
Organising Incremental, Reusable and Automated Software Development

'DASIA 99'

- Data Systems in Aerospace -

Lisbon, Portugal

May 17-21, 1999

Rainer Gerlich

BSSE System and Software Engineering

Auf dem Ruhbuehl 181
D-88090 Immenstaad

Phone: +49/7545/91.12.58
Mobile: +49/171/80.20.659
Fax: +49/7545/91.12.40
e-mail: gerlich@t-online.de

www: http://home.t-online.de/home/gerlich/

BSSE System and Software Engineering

- 1 -

BSSE System and Software Engineering

Copyright Rainer Gerlich BSSE 1999 All Rights Reserved

Organising Incremental, Reusable and Automated Software Development

Rainer Gerlich
BSSE System and Software Engineering

Auf dem Ruhbuehl 181
D-88090 Immenstaad, Germany

Phone +49/7545/91.12.58 Mobile: +49/171/80.20.659 Fax +49/7545/91.12.40
e-mail: gerlich@t-online.de internet: http://home.t-online.de/home/gerlich/

Abstract: Saving of development costs and time
has been an issue in the past and still will be a
future challenge. Amongst others the following
key points will help to approach this goal: (1) early
reduction of risks, (2) reuse and (3) automation.
The organisation scheme described here
harmonises risk reduction and reuse and allows for
automation of development steps. At start of a
project it allows for immediate setup of an
inexpensive executable prototype which can be
extended by incremental development to the final
version. Reuse is supported in twofold manner:
across projects and across lifecycle phases. As an
executable prototype is immediately available
(within about 15 to 20 minutes after provision of
the engineering information) an early
identification of risks is possible. The approach is
based on formalisation of the software structure
and the organisation of development steps, and
standardisation of internal and external software
interfaces. It is driven by ideas coming from SDL
[1] and related verification techniques, object-
oriented and formal methods and experience with
a number of projects investigating early system
validation [2-4] and follow-on projects by which
the idea was refined and improved [5-7]. The
standardisation of interfaces supports easy change
of system topology, redundancy switching and
transparent distribution of system components
across a network independently of the physical
media.

Keywords: automation, incremental development,
reusable software, early system validation,
standardisation, software interfaces, software
integration, distributed systems, software
development process

1. INTRODUCTION

Since a couple of years activities have been
performed for ESA/ESTEC to improve system
development and especially software development
by early system validation [2-4].

The EaSyVaDe approach as defined by [3] is
based on incremental development starting with a
representative prototype which is more and more
refined towards the final version. Such a prototype
is either executed by a simulator or on the target
system to get an immediate feedback.

During all these projects attempts have been made
to establish components which may be reused from
project to project and valueable feedback was
collected which could be used to improve the
reusability of the components.

By the project HRDMS [2] a first standard for
module interfaces was introduced but it was too
much bounded to the simulation environment and
could not be reused for target implementation in
the course of OMBSIM [3]. OMBSIM
concentrated on the verification and validation
means as provided by SDL tools [8,9]. As the SDL
verification tools require the use of dedicated
interfaces between the components for
documentation purposes, no standardised
interfaces were introduced. During DDV [4] a step
towards interface standardisation in SDL was
made but it yielded a graphical representation
which was difficult to read, and the code needed to
be instrumented heavily.

During these exercises it was recognised that a
system's topology has to be hardcoded in a tool's
environment1 which made it difficult to deal with
reconfiguration of hardware after a fault like
switching to a redundant bus. Such hardcoded
communication lines also require a significant
effort during development in case of a change and
nearly prevent reuse of software from project to
project.

1 This is true for all graphical tools, in general,
which allow to draw data channels between
components.

- 2 -

BSSE System and Software Engineering

Copyright Rainer Gerlich BSSE 1999 All Rights Reserved

Moreover, it turned out to be very inefficient to
implement procedures for redundancy switching
for all the dedicated lines.

These problems lead to a new approach based on
standardisation of data exchange formats, input
and output interfaces, aqnd data-driven definition
of the topology. In consequence, only a minimum
of formalised inputs on engineering level is
needed. The related tool environment allows for an
automation of system generation and testing. As
programming environments SDL/C
(ObjectGEODE [8]) or pure C are supported.

2. THE IDEA

The idea for standardisation of interfaces is not
new because it is already used in other areas like
hardware, bus protocols or packet telemetry [10],
and a similar idea was proposed in general already
more than 10 years ago [11,12].

