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Facts and Issues

� Wirtschaftswoche summer / autumn 2002
� increasing number of malfunctions in high-tech vehicles

� major part by software malfunctions

� VDI-Nachrichten September 2002

� Charles Simonyi, co-founder of Microsoft

 „today we can design and  control production of jumbo-jets, but

  programming still remains a handcrafted task“

� Trend in automotive industry: more software
� e.g. 11. Aachener Kolloqium „Fahrzeug- und Motorentechnik“

� high quality software becomes a big challenge
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� well-defined production process

� high productivity

� high quality

� pre-condition for quality assurance

� saving company know-how

� continuous process improvement

� automated software production becomes "the" issue

� scalable approach needed to cover a broad range

Looking on Car Mass Production
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BSSE’s Automated Approach ASaP

� History
z 1992 ESA project on performance and FDIR validation (HRDMS)

FDIR = Fault Identification and Recovery
z 1993 ESA project on behavioural validation (OMBSIM)
z 1995 ESA project on sysem fault tolerance (DDV)
z 1996 BSSE project on ATC protocol validation (OPAL)
z 1997 BSSE project on distributed fault-tolerant system (CADIS)

turn-key system
z 1998 BSSE project on distributed critical control system (CRISYS)

� ASaP milestones

� 1999 first version of fully automated environment (MSL / ISS)

� 2000 final delivery of automatically generated software package
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ASaP Improvements

� Automated Software Production and Test (ASaP)

� Productivity 1 PC-hour 16,000 .. 320,000 LOC

 1 .. 20 man-years (my)
1600 mh/my     10 LOC / mh

� Bug Rate ≈ 0 .. 10-5 / LOC

� State-Of-The-Art

� Productivity: 1 man-hour 0.1 .. 10 LOC

� Bug Rate  typical: 10-2/ LOC

very good: 10-3/ LOC
                          N.E.Fenton, 2000
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Quality is not expensive

if a new technology is applied
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Example: Distributed Real-Time System (MSL / ISS)

h
eaters

FCU

MIL-Bus

Seebeck
measure.

unit
PyrometerUltrasonic

Device
Waterpump

package

MIL-Bus M-Mod.
(RTU)

SPLC

PSU

5 x
RS422

SPLC

MIL-Bus
M- Mod. on

Dig. I/O (BC)

MIL-
bus

( RTU )

5 x
RS422

an
alo

g
u

e in

tem
p

. T
C

 ind
ig

ital in
/o

u
t

MIL-bus

Mass
Spectromet

er

Magnet ic
Field

Generator

TMP
1 + 2Peripherals

2 x Sparc

embedded
(ESA SPLC)



8

BSSE System and Software Engineering

Synergy by ASaP

� Current status

� much support of paper work

� but little support to verify code

�  we do not have sensors for software bugs, but ...

� we do only concentrate on automatic code generation

� we still apply manual verification and testing

� ASaP
� synergy between generation and verification / testing by automation
� less complex user interface
� automated visualisation of properties
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ASaP Process Improvement

� Complexity Reduction
� adequate user notation

� automated handling of dependencies

� Productivity
� identification of high manual effort  → automation

� fully automated process chain

� Quality
� less effort, less bugs

� less complexity, less bugs

� Risk Reduction
� immediate, early feedback on properties
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Incremental Generic Development Cycle of ASaP
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� Higher functionality and user comfort by software
� higher intelligence of units

fail-stop (Servo)  →  fail-safe  →  fail-operational (drive-by-wire)

� infotainment

� vehicle network

� system - subsystem hierarchy

� Requirements on software

� higher flexibility to implement a variety of functions
� shorter development cycle
� high dependability
� good usability

Evolving Automotive Applications
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Benefits by ASaP
� flexibility for changes and refinements

� generic approach
� compact user inputs

� shorter development cycle
� short generation time
� incremental refinements

� higher dependability
� fault prevention by intensive checks of user inputs
� fault identification by built-in assertions and visualisation
� fault tolerance by coverage of exceptions, built-in mechanisms

� higher usability
� fast feedback from real system
� little effort to optimise the user interface
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Potential Application Areas in Automotive Industry
� Vehicle

� system management
� subsystem / unit software

� User Interface / Infotainment
� user operation
� unit manangement
� unit software

� Vehicle Manufacturing
� automated verification of manually coded robot programs vs. CAD

� automated generation of robot programs from CAD data

� Project and Contractor Management
� integration of COTS and sub-contractor software

� quality checks and evaluation of software
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Fault-Tolerant Systems and Risks
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Risk Reduction by Automation

� Can such problems be identified in advance?
� by a systematic approach

� by spending more time on system engineering

� Answer by automated software production: YES

� framework implies problem classification

� less time needed for implementation,

   more time available for system engineering

� better visualisation of properties
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� ASaP
� executable system right from the beginning

� system interfaces are already defined by „stubs“

� „executable specifications“

� Subcontractor Management
� take executable specifications as reference

� distribute full executable environment

� each subcontractor gets a reference unit

� each subcontractor can pre-integrate its units

� Integration on next higher level
� replace stubs by subcontractor deliverables

� verify and validate the actual version

Executable Specifications
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Inputs in User Notation and Derived Output (MSL Database)

