

BSSE System and Software Engineering

 ISG: Instantaneous System and Software Generation

Instantaneous System and Software Generation (ISG) fully automates all steps from delivery of
a specification to system execution on the target system for a distributed and/or real-time
system.
The specification is expressed in a system-level notation, as close as possible to the user’s
world. Default notations are ISGL (ISG Language) or even spreadsheets. This allows a non-
software expert to build complex and large software systems, while always knowing from
immediate feedback what was really specified. The short turn-around times and the capability
for incremental refinement and iteration support an agile approach equivalent to continuous
maintenance right from the beginning.
An important aspect is the verification of the specification. It is checked against a set of rules
which prevent generation of erroneous code from an erroneous specification, so that a user can
be sure that the code always corresponds to the specification. Due to automatic stimulation the
properties of the system are recorded, filtered and visualized, allowing an immediate
assessment on whether the specification really expresses what a user had in mind.
The Process

! Multi-team and multi-site capability
! Support of domain of distributed

and/or real-time systems, embedded
systems

! Full domain coverage: all functional
and non-functional requirements by
only one specification and design
language

! Support of synchronous and
asynchronous systems

! Generation of instantaneously
executable infrastructure for
distributed / real-time systems from a
specification in some 1 .. 10 minutes

! Automated integration of external Ada
or C source code

! Auto-generation of missing functions
for immediate integration

! Auto-stimulation on behavioural and
functional level

! Incremental refinement: ”specify and
get immediate feedback”

! Support of heterogeneous OS
(different OS on distributed nodes)

! Tailoring to customer-requested
operating systems possible

! Immediate visualisation of system
properties on development and/or
target platform

! Support of Model-Based Testing
(MBT), auto-generation of tests

! Optionally, automated verification of
the code generator for each
application

Main Features

• Domain-specific support: the limitation of a process to a certain domain allows
maximisation of the degree of automation while still supporting an infinite number of
applications of that domain. In consequence, no manual intervention is required for the
build-process after delivery of the model and additional external source code.

• Guided modeling: the domain-specific notation guides a user the right way. An underlying
meta-model enforces use of the relevant specification elements in proper context.

• Verification: the model is checked against a set of domain-specific rules ensuring
completeness, consistency and correctness.

• Code generation: The model is transformed into the specified environment including the
interfaces to the (real-time) operating system.

• Test generation: Test inputs – both nominal and non-nominal – for stimulation of the
system and its functions are automatically derived from the model.

• Stimulation & execution: The (distributed) system is automatically installed on the target
system and its properties are recorded.

• Documentation: The recorded information is processed and filtered, the system properties
are presented as text, tables and graphics, both in compressed and detailed form.

• Verification of the code generator: The observed properties are automatically verified
against the input model.

• Validation: the user only has to assess the observed properties and to conclude on
whether this is what is wanted.

Benefits
! Very short turn-around time from

specification to execution on the
target system

! Agile, but automated and support of
immediate verification and validation

! Higher flexibility in changing and
maintaining system properties

! Shorter time-to-market
! Easy and inexpensive evaluation of

system architecture
! Verified specification (”no code from

a faulty specification“)
! Outmost support of validation by

visualization of system properties of
a system after execution on the
intended platform

! Filtering of information
! Graphical presentation of system

properties
! Numerous metrics for assessment of

quality

ISG: The fully automated process chain
from the specification to execution on the target system in minutes

verified models and code – validation by visualized recorded properties
higher productivity and efficiency – shorter time-to-market

drastically reduced costs – higher quality – less risks
Quantitative and fully independent assessment of a specification
Contractual problems through imprecise requirements disappear

Clear structures eliminate long/complicated discussions
Visualisation of all contents and interrelationships

Immediate hints on required corrective actions
Automatic reporting (Multi View)

Version delivered in 2000 generated the infrastructure for the Material Science Laboratory
(MSL) successfully operating on-board of ISS

BSSE System and Software Engineering

����ISG

! runs on Un*x platforms (Solaris, Linux)
! generates C code, integrates

automatically C and Ada source code
! supported target platforms: Un*x and

VxWorks; PC, Sparc
! support of other development and target

platforms on request
! “bare machine” on target possible

Documentation
Reports are automatically generated in
RTF format. Errors are reported in text
and graphics

Further methods and tools
! Systematic Requirments Management

(SRM)
! Systematic Project Planning (SPP)
! Fully automated testing (Ada, C)

DARTT and DCRTT The ISG process may interface with
• Tools and methods: bridges are supported for

UML and AADL (others on request)
• External software by its integration on source

code level (Ada, C)

Process Interfaces

Support services from BSSE:

Visualised Non-anticipated
Fault (in red colour, recorded)
non-covered states + trans.

