Copyright © 2010, Ralf Gerlich. All rights reserved. 5

Augmented Control-Flow Graphs

Copyright © 2010, Ralf Gerlich. All rights reserved.

Nodes and Edges describe
possible control flow

Execution of nodes modifies
program state

Selection of edges by a set of
predicates

Relational expression:
- X B(3) vy
-x C(2,4) x

Generic Path Constraint Relations

T ‘S[a,b] y Thereis a path from

node a to node b, \v

transforming input X (1) ,@

to output v. .
spec(A,B,X,Y) (ughecification”)

& @

There is a path from

C: I[ﬂ'r:b] © node a to node b, &
> with u the output of u Ipy 6 v

node a and v the

ispec(U,A,B,V) input of node b. T Sp16] Y

(“Inner Specification”)

Copyright © 2010, Ralf Gerlich. All rights reserved. 7

Built-In Constraints

Built-In Constraint Semantics

edge (U, V) There is an edge from U to V

reachable (U, V) V is reachable from V via one or more edges
body (U, X,Y) X B(U) Y

cond (U, V,X) X Cc(U,v) X

No path from U to W contains a definition of

deffree(U,W,V) variable V

onallpaths (U,W,V) All paths from U to V proceed via W

value(X,Var,Val) Valis the value of variable Var in memory state X

Copyright © 2010, Ralf Gerlich. All rights reserved. 8

Eliminate Specification

-~

X@ The specification differs from the
- X. Inner specification by the
(6) v additional bodies of the endpoints.

u

< ,,,
u L v (Read concatenation right-to-left)
Yl e @

8[1?1] - B (].) U B (1) OI[I,I] O B (]_)

spec_to ispec @ spec(U,W,X,Z) <=>
(U=W, body(U,X,Z));
(body(U,X,Yl), ispec(Yl,U,W,Y2), body(W,Y¥2,Z)).

Copyright © 2010, Ralf Gerlich. All rights reserved. 9

Forward Step

We can either traverse the edge
from 1 to 6 or continue from 1 via 2

Lp2,6)

Ine =C (1,6) UZppg ob (2)oC(1,2)

step fwd @ ispec(X,U,W,Z) <=>
(edge(U,W), X=Z, cond(U,W,X));
(edge(U,V), reachable(V,W),
cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

Copyright © 2010, Ralf Gerlich. All rights reserved. 10

Backward Step

We can either traverse the edge
from 1 to 6 or continue from 1 via 1

I[l,ﬁ] — C (1, 6) U C (]_j 6) O B (]_) O I[l,l]

step bwd @ ispec(X,U,W,Z) <=>
(edge(U,W), X=Z, cond(U,W,X));
(edge(V,W), reachable(U,V),
ispec(X,U,V,Z2), body(V,Z,Y), cond(V,W,Z)).

Copyright © 2010, Ralf Gerlich. All rights reserved. 11

Control-Flow Prediction

o @
(AII paths from 2to 6

e traverse these nodes

5

split @ ispec(X,U,W,Z) <=> reachable(U,W), onallpaths(U,W,V) |
ispec(X,U,V,Y), body(V,Y,Z), ispec(Y,V,W,Z).

Instead of ,,rediscovering“ facts in all search
branches, we try to ,,predict” them and avoid

I[Q,G] — I[l,ﬁ] @ B (1) O I[5?1] O B (5) O I[235]

throwing them away on backtracking.

Copyright © 2010, Ralf Gerlich. All rights reserved. 12

Data-Flow Prediction

p
azb Variable typically keep

their value through large
parts of execution.

prop var @ ispec(U,W,X,Y) ==> reachable(U,W), deffree(U,W,V) |
value(X,V,V1l), value(Y,V,V2), V1=V2.

We can use data-flow information to

propagate information about the memory
state across sub-path borders.