However, it seems to be a new approach
concerning communication between software
components like processes and subroutines. The
principal idea is to introduce a "SoftBus" for
intercommunication based on a standard format
which carries all the information needed for data
exchange and distribution, and which can be
applied to every project.

This standard data exchange format includes
information about sender, receiver and the type of
required data processing at the receiver.

Due to the information about the receiver a routing
software package can transparently forward the
data across a network. This is similar to CORBA
[13] but also supports a heterogeneous set of
physical channels like RS232, files, screens, IPC
and TCP/IP and fulfills the needs of real-time
processing. A description of the data format by a
user like for CORBA/IDL is not needed.

Consequently, a system and its capabilities can be
defined by a set of commands, a number of
components (like processes or hardware devices),
a set of communication channels and resources
(like CPU, buses).

This allows to formalise (a) the specification of a
system's properties, (b) the organisation of a
system's structure and (c) the development process,
and to efficiently support a user when he is going
to start a new project.

The standardisation and organisation scheme
allows to introduce a generic, reusable architecture
for transparent distribution which also supports
management of redundant components. An I/O
layer decouples (in object-oriented manner) the
data transfer from data processing and allows to
implement any communication topology by data.

The organisation allows for (a) automated
generation of a software system for which only
high level engineering information is needed (Fig.
2-1), and (b) for incremental system and software
development.

Formal Definition

Engineering Information

Construction Rules

Standards
Configuration Options

Tool

Executable System

Simulation
Target

Fault Injector
Feedback

(typically) about 15 minutes

Input

Support

Output

including compilation, linking and execution

Fig. 2-1: Automated and Instantaneous Construction of a System

- 3 -

BSSE System and Software Engineering

Copyright Rainer Gerlich BSSE 1999 All Rights Reserved

2.1 The Data Exchange Format

Two types of formats are introduced to exchange
messages:

- a "short" format which only carries a command
together with a few data only

- an "extended" format which includes
additional ("attached") data in a user-defined
format.

The "short format" includes the following
information:

- information about the sender

- information about the receiver

- information about what the receiver shall do
on reception of the message ("command")

- priority of the message

- short information contents (some data)

- format type (short, extended, format of
attached data/information)

- length of the complete message (including the
attached data)

- timing information
e.g. when the message was sent initially or
actually (in case it passes several modules).

The user-defined information is added as byte
stream after the end of a short message.

2.2 The Communication Channels

For communication between modules like
processes "logical" channels are defined which are

mapped onto physical channels like buses, RS232,
RS422, TCP/IP, IPC, UDP, files, screens etc.

A number of physical channels may be grouped
together to form a logical channel. Hence, two (not
necessarily equivalent) physical channels like two
buses may form a redundant pair of channels.
Arbitrary grouping of physical channels is
allowed. Redundant channels are identified by
adding some grouping information.

A standard transfer procedure takes the message
and forwards it through all the physical channels
to the destination, selectively or in broadcasting
mode. This approach decouples the application
specific routines from the system's topology and
allows to introduce generic subroutines for data
distribution which are driven by data. This results
in 100% reuse of the communication functions.

The message formats may also be used for
module-internal communication, e.g. to be passed
from function to function as parameter. This way it
is very easy to switch from internal to external
communication because no interfaces need to be
changed. This prevents that changes of the
topology or of software-hardware partitioning will
seriously impact the implemented software.

The standardised format allows also to introduce a
single interface to receive messages within a
process. Similar to the output procedure the
receiving functions convert the (physical) input
into the same logical format. This allows to start
processing of data or of other events from a single
location within an application process (Fig. 2-2).

Send

Receive

Physical
Channels

Physical
Channels

Logical

Channel
Output

Logical

Channel
Input

Data
Processing

Communication Media

Message Tracing / input

Message Tracing / outputStandard
Data

Format

Standard
Data

Format

Fault Tolerance

Physical Channel:

bus

screen

file

TCP/IP

IPC

ISDN

Transparent Access through Logical Channel

reconfiguration

Capability to master

fault tolerance / redundancy

heterogeneous physical channels

UDP

- 4 -

BSSE System and Software Engineering

Copyright Rainer Gerlich BSSE 1999 All Rights Reserved

Fig. 2-2: I/O Interface Standardisation
2.3 Data Processing and Commanding

The message format includes information
("command") about what the receiver shall do on
reception of the message. A sender may advise the
receiver to execute some actions on reception of a
message, or the command specifies which data are
included and how to process them.

