
BSSE System and Software Engineering

Avoiding Malfunctions Due To Software Failures by Automation of
Software Production and Test

Pannen wegen Software-Fehlern vermeiden durch Automatisierung
von Software-Produktion und Test

ESA Colloquium
„Technology Exchange between Space and Automotive Industry“

ESOC, Darmstadt, Germany 15.10.2002

Detailed Presentation

Dr. Rainer Gerlich Tel. +49/7545/91.12.58
Auf dem Ruhbühl 181 Fax +49/7545/91.12.40
88090 Immenstaad Mobil +49/171/80.20.659
Germany e-mail gerlich@t-online.de

© Copyright Dr. Rainer Gerlich BSSE System and Software Engineering 2002 All Rights Reserved

2

BSSE System and Software Engineering

Facts and Issues

� Wirtschaftswoche summer / autumn 2002
� increasing number of malfunctions in high-tech vehicles

� major part by software malfunctions

� VDI-Nachrichten September 2002

� Charles Simonyi, co-founder of Microsoft

 „today we can design and control production of jumbo-jets, but

 programming still remains a handcrafted task“

� Trend in automotive industry: more software
� e.g. 11. Aachener Kolloqium „Fahrzeug- und Motorentechnik“

� high quality software becomes a big challenge

3

BSSE System and Software Engineering

� well-defined production process

� high productivity

� high quality

� pre-condition for quality assurance

� saving company know-how

� continuous process improvement

� automated software production becomes "the" issue

� scalable approach needed to cover a broad range

Looking on Car Mass Production

4

BSSE System and Software Engineering

BSSE’s Automated Approach ASaP

� History
z 1992 ESA project on performance and FDIR validation (HRDMS)

FDIR = Fault Identification and Recovery
z 1993 ESA project on behavioural validation (OMBSIM)
z 1995 ESA project on sysem fault tolerance (DDV)
z 1996 BSSE project on ATC protocol validation (OPAL)
z 1997 BSSE project on distributed fault-tolerant system (CADIS)

turn-key system
z 1998 BSSE project on distributed critical control system (CRISYS)

� ASaP milestones

� 1999 first version of fully automated environment (MSL / ISS)

� 2000 final delivery of automatically generated software package

5

BSSE System and Software Engineering

ASaP Improvements

� Automated Software Production and Test (ASaP)

� Productivity 1 PC-hour 16,000 .. 320,000 LOC

 1 .. 20 man-years (my)
1600 mh/my 10 LOC / mh

� Bug Rate ≈ 0 .. 10-5 / LOC

� State-Of-The-Art

� Productivity: 1 man-hour 0.1 .. 10 LOC

� Bug Rate typical: 10-2/ LOC

very good: 10-3/ LOC
 N.E.Fenton, 2000

6

BSSE System and Software Engineering

Quality is not expensive

if a new technology is applied

7

BSSE System and Software Engineering

Example: Distributed Real-Time System (MSL / ISS)

h
eaters

FCU

MIL-Bus

Seebeck
measure.

unit
PyrometerUltrasonic

Device
Waterpump

package

MIL-Bus M-Mod.
(RTU)

SPLC

PSU

5 x
RS422

SPLC

MIL-Bus
M- Mod. on

Dig. I/O (BC)

MIL-
bus

(RTU)

5 x
RS422

an
alo

g
u

e in

tem
p

. T
C

 ind
ig

ital in
/o

u
t

MIL-bus

Mass
Spectromet

er

Magnet ic
Field

Generator

TMP
1 + 2Peripherals

2 x Sparc

embedded
(ESA SPLC)

8

BSSE System and Software Engineering

Synergy by ASaP

� Current status

� much support of paper work

� but little support to verify code

� we do not have sensors for software bugs, but ...