Copyright © 2010, Ralf Gerlich. All rights reserved. 13

Complete CHR"Y Implementation

spec_to ispec @ spec(U,W,X,Z) <=>
(U=W, body(U,X,Z));

(body(U,X,Y1l), ispec(Y1l],U,W,Y2), body(W,Y2,Z)).
prop var @ ispec(U,W,X,Y) ==> reachable(U,W), deffree(U,W,V)

value(X,V,V1l), value(Y,V,V2), V1=V2.

split @ ispec(X,U,W,Z) <=> reachable(U,W), onallpaths(U,W,V)
ispec(X,U,V,Y), body(V,Y,Z), ispec(Y,V,W,Z).

step fwd @ ispec(X,U,W,Z) <=>

(edge(U,W), X=Z, cond(U,W,X));

(edge(U,V), reachable(V,W),

cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).
step bwd @ ispec(X,U,W,Z) <=>

(edge(U,W), X=Z, cond(U,W,X));

(edge(V,W), reachable(U,V),

ispec(X,U,V,Z2), body(V,Z,Y), cond(V,W,Z)).

Complete? Not so fast!

Copyright © 2010, Ralf Gerlich. All rights reserved. 14

Important Properties

Verifiability and Comprehensibility

—

Make use of connection between
declarative and operational semantics

Different solutions are not equivalent

and committed choice not possible.
—

Search

Random Test Case Selection
—

Probabilistic Search with ,,simple*
statistical model

Copyright © 2010, Ralf Gerlich. All rights reserved.

Issue 1: Implicit Search

step fwd @ ispec(X,U,W,Z) <=>
(edge(U,W), X=Z, cond(U,W,X));
(edge(U,V), reachable(V,W),
cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

The rule is existentially-quantified over V and solutions are not equivalent.

=Implicit Search; not supported by CHR"

p
Operationally correct only if host language supports search
over built-in constraints (e.g. Prolog) or if edgel2 becomes a

user-defined constraint, enumerating all alternatives.

Workaround: Use Prolog as host language

Copyright © 2010, Ralf Gerlich. All rights reserved. 16

Issue 2: Deterministic Derivation

step fwd @ ispec(X,U,W,Z) <=>
(edge(U,W), X=Z, cond(U,W,X));
(edge(U,V), reachable(V,W),
cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

e

De-Facto Semantics of CHR": First alternatives first.
=Alternatives enumerate paths by length in ascending order

p
Swapping of alternatives could lead to infinite recursion. '

Software Test requires some
randomness In test case selection to
avoid bias away from faults.

N
CHRISM was
not yet

available.
Copyright © 2010, Ralf Gerlich. All rights reserved. 17 \ '

Solution: “Probabilistic CHR"”, CHRiSM

Digression: Handling loops probabilistically

i ‘The mean number of iterations of
such an inner loop is 2 if the

probabilities of continuation and

termination is the same (0.5)

Consequence: Different probabilities for different values
of V, depending on U and W.

3
g @ step fwd @ ispec(X,U,W,Z) <=>
(edge(U,W), X=Z, cond(U,W,X));
(edge(U,V), reachable(V,W),
cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

Exiting or continuing inner Neither PCHR nor CHRISM

loops often is the choice _
between two successor nodes. support this

Copyright © 2010, Ralf Gerlich. All rights reserved. 18

Issue 3: Probabilistic Search

step fwd @ ispec(X,U,W,Z) <=>
(edge(U,W), X=Z, cond(U,W,X));
(edge(U,V), reachable(V,W),
cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

If both alternatives are selected with p=0.5, the mean path length is 2.
Similarly, if all values of V have same probabillity, inner loops degenerate.

PCHR requires splitting this up into two rules to allow
different probabilities for them.

By splitting up we are leaving the

realm of declarative correctness.

Solution: CHRISM Yes, we'll

try that!

Copyright © 2010, Ralf Gerlich. All rights reserved. 19

Issue 4: Statistical Model

step fwd @ ispec(X,U,W,Z) <=>
(edge(U,W), X=Z, cond(U,W,X));
(edge(U,V), reachable(V,W),
cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

PCHR considers rule instances instead of rules when selecting randomly. '

P

There are almost always more instances of the “step”
alternative than of the “edge” alternative.
The statistical model for that is difficult to manage.