This allows to introduce a standard structure for a
module like a process and leads to 100% reuse by
formalised construction of application modules.

Such a module identifies the incoming comands
and then branches to the related processing
sequence. Some of the commands may be common
to all applications like to open or close
communication lines. Some others may be specific
and are (automatically) added to the common
branches in the course of incremental
development.

The principal structure will be based on a case (a
"switch" in C) or a set of cases which covers all
the possible incoming or internally generated
commands. Each branch of this case includes the
corresponding actions.

This allows to provide (1) templates which can be
reused for 100% by every application and (2) fixed
rules how to expand the template to make it
specific for an application.

The result is an extended Finite State Machine
(FSM): a FSM for dedicated, state-based
processing and another command processing
facility for state-independent inputs.

2.4 Formalisation

By the commands which are included in each
message the communication between each module
is formalised in the sense that

- a set of commands can be defined which are to
be processed by a module and which are legal
input

- a set of output commands (if any) can be
correlated with each input command.

Consequently, a system's activities are described
by the data flow between the modules and the
associated commands. This allows to perform
automated testing based on the input-output
mapping of commands and validation of the data
and command flow. It is even possible to execute

tests in an early development phase when the
functionality is not fully implemented, but the
principal functionality and the resources are
known.

2.5 Outlook

The basic ideas as described above were
stimulated by an SDL implementation as
performed in the course of an exercise [14] related
to the ESTEC round-table on "Executable
Specifications" and improved from project to
project. The principal organisation of a SDL
process in terms of states and state transitions has
driven the organisation.

In SDL a process is structured into states and state
transitions. However, the same structure can be
obtained in any other language. This leaves it up to
the user which language he wants to apply to his
project.

The benefit of SDL is that the available SDL tools
provide good verification support which is not
available when applying another programming
language. However, by EaSySim II it is possible to
interface with SDL verification tools from other
languages like C.

3. THE ORGANISATION

Having already executed a number of projects the
current status of organisation is:

- at start of a new project a user receives
templates (currently in SDL or C), a set of
library routines and sample data files which
drive system configuration and define system
properties,

- a user defines all the internal and external data
exchange and data processing by literals,

- a user defines all the resources and their
properties which are needed for performance
analysis by literals, resource consumptions and
timing constraints,

- the tool instantiates the modules from the
provided templates and a user's data inputs,

- the tool generates stubs for user-defined
(application-specific) functions. Such stubs
cover resource consumption and data transfer
during the first steps of devlopment.

- 5 -

BSSE System and Software Engineering

Copyright Rainer Gerlich BSSE 1999 All Rights Reserved

- possibly, a user complements the automated
installation procedure for the simulation and
target envrionment by defining which
additional software (not included in the formal
definition) is to compile and to link

- finally, the tool runs a utility which generates
template data files for the application which a
user can adapt if required.

The needed inputs from engineering level are
provided by three principal files:

- A file describing behaviour and performance
of the system (per process: initial state,
incoming command, outgoing command,
destination, channel, final state, resource/CPU,
amount of resource consumption and data to be
transmitted).

By this file the elements of the architecture
like processes and devices and their instances,
resources, channels, states and commands are
implicitly declared by literals.

- A file including general options and rules for
automated generation of the system.

- A C include file containing compilation�
switches which define the functionality and the
instrumentation to be included.

Having executed such steps the system is
immediately executable by the simulator or on the
target system and a first feedback can be obtained.

Depending on the complexity of the system it
typically takes about 10 to 20 minutes (including
compilation, linking and execution) to generate
everything from scratch what is needed for
execution. Graphical figures of data flow (like
MSC's), propagation of data over time (timing
diagram) and reports (coverage, exceptions,
injected errors) are provided after execution. On
request the generator inserts automatically actions
for fault injection.

Then, the user can incrementally add functionality
in each of the processes. Per action he can call
user-defined functions. If such functions are
missing during the first iterations the system
generator provides means to emulate the missing
logic.

After each extension or modification the system
may be subject of validation either by the
simulator or on the target system.

Validation support is provided by SDL tools like
ObjectGEODE, and by EaSySim II. In latter case
EaSySim II adds own functionality to cover the
validation needs.

Also, EaSySim II provides library routines by
which the source code can be instrumented for
resource consumption and performance analysis,
generation of Message Sequence Charts (MSC's)
and timing diagrams.