� we do only concentrate on automatic code generation

� we still apply manual verification and testing

� ASaP
� synergy between generation and verification / testing by automation
� less complex user interface
� automated visualisation of properties

9

BSSE System and Software Engineering

ASaP Process Improvement

� Complexity Reduction
� adequate user notation

� automated handling of dependencies

� Productivity
� identification of high manual effort → automation

� fully automated process chain

� Quality
� less effort, less bugs

� less complexity, less bugs

� Risk Reduction
� immediate, early feedback on properties

10

BSSE System and Software Engineering

Incremental Generic Development Cycle of ASaP

User Inputs
ASaP Software

TemplatesUtilities

Source Code
Host/Target

Libraries

Executable Distributed Code

Automated Execution

Environment

Automated Reporting

Result Evaluation

Structural

Behavioural
&

Refinements

Functional
Refinements

Automated Distribution

Experience

Organsiation

User Interaction

Automation

+

Feedback

Automated Production

Visualisation of Properties

11

BSSE System and Software Engineering

� Higher functionality and user comfort by software
� higher intelligence of units

fail-stop (Servo) → fail-safe → fail-operational (drive-by-wire)

� infotainment

� vehicle network

� system - subsystem hierarchy

� Requirements on software

� higher flexibility to implement a variety of functions
� shorter development cycle
� high dependability
� good usability

Evolving Automotive Applications

12

BSSE System and Software Engineering

Benefits by ASaP
� flexibility for changes and refinements

� generic approach
� compact user inputs

� shorter development cycle
� short generation time
� incremental refinements

� higher dependability
� fault prevention by intensive checks of user inputs
� fault identification by built-in assertions and visualisation
� fault tolerance by coverage of exceptions, built-in mechanisms

� higher usability
� fast feedback from real system
� little effort to optimise the user interface

13

BSSE System and Software Engineering

Potential Application Areas in Automotive Industry
� Vehicle

� system management
� subsystem / unit software

� User Interface / Infotainment
� user operation
� unit manangement
� unit software

� Vehicle Manufacturing
� automated verification of manually coded robot programs vs. CAD

� automated generation of robot programs from CAD data

� Project and Contractor Management
� integration of COTS and sub-contractor software

� quality checks and evaluation of software

14

BSSE System and Software Engineering

Fault-Tolerant Systems and Risks

Data Bus 1

Devices 1 Devices 2

Star
Sensor 2

Sun
Sensor 2

Gyro 2 Thruster2

Data Bus 2

Cross-Channel
Data Link 1

Processor 1 Processor 2

Flight
Control2

Heart-
Beat 2

Monitoring Processor

Bus Cross

Coupling

OBAC

Control1
Flight Heart-

Beat 1

Sun
Sensor 1

Gyro 1Star
Sensor 1 Thruster1

Vital Data & Cmds.

Sensor Data & Actuator Commands

Heart-Beat

Sensor Data
&

Actuator Commands

Reconf. Cmds. Reconf. Cmds.

Sensor Data
&

Actuator Commands

Cross-Channel
Data Link 2

� computer C1 fails
� computer C2 takes over control
� C1 issues an actuator command
 before it fails

ESA Project DDV
validation of the

exception handling
of a fault-tolerant system

� C2 does not get this information

� C2 issues the same command

� the system fails

Sporadic System Failure

15

BSSE System and Software Engineering

Risk Reduction by Automation

� Can such problems be identified in advance?
� by a systematic approach

� by spending more time on system engineering

� Answer by automated software production: YES

� framework implies problem classification

� less time needed for implementation,

 more time available for system engineering

� better visualisation of properties

16

BSSE System and Software Engineering

� ASaP
� executable system right from the beginning

� system interfaces are already defined by „stubs“

� „executable specifications“

� Subcontractor Management
� take executable specifications as reference

� distribute full executable environment

� each subcontractor gets a reference unit

� each subcontractor can pre-integrate its units

� Integration on next higher level
� replace stubs by subcontractor deliverables

� verify and validate the actual version

Executable Specifications

17

BSSE System and Software Engineering

Inputs in User Notation and Derived Output (MSL Database)

Name of Signal Data Type Input Range Physical Range Acqui. Rate HW Module Calibration Type
CFDdrive_pot REAL32 0 - 10V 0 - 200 mm 100 ASM F1 FctASM1_Std
CFDrot_pot1 REAL32 0 - 10V 0 - 360 ° 100 ASM F1 FctASM1_Std
CFDrot_pot2 REAL32 0 - 10V 0 - 360 ° 100 ASM F1 FctASM1_Std
CF_reg_v_pot REAL32 0 - 10V 0 - 270 ° 10 ASM F1 FctASM1_Std
GS_press_low REAL32 0 - 10 V 0 - 2 bar abs. 10 ASM F1 FctASM1_Std
CFVpenn_chamb REAL32 0 - 10 V 1.e-7 - 1000 mbar 1 ASM F1 FctASM1_Pressure
VGSpenning_ms REAL32 0 - 10 V 1.e-7 - 1000 mbar 1 ASM F1 FctASM1_Pressure

