
BSSE System and Software Engineering

 Copyright Rainer Gerlich BSSE, 2006 All Rights Reserved

Improving Test Automation by Deterministic Methods in Statistical Testing

This paper was presented during

DASIA'06: Data Systems in Aerospace

May 22-25, 2006, Palace Hotel, Berlin, Germany

organised by Eurospace, Paris

ESA Document SP-630, 2006

BSSE System and Software Engineering

Auf dem Ruhbuehl 181
88090 Immenstaad, Germany

 Phone +49/7545/91.12.58
 Mobile: +49/171/80.20.659
 Fax +49/7545/91.12.40
 e-mail: Rainer.Gerlich@bsse.biz
 Ralf.Gerlich@bsse.biz
 Thomas.Boll@bsse.biz

 URL: http://www.bsse.biz

mailto:Rainer.Gerlich@bsse.biz
mailto:Rainer.Gerlich@bsse.biz

IMPROVING TEST AUTOMATION BY DETERMINISTIC METHODS IN
STATISTICAL TESTING

Ralf Gerlich(1) Rainer Gerlich(2), Thomas Boll(2) & Philippe Chevalley(3)

(1) University of Ulm, 89069 Ulm, Germany, co-located at BSSE,
e-mail: Ralf.Gerlich@bsse.biz

(2) BSSE System and Software Engineering, Auf dem Ruhbuehl 181,
88090 Immenstaad, Germany, Phone +49/7545/91.12.58, Mobile +49/171/80.20.659,

Fax +49/7545/91.12.40, e-mail: Rainer.Gerlich@bsse.biz, Thomas.Boll@bsse.biz,
URL: http://www.bsse.biz

(3) ESA/ESTEC, TEC-SWE, Keplerlaan 1 - Postbus 299, 2200 AG Noordwijk ZH, The Netherlands,
Phone +31/71565-6539, Fax +31/71565-5420, e-mail philippe.chevalley@esa.int

ABSTRACT:

Statistical testing is of increasing interest because it
allows full test automation – from test generation to
evaluation - and hence reduces significantly the
human test effort, while allowing a much broader
test range. However, automatically generated tests
based on a statistical approach have to cope with the
"oracle problem" and the "small target problem".
The oracle problem represents the fact that software
cannot conclude on the correctness of the derived
results by itself, while the small target problem
consists in the challenge of hitting sporadic, but
important test conditions in a large input domain. In
the worst case this problem can result in zero-
probability for specific test conditions. Although
deterministic testing methods in principle do not
suffer from the small target problem, they suffer
from an oracle problem as well, which is the problem
to know which test cases are needed. In general, the
test criteria need to represent all viable questions a
test engineer wants to pose on the respective system
under test. Therefore deterministic methods are best
at pointing out anticipated faults (as far as
“anticipated” by a test engineer) while statistical
methods can also reveal non-anticipated faults.

BSSE has started already more than ten years ago
with first activities in statistical testing, and built
related tools. Based on the feedback from recent
activities an approach has been defined aiming to
overcome the weakness of statistical and
deterministic testing by making a synthesis of the
best of the two worlds. This approach includes
automatic test case generation based on the
information in the source code (prototype
specification and code structure), optimisation by
improved test criteria for statistical testing and
methods known from deterministic testing,

automated test evaluation and comprehensive
presentation of results.

1 INTRODUCTION

Test automation is mostly understood today as
automation of test execution – and possibly as
automation of test evaluation, mostly in the form of
user-provided verification functions. However, most
of the effort lies in the identification of test cases –
including provision of the expected results or
verification functions – and the preparation of the
test, independently of whether the actual execution is
automated or not. Improvement of test automation
must therefore address full automation or – where
not otherwise possible – at least simplification of
these tasks, including the automation of execution
and evaluation, of course.

1.1 Definitions

A test case is a set of inputs and execution conditions
under which certain properties and requirements for
the system-under-test (SUT) are to be verified. In
manual testing this also includes the expected results.
Deterministic testing is a method of testing where
test cases are selected purely based on deterministic
test criteria, functional or non-functional ones. An
example for a functional test criterion is an expected
result like "x=10" in response to a test case. Non-
functional criteria include structural test criteria such
as statement or decision coverage. Each test case
matching an element of the criterion – e.g.
"statement X must be executed at least once" in case
of statement coverage – is considered equivalent to
any other test case matching that criterion.