Name of Signal Data Type Input Range Physical Range Acqui. Rate HW Module Calibration Type
CFDdrive_pot REAL32 0 - 10V 0 - 200 mm 100 ASM F1 FctASM1_Std
CFDrot_pot1 REAL32 0 - 10V 0 - 360 ° 100 ASM F1 FctASM1_Std
CFDrot_pot2 REAL32 0 - 10V 0 - 360 ° 100 ASM F1 FctASM1_Std
CF_reg_v_pot REAL32 0 - 10V 0 - 270 ° 10 ASM F1 FctASM1_Std
GS_press_low REAL32 0 - 10 V 0 - 2 bar abs. 10 ASM F1 FctASM1_Std
CFVpenn_chamb REAL32 0 - 10 V 1.e-7 - 1000 mbar 1 ASM F1 FctASM1_Pressure
VGSpenning_ms REAL32 0 - 10 V 1.e-7 - 1000 mbar 1 ASM F1 FctASM1_Pressure

T_database_entry MSL_db_desc[]={
{

/* address in DB            */ (int*)&MSL_db.LRT_HK_A1.CFDdrive_pot,
/* offset  in DB            */ (int)CFDdrive_potDBoff,
/* #samples                 */ 100,
/* size of data type        */ sizeof(REAL32),
/* id of type               */ 7,
/* copy DB data             */ 0,
/* calibration function     */ {(int*)FctASM1_Std_CFDdrive_pot,
/* supervision structure    */ {
/*   SV function            */ (int*)&limChckREAL32,
/*   limit definitions      */ CFDdrive_pot_suarr,

}
},

/* post-processing function */ {(int*)NULL}
},
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More Derived Files (Subset Only)
REAL32 FctASM1_Std_CFDdrive_pot(UINT16 Data)                           
{                                                      

REAL32 buffer;                                         
INT32  value; 

/* ADC correction (including amplifier correction) */                   
buffer = (Data - ADCCorrASM1[0][0].Offset) * ADCCorrASM1[0][0].Gain;

/* conversion to physical units */                                    
value = (REAL32) ((REAL32)0) + ((REAL32) 200  - (REAL32) ((REAL32)0)) /

( (REAL32) ((1<<12) - 1) ) * buffer;                    
return value;                                         

} 

#include "frametypesDB.h"

/* MSL database */
TyDatabase MSL_db;

/* Recording of database updates */
int updateDBcnt=0;
int DBupdate[TOT_DATABASE_ITEMS];

/* # of instances of telemetry frames */
#define TM_BUFF_INST 2

int LRT_HS_framePtr=0;
int LRT_HS_frameInd=0;
TyTMbuffer_LRT_HS LRT_HSArr[TM_BUFF_INST];

/* Array pointing to TM frame instances */
TyTMbufferArr TMbufferArr[]=
{

{LRT_HK_A1_ID, (int*)&LRT_HK_A1Arr},
{LRT_HK_D1_ID, (int*)&LRT_HK_D1Arr},
{LRT_HK_D2_ID, (int*)&LRT_HK_D2Arr},
{LRT_HS_ID, (int*)&LRT_HSArr}

};
#define TM_BUFFER_ARR_SIZE

sizeof(TMbufferArr)/sizeof(TyTMbufferArr)
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Visualisation of Properties: Timing and Communication

Reports available after 15 minutes starting by delivery of user's spreadsheet inputs



20

BSSE System and Software Engineering

Achievements

� distributed real-time system

� within 30 minutes equivalent of about 5 man-years (my)

� 80,000 LOC (environment: 200,000 LOC)

� distributed, synchronised database

� within 30 minutes equivalent of about 1 my

� 16,000 LOC and more

� operations on data types, interfaces etc.

� within 1 minute equivalent of about 2 my
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We give warranty!

"accepted user inputs are

automatically transformed into

correct and immediately executable software

when applying an automated production process

established by us"
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� Use of existing products

� distributed critical real-time and control systems

� data processing, distributed databases, GUIs

� test case generation

� integration and subcontractor management

� user support possible

� Customised ASaP approach
� know-how transfer

� definition of an appropriate approach

� building of the needed environment

How and Where Can ASaP be Applied?
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Customising ASaP

� Analysis of current manual procedures
� similar to „REFA“ in case of hardware
� identification of the most generic approach
   maximum coverage of application area

� Definition of the user interface
� identification of driving parameters
   minimum set of user inputs
� re-use of current environment (if any)
   building of an interface to the user‘s world

� continuous optimisation of ASaP procedures
� provision of analysis tools
� continuous benchmarking to check productivity and quality
� continuous process improvement
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This was a very short introduction, but ...

we are available today

� for further discussions

� to show more details

� to give a demo on

  „Instantaneous System and Software Generation“ (ISG)

15 minutes from user's spreadsheet inputs to reports

� 10 minutes generation time

� 3 minutes system execution

� 2 minutes report generation