T_database_entry MSL_db_desc[]={
{

/* address in DB */ (int*)&MSL_db.LRT_HK_A1.CFDdrive_pot,
/* offset in DB */ (int)CFDdrive_potDBoff,
/* #samples */ 100,
/* size of data type */ sizeof(REAL32),
/* id of type */ 7,
/* copy DB data */ 0,
/* calibration function */ {(int*)FctASM1_Std_CFDdrive_pot,
/* supervision structure */ {
/* SV function */ (int*)&limChckREAL32,
/* limit definitions */ CFDdrive_pot_suarr,

}
},

/* post-processing function */ {(int*)NULL}
},

18

BSSE System and Software Engineering

More Derived Files (Subset Only)
REAL32 FctASM1_Std_CFDdrive_pot(UINT16 Data)
{

REAL32 buffer;
INT32 value;

/* ADC correction (including amplifier correction) */
buffer = (Data - ADCCorrASM1[0][0].Offset) * ADCCorrASM1[0][0].Gain;

/* conversion to physical units */
value = (REAL32) ((REAL32)0) + ((REAL32) 200 - (REAL32) ((REAL32)0)) /

((REAL32) ((1<<12) - 1)) * buffer;
return value;

}

#include "frametypesDB.h"

/* MSL database */
TyDatabase MSL_db;

/* Recording of database updates */
int updateDBcnt=0;
int DBupdate[TOT_DATABASE_ITEMS];

/* # of instances of telemetry frames */
#define TM_BUFF_INST 2

int LRT_HS_framePtr=0;
int LRT_HS_frameInd=0;
TyTMbuffer_LRT_HS LRT_HSArr[TM_BUFF_INST];

/* Array pointing to TM frame instances */
TyTMbufferArr TMbufferArr[]=
{

{LRT_HK_A1_ID, (int*)&LRT_HK_A1Arr},
{LRT_HK_D1_ID, (int*)&LRT_HK_D1Arr},
{LRT_HK_D2_ID, (int*)&LRT_HK_D2Arr},
{LRT_HS_ID, (int*)&LRT_HSArr}

};
#define TM_BUFFER_ARR_SIZE

sizeof(TMbufferArr)/sizeof(TyTMbufferArr)

19

BSSE System and Software Engineering

Visualisation of Properties: Timing and Communication

Reports available after 15 minutes starting by delivery of user's spreadsheet inputs

20

BSSE System and Software Engineering

Achievements

� distributed real-time system

� within 30 minutes equivalent of about 5 man-years (my)

� 80,000 LOC (environment: 200,000 LOC)

� distributed, synchronised database

� within 30 minutes equivalent of about 1 my

� 16,000 LOC and more

� operations on data types, interfaces etc.

� within 1 minute equivalent of about 2 my

21

BSSE System and Software Engineering

We give warranty!

"accepted user inputs are

automatically transformed into

correct and immediately executable software

when applying an automated production process

established by us"

22

BSSE System and Software Engineering

� Use of existing products

� distributed critical real-time and control systems

� data processing, distributed databases, GUIs

� test case generation

� integration and subcontractor management

� user support possible

� Customised ASaP approach
� know-how transfer

� definition of an appropriate approach

� building of the needed environment

How and Where Can ASaP be Applied?

23

BSSE System and Software Engineering

Customising ASaP

� Analysis of current manual procedures
� similar to „REFA“ in case of hardware
� identification of the most generic approach
 maximum coverage of application area

� Definition of the user interface
� identification of driving parameters
 minimum set of user inputs
� re-use of current environment (if any)
 building of an interface to the user‘s world

� continuous optimisation of ASaP procedures
� provision of analysis tools
� continuous benchmarking to check productivity and quality
� continuous process improvement

24

BSSE System and Software Engineering

This was a very short introduction, but ...

we are available today

� for further discussions

� to show more details

� to give a demo on

 „Instantaneous System and Software Generation“ (ISG)

15 minutes from user's spreadsheet inputs to reports

� 10 minutes generation time

� 3 minutes system execution

� 2 minutes report generation