Statistical testing is a method of testing where test cases
are selected among the possible input domain randomly
w.r.t. the functional or non –functional test criteria based
on a given probability distribution. Random testing is
the special case where a uniform distribution is used.

1.2 Deterministic vs. Statistical Testing
Regarding the expected information about test criteria,
deterministic and random testing are clearly the
extremes on the scale. While in deterministic testing the
test goal is assumed to be completely specified by the
given formal criterion, random testing assumes a
complete lack of information about test criteria. For
statistical testing the criterion is at most given indirectly
via the probability distribution.

Historically, deterministic testing is the most natural
way of testing from a specification point of view. It is
used in context of manual testing, where the given
criteria are to be considered merely as a minimum.
Depending on specific vendor standards and the
experience and thoroughness of test engineers, test case
sets may be manually designed which served the actual
goal of testing and thereby typically overfulfil the
required minimum criteria.

In the last years several approaches – mostly based on
the advances in the field of constraint solving – have
surfaced which allow automation of deterministic test
case identification [Gotlieb00, Durrieu]. They focus
mostly on the fulfilment of the given structural coverage
criteria and assume that any test case set fulfilling the
coverage criteria is equivalent to any other test case set
doing so. While the number of test cases is thereby
reduced a-priori together with the effort for manual
evaluation of test results, experience of test engineers is
lost and the goal of fault identification is replaced by the
goal of coverage.

In case of statistical testing test cases are chosen
randomly by automation from the input domain (“SUT
is considered as black-box”), and the coverage is just
measured as a result and confirmation of fulfilment of
the minimum test criteria, such as statement coverage or
MC/DC. This results in a more spread selection of test
cases which according to our experience is also often
more successful in detecting faults, specifically non-
anticipated faults.

Automated deterministic testing is currently limited to
simple applications: limited size and nesting of source
code, limited variable types like boolean (there are
specific problems with float values or pointer aliasing),
simple coverage criteria like statement coverage for
which a single execution of a statement is sufficient to
consider it as being verified. More complex SUT and

extended test criteria are likely to exceed the current
possibilities of these methods.

In contrast, statistical testing employs very simple and
efficient means for test case selection. Huge test case
sets can be automatically generated fast and easily.
Worst-case execution and memory complexity of the
method is solely affected by the cardinality of the input
domain of the SUT. This capability is both a strength
and a weakness of statistical testing. A huge test set
cannot be subject of manual verification. Therefore the
benefits of statistical testing are currently mostly
acknowledged in the area of robustness testing, e.g.
based on the criterion that no exception shall occur
under nominal and non-nominal conditions.

Statistical testing also suffers from the "small target"
problem. Specific but important testing conditions may
be represented by subsets of the total input domain with
a small net hit probability according to the given
probability distribution. The most extreme case would
be a probability of zero for selecting a test case
matching the given conditions, e.g. in case of a finite
subset of an infinite input domain such as recursive data
structures.

Therefore an extension of statistical test generation
towards deterministic testing by consideration of
verification criteria seems to be a promising approach.
By previous activities in the context of real projects
([AISVV], [ACG]), related to subprogram stimulation
from parameter type range, block coverage figures
between 50% and 70% could already be achieved. To
reach full 100% coverage deterministic test case
generation can be considered as a complementary
activity. For further improvement more specific test
criteria can be introduced to reduce the large number of
automatically generated test cases to a much smaller
number which is adequate for manual evaluation. In any
case, however, deterministic methods must not
negatively influence the unbiased selection of test cases
and thus the ability to identify non-anticipated faults.

1.3 Test Case Optimisation
Even though it is impossible to identify "how many
faults left" with zero being the ultimate goal, the
commonly used metrics are nothing more than indirect
metrics regarding identification on how many faults are
still not detected. In case of valid and reasonable test
criteria it can only be concluded that a test case set is
insufficient if the criterion is not fulfilled. The reverse
assumption (e.g., "coverage criterion fulfilled" means
"good test case set" w.r.t fault identification) is not
generally true.

However, many of the current deterministic test
approaches seem to be based purely on this reverse

assumption. This is different in statistical testing, as the
test cases are not generated according to the criterion.
Instead they are generated without explicit bias. Only
after test execution the test case set is evaluated for the
fulfilment of the criterion, thereby providing a much
larger set of test cases due to automatic test generation.
This allows for quantitative statistical analysis, but also
bears a high chance of finding better test case sets than
by simple fulfilment of coverage criteria.