Indicate a principal design fault

Any messages as defined by the user,
support of any user-defined data formats
and data, an incoming message is treated
as an event. Automated conversion Big-
Little Endian for any format.

Message / Data Exchange

The methodology is fully scalable in size and
complexity. Proven up to 16 processors, 40
processes, 1000 message types, 400 states,
1500 state transitions, 10000 atomic actions in
state transitions.

System Complexity

Asynchronous processing of data and events,
generation of sporadic or cyclic events,
creation of timeouts, monitoring of deadlines,
timeouts and resource consumption.

Real-Time Processing

Automated and transparent distribution, easily
configurable by high level directives. The
generated system can be executed on any
number of physical processors between one
and the maximum number of allocated
processors without any need to change inputs
other than definition of the nodes. Automated
set-up of the processor network and
harmonisation of time between processors.

Distribution

As far as possible without compromising
the ISG inherent guarantee on correctly
generated code, the ISG process can be
integrated with customized interfaces not
yet supported on request.

Integration into a Customer’s
Infrastructure

ISG: Instantaneous System and Software Generation

Dr. Rainer Gerlich - BSSE System and
Software Engineering
Phone : +49 (0)7545 911258
Fax : +49 (0)7545 911240
E-mail : info@bsse.biz
Web : www.bsse.biz

Example System Architecture (2 processors)

Visualised Non-anticipated Property (recorded)

non-reachable sub-nets in a Finite State Machine

Specified States, State Transitions and Actions

Events and Data Flow vs.Time (recorded)

• Support in establishing models
• Transfer of conventional text specifications to

models
• Re-engineering of legacy systems with ISG
• Quality analysis and quantitative assessment

of specifications that already exist

• Training to apply ISG
• Complexity and feasibility analyses from

independent, neutral reviewers based on an ISG
model

• Early risk identification through using ISG

is based on Finite State Machines,
mandatory exception handling

Status and Mode Control

Capability for easy and inexpensive re-
structuring without losing user-provided
code, support of incremental development,
prototypes can be transformed into final
product without having to start over

Maintenance Support

Messages and events, automated
generation of CPU load and data traffic

Stimulation

Loss of data, generation of illegal messages,
stimulation of dormant states
time jitter on timed events (one-shots or
periodic events, various time jitter modes)

Fault Injection

Support of redundant processors and
communication channels, automatic channel
switching, no “duplicate message” problem

Fault Tolerance

checks at pre-run-time, run-time and post-run-time,
model checking on FSMs, checking of logical and
performance properties against model specification.

Verification & Validation

reports on logical and performance properties,
exceptions and injected faults according to the
instrumentation selected by a user,
presentation of states and state transition,
data flow and events in a MSC-compatible
format and versus time, more versatile tables
graphics in detail and compressed shape.
Reports extensible to user needs.

Reporting & Visualisation

In ISGL a model can be divided into parts
which may be processed
• by different teams / engineers: just

before auto-generation the parts have to
be merged. Interfaces and dependencies
will be checked automatically and be
marked as erroneous – if so.

• at different sites: to be merged as above;
the user’s existing infrastructure can be
used for shared access.

Multi-team and multi-site
capability

The modeling language allows defining the
behavioural, data-flow and non-functional
requirements of a distributed and/or real-time
system. From such a specification code is
generated which provides everything to run the
application on a distributed / real-time platform incl.
all interfaces to an (mini) operating system.
Specific application functions are to be delivered
as external source code (Ada, C) which will
automatically be integrated.

Modeling & Code Generation

Extended MSC describing message exchange and other

events (state trans, errors, processing stages etc.)