Moreover, automated testing as described in 2.4
above is avaliable and will be applied to the
validation of MSL [15].

4. BENEFITS

The benefits observed so far are:

- A first iteration of an executable for a new
application can be obtained just during a
coffee break due to tool support which builts
automatically the specific system from a
generic structure and engineering inputs.

The system is immediately executable on
platforms such as UNIX, Linux or VxWorks.

- The organisation principles, the code generator
and the large number of library routines can be
reused from project to project.

- Parts of an application can incrementally be
refined or modified with little impact on other
modules.

- Validation can be performed after each such
incremental step in the simulation and the
target environment.

4.1 Incremental Development

The initial system is built automatically based on
information about commands, devices, resources
and existing software which may be added.

A user has to define the commands, the devices
and the resources in terms of literals. This
information will be inserted into source code
templates (SDL/C or pure C) from which the
initial version is derived.

Also, a user has to define by data the topology, the
groups of redundant channels, properties of the
communication devices, other performance data
and so on. This is a standard procedure to be
applied for every project. For definition of the

- 6 -

BSSE System and Software Engineering

Copyright Rainer Gerlich BSSE 1999 All Rights Reserved

topology simple mapping rules may be given, even
wild cards are allowed.

By a next step a user expands his application by
adding new commands. There is no need to define
all commands right at the beginning, but they may
be added as needed. Also, more communication
channels may be added when needed. The library
routines just process what is defined and they
accept every change of the number of channels or
of channel properties. Most of the properties can
also be changed during execution, if needed (this
is usally called "on-line maintenance").

After each upgrade the software may be validated
by simulation or on the target system. This way a
system can easily be expanded towards its final
version due to automatically generated new
versions.

As data transfer is transparently handled by a
routing layer, components (processes) can easily
be migrated (off-line or on-line) between
processors. This allows to built transparently
distributed systems for which functionality may be
allocated according to actual performance needs
(if allocation is not constrained by the hardware
configuration).

4.2 Reuse

Reuse is multiply achieved: there is (1) reuse of a
system's software structure, (2) reuse of the
organisation of developement (the software
development process), (3) reuse of the library, and
(4) reuse of user-provided (existing) software
which may be attached at well-defined interfaces.

The provided library routines for data
communication are generic and cover a number of
transfer media like IPC, TCP/IP, RS232, ISDN,
modem, Tcl/Tk screens and a protocol for safe
data transfer.

Support is available to store or retrieve data
into/from buffers (also circular buffers are
supported), to generate and evaluate statistics, and
to handle status messages.

Also, communication with an external (SQL)
database in a safe manner (regarding loss of data)
or with graphical user interfaces (GUI) is already
supported.

Hence, when starting with a new project a user has
already available a large number of well-tested
routines. Moreover, due to the standardised data

exchange format, the generic structure and
provided organisation scheme the user will be able
to generate himself more reusable routines for his
application domain.

4.3 Integration Platform

Due to the standard format for data exchange and
standardisation of time management (not described
here) an integration of asnychronous with
synchronous software like code generated by the
tool SCADE [16] was possible within a rather
short time during the ESPRIT project CRISYS
[17].

5. NEED FOR CUSTOMISED TOOLS

Most tools force a user to define dedicated and
hardcoded lines to express the data flow between
two components: one line per command (or a
subset of commands) is required instead of one
line associated with a set of commands like it is
needed in case of a standardised interface.

With current tools, the visual representation of the
functionality as expressed in the first case
mentionned above is better, but the degree of reuse
and the productivity are significantly decreased.
As the commands may change from project to
project such lines need to be redrawn for each
project.

In the second case the documentation of the
system's architecture is not well supported by
current tools, but development is more efficient.

Below some problems are dicussed which are valid
in general, but have been identified when a generic
approach was applied.

5.1 Problems with Topology and Data Flow

To conclude, a generic approach is not well
supported a priori by a tool: the tool assumes that
the data flow is defined regarding documentation
purposes rather than efficiency of development
and reuse. It was observed that engineers intend to
express an architecture in view of readabilty of the
tool-generated figures rather than to tune the
efficiency of the implementation process.

Also, the coherent transition from an early to the
final development phase by incremental
refinement is not well supported. Most of the
current tools are based on development methods
which do not assume such coherent transitions.

- 7 -

BSSE System and Software Engineering

Copyright Rainer Gerlich BSSE 1999 All Rights Reserved

When introducing rules which shall ensure higher
degree of reuse (during the implementation phase)
this is in conflict with traditional development
approaches where a specification will never be
used for later implemenation: it just serves to
express the requirements and this makes it
reasonable to adjust the structure and the
architecture according to documentation needs.