In addition to test cases derived from functional test
goals (e.g. expected x==10), non-functional properties
may also drive test generation as well. Such a property
may be a structural criterion like “coverage” requiring
that a certain coverage criterion, e.g. statement
coverage, will be met by the set of generated test cases.

From a rigorous point of view all above test criteria
should be addressed. However, due to limitations in
budget and effort and schedule constraints, and
deterministic testing based on manual testing, not all of
the test goals can be met.

From a principal point of view the final decision on
correctness of properties has to be made by an engineer
on a case-to-case basis, even when full test automation is
applied. Consequently, the number of test cases for
manual verification should be reduced.

This reduction takes place by two separate processes.
Firstly, from the total set of generated test cases a subset
is selected according to the given test criteria, such as
coverage (in a general sense), robustness criteria (e.g,
"no exception may be raised" or "no timeout may
occur") and plausibility or correctness criteria in the
form of verification functions. Test cases flagged as
"interesting" or "important" by these criteria are to be
kept in the test case subset for manual inspection.
Specifically the verification functions need not
necessarily be correct, i.e. they can flag correct results
as incorrect. As long as the ratio of such incorrectly
placed flags is low, the incorrectness of verification
functions only leads to a slight increase in the size of the
selected test case subset. Incomplete verification
functions flagging incorrect results as correct, however,
should be avoided, as it may keep test cases indicating
faults from being raised to the test engineer.

Secondly, methods from deterministic test case
generation are used to solve or diminish the "small
target" problem. This way the required number of test
cases required to allow a fulfilment of all test criteria
can be reduced together with the time required to
generate these test cases.

In order to preserve the important capability of
statistical testing of raising problems not hit by
deterministic testing, an improved automated test

approach should be based on statistical testing, merely
being extended by the means of deterministic testing.

Such an extended test approach should consider:

1. provision of test vectors by full test automation
covering test case generation, execution and
evaluation.

2. selection of a subset of the test cases which most
likely represent faults in the software. This selection
happens using extended criteria such as the
assumption that an exception indicates a fault, or
specific, user-defined plausibility criteria, both
negative (ensured implausibility) and positive
(ensured plausibility).

3. identification of an optimised set of test cases which
is sufficient to identify critical and intolerable faults
of the software on the target and to prove the
correctness of the software up to the required
reliability.

An “optimised” set is a “minimum set” w.r.t. to the
test criteria. Consequently, it is not the “absolute
minimum” but an adequate minimum.

By automated reduction of test cases the manual
provision of results shall become feasible, while the
quality of the test case set is improved. Then results
for much fewer test cases have to be evaluated
manually, while more functional and more and
better non-functional criteria can be applied – as
outlined in the next para.

In contrast to deterministic method, removal of test
cases from the full test case set shall take place after
their execution so that the results of test case
execution can be taken into account by the
reduction algorithm. Test cases triggering
exceptions or having their results flagged as
implausible by plausibility checks shall be kept to a
higher amount than those test cases performing
normally according to the specified rules (“no
exceptions”, “seems to be plausible”). Also such an
algorithm shall try to fulfil test rules such as general
purpose coverage by the selected test cases.

4. complement of the manual test approach by new
capabilities which only can be provided by test
automation.

Robustness can be evaluated by execution of a large
number of test cases, requiring only a quantitative
analysis of test results based on non-functional test
criteria. When applying intelligent automated
evaluation methods, answers to questions can be
given, which, while important for the validity and
correctness of the system, would not have been
asked otherwise (e.g., in case of classical formal
verification methods).

Moreover, the scope of automation can be extended in
the context of verification. As testing does not provide a
proof on absence of fault in the SUT, it should be
complemented by other, more formal means in the
context of automation. As has been shown in
[AISVV2005] comparison of messages from
independent platforms (compilers, OS, processor type)
can help to identify faults in the source code, or even in
compilers. To benefit from different platforms porting of
the source code may be needed which is only feasible by
automation, especially for large applications (10 .. 1000
KLOC).