PCHR: uncontrollable path growth

Solution: CHRISM Yes, we'll
try that!

Copyright © 2010, Ralf Gerlich. All rights reserved. 20

Evaluating the Statistical Model

Main Discoveries:

*Bias for shorter paths
Countermeasure: vary p
*Probabilistic Termination
*“modulo” Haltingproblem

Copyright © 2010, Ralf Gerlich. All rights reserved.

Mean path length

Probability of Termination

1[][] I] I I I | | | I =F
; ! Monte Carlo -+ |
: : Modell ------- !
BO S SUUURROORRS OSSOSO USSR SO — I r.'
| | | | 7T
40+ | i : | foved
: H : H : :j_
20 s s ++
: | : -
0 !!!!s!:'HH::HI::'.I:H'.H'r’i””w# |
0 01 02 03 04 05 06 07 08 09
Step Probability
1] I I I | | | I
; ! ! Monte Carlo -
N Nl u.
0.9 | | |
0.8-
0.7-
D‘E_ ..
0.5-
D‘q__ ...
|:|‘3_ I U O T S SR H R SR S
D‘E_
0.1- |
D 1 I 1 1 1] |] |
0 01 02 03 04 05 06 07 08 09

Step Probability

Runtime Complexity on Selection Sort

| ddclwans o Quadratic increase due to 1
gemischt = inefficient memory model.
4 L
No Prediction ' o ?
=
_E 3 e e P S -
(Y| H +'H'
o b S PSS A _
) i
TlmeOUtS fOI’ e * # ... -
backward and e ; . |
mixed stepping 50 100 150 200
directions
vorwarts 4+ : I
rickwérs ©
5 gemischt -
+ o+
4 B o e e e e e e e e e e e e e e o e e e e e e e m e e -
With Prediction ' %‘ q b [S SN N 4
P
2 _: !=|= S SO S OO SO SUS A -
Length of array to sort is B T S S S N |
completely defined after § ! + f
o - c o o :
first iteration of outside 0% E:D - 1'50 oo
|00p. Weglange

Copyright © 2010, Ralf Gerlich. All rights reserved.

22

Comparison of Strategies

Example Best Strategy (asympt. savings) Worst Strategy

No Prediction With Prediction
Fibonacci Backward (ca. 49%) Backward (ca. 46%) Mixed w/ prediction

strcmp w/o break Backward (n/a) Mixed w/ prediction

Array insertion Mixed (ca. 7%) Backward (ca. 68%) Mixed w/ prediction

Conclusion

No optimal strategy
*No universally applicable strategy

Copyright © 2010, Ralf Gerlich. All rights reserved.

Actual CHR program sizes

Path Solver: 45 constraints, 76 rules
(Many constraints for debugging or
customised PCHR)

Built-in FD Solver: 26 constraints, 126 rules
Optimised for detection of inconsistencies and

domain filtering.

Both would not be handleable without CHR!

Copyright © 2010, Ralf Gerlich. All rights reserved.

Conclusions

Theory#Practice in CHR
Translation to CHR not straight-forward

But: CHR-Program easier to read than
manual implementation

Extensibility due to CHR modularity

Copyright © 2010, Ralf Gerlich. All rights reserved.

Outlook

Complete implementation for C under way

Enhancement of generic memory model
Enhanced data-flow prediction

Integrate results from abstract interpretation
Worst-Case Execution Time analysis

Evaluate CHRISM!

Copyright © 2010, Ralf Gerlich. All rights reserved.

Closing Comments

In theory, theory and practice are the same.

In practice, they are not.

CHR may be capable of being a general
purpose language, but it is most useful as a
special purpose language.

Copyright © 2010, Ralf Gerlich. All rights reserved. 27

Questions?

Copyright © 2010, Ralf Gerlich. All rights reserved. 28

	Titel
	Gliederung
	Testaufwand
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Lineare Rekursion
	Laufzeit Selection Sort
	Vergleich der Strategien
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28