When taking a generic approach which shall apply
to all development phases this causes problems
because the capabilities for expressing
functionality or tracing of data flow are not
appropriate.
Usually, a dedicated interface line is introduced
according to the command to be documented.
Hence, the communication lines are chosen
according to documentation needs.

However, the generic data format as described
above covers possibly a large number of
commands which usually are not (cannot be)
displayed by a tool along a line.

Moreover, in case of the standardised format it
may happen at execution time that a number of
data are displayed by the the tracking tool which
are not of interest for the user. But if the tool is not
supporting formating / filtering of the information,
such data cannot be suppressed and this makes it
difficult to read the graphical diagrams.

Another problem relates to documentation of data
transfer through physical channels which are not
inherently supported by tools. TCP/IP or RS232
channels are examples in case of SDL. SDL itself
only supports one type of a physical channel for
communication.

When getting data from different channels (like
shown by Fig. 2-2) (after extension of the tool) it
would be rather helpful to document through
which channel the data arrived or were sent. This
information is not needed if only the SDL channels
are available. But it is missing if other channels
are introduced by a user.

Such problems related to an incremental, generic
and innovative development approach require
some tool extensions by add-on software guiding
the (commercial) tool to provide what is needed.

5.2 Limitations by the Class Concept

Automated reuse of classes from project to project
is not possible in most cases due to structural
differences between the project-specific software.
Manual instrumentation is needed to implement
such structural changes.
This limits the advantage of the class concept
significantly regarding automation and efficiency
of software development. Hence, automated
generation can only be applied to some parts of the
system, but not to the whole system.

5.3 Possible Solutions

5.3.1 Tracking of the Data Flow

The most efficient solution is to (re)use a
(commercial) tool which is already available and
to upgrade and extend it in a manner which
ensures compatibility with its future versions.

As the SDL verification means are based on
description of data flow by Message Sequence
Charts (MSC), routines have been established
which generate output compliant with the MSC
standard [18] from pure C. Hence, the output can
be processed by SDL toolsets [8,9] and the SDL
verification capabilities are available for a pure C
environment.

EaSySim II instruments the automatically
generated code, but a user may instrument his
application code (SDL and/or C) by the EaSySim
II routines in addition.

The EaSySim II routines allow to format and to
filter the displayed information, and to display the
name of the transfer channel as discussed above.

This instrumentation is not only limited to SDL,
but may be applied to every source code written in
a programming language supporting a C interface.

By adding such interface routines the tracing also
is extended towards timing and performance: a
separate file is generated including the timing
information. From this file timing diagrams are
derived which allow to display the MSC
information in a format known from logic
analyzers or performance simulation tools like
SES/workbench [19] (Fig. 5-1). For debugging an
event may be selected to display the contents of
the included data message (Fig. 5-2).

- 8 -

BSSE System and Software Engineering

Copyright Rainer Gerlich BSSE 1999 All Rights Reserved

Fig. 5-1: Feedback by a Timing Diagram

Fig. 5-2: Contents of a Data Message

5.3.2 Extending the Class Concept

The class concept was replaced by a concept for
construction of an instance from a template. In
case no structural differences exist the
construction rules are based on "copy/paste" and
"replace".

When a new structure needs to be built for an
instance the given rules can automatically add e.g.
branches to an instance or data declarations.

This way all software can be generated
automatically and no manual intervention is
needed for instantiation.

6. CONCLUSIONS

An approach to standardise and formalise the
system and software development process has
been described which supports incremental
development and validation and allows fully
automation of a system. The benefits for software
development and the observed problems with
existing tools have been discussed. The approach
has been and will be applied to a number of

projects and refined continuously based on the
obtained feedback.

The organisation of developement and of the
software itself allow to automate the generation
process. Only a minimum of high-level
engineering nformation is needed. The type of
information to be provided relates to the system
itself, detailed knowledge on software engineering
and software implemetation is not necessarily
required.

This opens the possibility that a system engineer
and not a software engineer can perform the early
activities during system development because the
engineer just has to provide information about the
system: the processes, resources like processors,
buses and network and their performance,
commands defining the data exchange and data
processing.

The formalisation of the inputs allow for
automated testing and fault injection.