Today, manual testing implies "deterministic testing",
i.e., the goal-oriented identification of test cases from a
functional point of view and given a formally specified
test goal. This approach can be considered as a
"reduction" or "optimisation" of number of test cases
from the whole large set of test cases based on available
knowledge and requirements on the SUT (“manually
defined test profile”), which possibly implies missing of
important test cases related to critical issues.

The feedback gained from BSSE activities in statistical
testing leads to the conclusion that a combination of
deterministic and statistical testing will improve the
efficiency and effectiveness of automated testing, and
thereby the quality of test results.

The explanation of the approach starts with an overview
on the state-of-the-art on deterministic and statistical
testing in Chapter 2. In Chapter 3 the feedback obtained
by the performed testing activities is presented. The
synthesis of both worlds, which is currently being
researched and implemented, is described in Chapter 4.
Finally, conclusions are made in Chapter 5.

2 ISSUES OF TESTING
Testing aims to prove by an empirical approach that the
SUT meets the expectations, either expressed as explicit
requirements or provided as informal idea, of which the
full extent is possibly unknown. This requires
identification of test cases, their execution and
evaluation. In practice, testing can never prove the
correctness completely because this would require the
enumeration of all possible test cases during test, a
venture which could take infinite time and projects often
not even have the finite time they would need for limited
testing.

Therefore the goal needs to be rewritten to “proving the
presence of faults”. Murphy's1 and the engineers' own

1 It is said that the engineer Edward Murphy, jr. has
made a statement to the following effect: "If there's more
than one way to do a job, and one of those ways will

experience tells us that there's always one fault we just
did not detect yet. In the context of "Independent
Software Verification and Validation" (ISVV) this goal
is also known as "demonstration that faults are still
present".

From this point of view the execution of a test case can
only be deemed successful if a fault was detected.
Depending on the level of previous testing this may
require further refinement or extension of test cases. If
in previous tests a considerable number of faults was
found and corrected, the quality and quantity of the
possibly remaining faults can be estimated and used as
an criterion on whether to continue testing or not.
Coverage alone, however, cannot constitute such an
abortion criterion.

Manual identification usually results in too few test
cases, automatic generation in many test cases, often
more than can be executed even automatically within the
given schedule.

The basic approach to test case reduction is the
identification of so-called "equivalence classes". There
are several different definitions for equivalence classes
in testing, the most common defining an equivalence
class as the set of inputs for which each input yields the
same execution path as any other input from the set.
This path-equivalence results in a possibly infinite set of
equivalence classes in many cases and thus is not
practical for test case reduction. In terms of the goal of
testing the ideal definition would declare two test cases
to be equivalent if they are equally expressive regarding
the presence of a specific fault. As for the ideal test
criterion, this equivalence criterion cannot be applied in
general, but only for anticipated faults.

In practical applications it is therefore necessary to
define equivalence in terms of the test criteria, such as
coverage criteria or specific types of faults – in contrast
to faults in general.

2.1 The Challenge of Fault Identification
The goal of verification is the identification of faults in
an SUT w.r.t. to a specification. A specification might
not allow to directly define evaluation criteria to decide
on whether an observed property of an SUT is correct or
not. Therefore the contents of a specification may have
to be refined towards feasible evaluation criteria.

result in disaster, then somebody will do it that way." It
is most commonly formulated as "Anything that can go
wrong will go wrong" and is known as "Murphy's law".

(Source: Wikipedia,
http://en.wikipedia.org/w/index.php?title=Murphy%27s
_law&oldid=46524418)

The goal of validation is the identification of faults in a
specification. Consequently, considering a specification
as the reference, it is still more difficult to identify faults
in a specification, because there is no base upon which a
conclusion on the SUT can be made. Faults in a
specification can only be identified when the creator of
the specification compares the properties of the SUT
with the expectations, which should be reflected in the
specification.

Testing contributes to verification and validation.
“Verification testing” aims to identify faults in the SUT
w.r.t. the specification. “Validation testing” forces the
SUT to present its properties so that the creator of the
specification can identify discrepancies, e.g. some
missing functionality which was forgotten in the
specification.

Anyway, for identification of faults a clear picture is
needed on what is correct and how faults may affect
observed outputs. If so, it is straightforward to identify
faults or at least to flag possible faults. In this case a
scheme will help to identify faults, a so-called fault
model.

When having a reference to what is correct, e.g. some
information which can be compared with the “answer”
from the SUT, it is rather easy to identify a fault, even if
a transformation is needed to make both entities
comparable.

However, the problem is more complex because not
everything in an SUT directly corresponds to an item of
a specification, as the process of implementation of a
specification also means substantiation of the elements
of the specification and thus information is usually
added. In this case reference to the specification cannot
be made, at all. Therefore the fault model related to the
specification has to be extended in a generic manner,
based on the way the SUT is implemented. In case of
array access, e.g. a rule may be introduced requesting a
check of the array index. Then any illegal value of an
index can be identified as fault, immediately. For fault
removal it is important to signal such an event to the
outside world, e.g. by an error message or a return code.
Otherwise the check for fault identification would not be
needed, at all, because it would be not visible.

Unfortunately, it is not usual at all to apply such fault
models. Therefore in an SUT no checks may be found
allowing early identification of faults and avoidance of
fault propagation. In this case identification of a fault
may be related to a message from the run-time system
because it does some checks, possibly supported by
hardware.

A pre-condition for raising an error message is the
execution of the statement in doubt, i.e. of all statements
of an SUT, because everything has to be doubted at the

beginning. Consequently, a non-zero coverage must be
achieved in order to have a chance to get an error
message.

2.2 The Challenge of Coverage
A number of different structural coverage criteria are in
wide use. Software standards – such as DO178B used
for airborne software or ECSS Q80 for ESA space
systems – define the criteria required to be fulfilled by
software tests on products in their scope.

The most often used criteria are statement coverage,
different forms of condition/decision coverage and
several dataflow-based criteria. Path coverage is
presented as extreme example of a criterion which
typically cannot be fulfilled by finite test case sets. In
addition, path set and path class coverage are introduced
as more general forms of coverage criteria [SmartG].

Statement coverage requires each statement in the SUT
to be traversed at least once during execution of the full
test case set. It is equivalent to basic block coverage,
where a basic block is a linear-sequential code block,
i.e. traversal of a basic block respectively traversal of
one statement of a basic block implies traversal of all
statements in that basic block.

Statement coverage is weak as it does not properly
represent the complexity of an SUT. In case of a loop,
statement coverage only enforces at least a single
iteration of the loop, thereby treating it like a
conditional statement. Consequently, back edges in the
control flow graph are ignored and the context of the
execution of a statement is not considered.

Decision coverage enforces iteration of the different
possible outcomes of a decision. Regarding loops it is
equivalent to statement coverage as a single iteration
implies the loop condition to be true at least once and
false exactly once. However, conditional statements
inside loops are clearly handled differently as two
traversals of one conditional statement are required for
full coverage, thereby requiring either one test case with
two iterations of the enclosing loop or two test cases
with one iteration each with different outcomes for the
decision in the conditional statement.

Different variations of decision coverage require the
leaf-level parts a decision is composed of – the so-called
conditions – to take all their possible outcomes at least
once. Modified Condition/Decision Coverage (MC/DC)
specifically requires that each condition must
independently determine the decision at least once, and
thereby targets possible faults in each of the conditions.

Path coverage requires the traversal of each possible
execution path at least once. The set of possible paths is
guaranteed to be finite only as long as no back edges are

present in the control flow graph. As soon as loops are
introduced into the control flow, the total path set may
be infinite. Therefore path coverage can only seldomly
be fulfilled by a finite test case set.

For path class coverage the overall path set is
partitioned into a finite set of pairwise disjoint subsets,
the "path classes" [SmartG]. For each path class at least
one test case is required yielding an execution path from
the given path class. Path classes can be constructed by
general and extensible rules. The total path set can, e.g.,
be partitioned based on the number of iterations in a
given loop, so that there is at least one test case for
traversing the loop once, more than once or skipping the
loop.

Note that statement coverage and the different forms of
decision coverage do not define path classes, as a single
test case can cover more than one statement but only one
path class.

Typically, the total path set is not directly known as
specific paths may be infeasible, e.g., due to a loop
being iterated at least twice for any input. Instead a
superset of the total path set is constructed from the
structure of the SUT and then partitioned according to
the given rules. Infeasible path classes need to be sorted
out by various means [SmartG].

The criteria presented above are all based on control
flow. There are additional criteria based on data flow. A
definition is an assignment of a value to a variable.
Reading a variable constitutes a use of said variable. A
definition of a variable reaches a use if during execution
no further definition of that variable is encountered. The
all-uses-criterion, e.g., requires each definition to reach
each of its uses at least once during test execution.