Due to the support of automated testing a system
engineer can perform a first validation of the
system. Then a software engineer may continue
with details by applying an incremental
development approach.

This approach does not require a number of
methodological (graphical) diagrams due to
automation. Such diagrams are ususally needed to
simplify the manual development steps. The
absence of such diagrams is one reason why costs
are decreased because manual processing requires
a lot of human resources.

The goal to allow a system engineer to experiment
with rapidly available and inexpensive system
configurations at the very beginning of a project
was already addressed by the HRDMS [2] and
OMBSIM [3] projects but it took a lot more time
to end up with a solution: the feedback from a
number of exercises was needed to get an

- 9 -

BSSE System and Software Engineering

Copyright Rainer Gerlich BSSE 1999 All Rights Reserved

appropriate organisation and a generic system
architecture for automated construction of

software.

This work was funded in part by the ESPRIT project CRISYS [17].

Team members are: Schneider/SES (F, prime), Elf (F), Siemens Electrocom (D), Verilog (F), Verimag (F),
Prover Technology (S), GMD (D), University of Grenoble (F), CEA (F), BSSE (D)

- 10 -

BSSE System and Software Engineering

Copyright Rainer Gerlich BSSE 1999 All Rights Reserved

7. REFERENCES

[1] Specification and Description Language,
Z.100 (03/93), ITU General Secretariat -
Sales Section, Place de Nations, CH-1211
Geneva 20

[2] HRDMS (Highly Reliable DMS and
Simulation), ESTEC contract no.
9882/92/NL/JG(SC), Final Report, Oct.
1994, Noordwijk, The Netherlands

[3a] R.Gerlich, V.Debus, Ch.Schaffer,
Y.Tanurhan: EaSyVaDe: Early Validation
of System Design by Behavioural
Simulation, ESTEC 3rd Workshop on
"Simulators for European Space
Programmes" Noordwijk, November 15-17,
1994

[3b] OMBSIM (On-Board Mangement System
Behavioural Simulation), ESTEC contract
no. 10430/93/NL/FM(SC), Final Report
Nov. 1995, Noordwijk, The Netherlands

[4] DDV (DMS Design Validation), ESTEC
contract no. 9558/91/NL/JG(SC), Final
Report Dec. 1996, Noordwijk,
The Netherlands

[5] EaSySim II, 1996-1999, Rainer Gerlich
BSSE System and Software Engineering,
Auf dem Ruhbuehl 181, D-88090
Immenstaad, Germany

[6] Protocol Validation, BSSE, 1997,
unpublished

[7] CADIS (Central and Remote Data
Acquisition and Distribution Integrated
System), 1997-1999, Rainer Gerlich BSSE
System and Software Engineering, Auf dem
Ruhbuehl 181, D-88090 Immenstaad,
Germany

[8] ObjectGEODE SDL-Tool, Verilog, 150 rue
Vauquelin, F-31081 Toulouse Cedex,
France

[9] SDT, TeleLogic AB, PO Box 4128, S-20312
Malmö,Sweden

[10] Packet Utilisation Standard (PUS), ESA
PSS-07-101

[11] Rod Allen, "The SoftBus Approach",
ESA/ESTEC, Noordwijk, private
communication, 1986

[12a] AESOD I, Study on AOCS Embedded
Software Design, ESTEC contract no.
6534/85/NL/AN(SC), Final Report, 1987,
Noordwijk, The Netherlands

[12b] AESOD II, ESTEC contract no.
7433/87/NL/AN(SC), Final Report, 1990,
Noordwijk, The Netherlands

[13] Common Object Request Broker
Architecture (CORBA), Object
Management Group (OMG)

[14] Executable Specifications with particular
application to spacecraft control and data
systems, 2nd Round Table Proceedings,
December 10-11, 1996, ESTEC, Noordwijk,
The Netherlands

[15] A SDL Model for Behavioural Validation of
MSL, ESTEC contract no.
13309/98/NL/MV, Noordwijk, The
Netherlands

[16] SCADE, Verilog, 150 rue Vauquelin, F-
31081 Toulouse Cedex, France

[17] CRISYS (Critical Instrumentation and
Control System) ESPRIT project EP 25514

[18] Message Sequence Chart (MSC), Z.120
(10/96), ITU General Secretariat - Sales
Section, Place de Nations, CH-1211 Geneva
20

[19] SES/workbench, Scientific and
Engineering Software Inc., Building A,
4301 Westbank Drive, Austin, Texas,
78746-6564, USA