Path set coverage is a generalised form of path class
coverage, lacking the requirement for pairwise
disjointness of the various subsets of the total path set.
They are constructed similarly but do not require
additional care for assigning duplicate paths to unique
path classes. Instead an additional definition is required
by the test engineer on whether a test case may count for
coverage of multiple path sets if the executed path lies in
the intersection of these path sets. If so, test cases for
more specific path sets could also cover less specific
path sets also containing the respective path. Path set
coverage can be used to express any coverage criterion
with a finite set of coverage elements, such as the
criteria presented above except for path coverage.
Moreover, path set coverage can be used for any
combination of these criteria with additional custom
criteria, e.g. based on a database collecting test
experience.

All these criteria define a set of path sets each of which
is to be covered by at least one test case. Some of these

path sets may be related to very small, finite or even
singular subsets of the input domain. Covering such
"small target" path sets is difficult with pure random test
case generation. In some cases the probability for hitting
such small targets may even be zero, possibly requiring
an infinite sequence of tries. Even when the probability
is non-zero but very small, the number of tries required
may exceed the available time budget of the respective
project.

The extension of functional code by code for
identification of faults has an impact on the coverage
figures. If no fault occurs, such branches for fault
identification are never entered, and the coverage of the
SUT remains below 100%. Therefore fault injection has
to be applied as well enforcing execution of all
statements.

As the domain of faults is usually much larger than the
nominal domain, fault injection is nearly never applied,
due to lack of resources. Therefore automated testing
shall help to tackle this problem.

In this respect the requirement of a high coverage may
even be counterproductive. The pure request to reach
100% coverage may compromise the goal of fault
identification. Engineers may omit means for fault
identification as described above, forgetting that the
coverage criterion is not the ultimative goal to ensure
good quality of an SUT, but just an indirect goal
implying that by execution of a statement a fault
condition may be raised. However, it does not make
sense at all to enforce execution without providing
means for identification of a fault. E.g. when no
branches are added in the SUT which allow to signal the
fault to the outside world, the only, but possibly low
chance is, that OS services will raise an exception.
Hence, a high coverage figure may be reached, but the
faults still cannot be identified.

Of course, sophisticated means like mutation testing
may help to identify the weakness for fault detection, but
as described above much simpler and more
straightforward means can already help a lot.

2.3 The Challenge of Test Generation
In the deterministic approach test cases are selected
according to existing knowledge on the software, based
on the expected functionality. When focusing on the
functionality, it is possible that not every branch in the
software is covered during test as explained above. This
problem is especially critical in manual test case
selection, due to the limited ability of the human brain to
appropriately understand and capture this mapping.
Ironically, this human limitation is part of the reason
why tests are required at all.

However, even when a branch is entered, it is not
ensured that a possibly present fault will occur in a
detectable manner under the given conditions. On the
contrary, multiple test inputs may not contribute more
than a single test case regarding the identification of a
fault. This leads to equivalence classes for reduction of
the number of test cases, requiring execution of one test
case only from the set of test cases of a class. The
following example shall illustrate why test case
generation from a specification may not be sufficient,
and how the number of test cases can be reduced by
equivalence classes.

When a specification requires computation of y=1/x –
free of faults – the following steps apply:

1. The specification:

Provide the results for 1/x in the range
-100 ≤ x ≤ 100, x!=0

2. The implementation (which adds functionality (and
faults) not expressed by the specification)

y=(x-1) * (x-2) / (x * (x-1) * (x-2))

3. The resulting equivalence classes

To test the correct use of y=1/x from the
specification, two test cases – usually – would be
sufficient: x==0 and x!=0. In fact we have two
equivalence classes regarding the exclusion of
division-by-zero.

But the implementation is more complex – for
whatever reason. Then we may observe an
exception at run-time not only for x==0, but also for
x==1 and x==2, even though all three test cases
identify the same bug: the code is not properly
guarded against division by zero a priori. With the
goal being to properly test the division-by-zero
shield, four equivalence classes are needed for the
SUT instead of two when looking on the
specification.

As a side note: This is a simplistic yet evident
example showing the dependency of test efficiency
on the implementation. In fact, the actual
implementation of floating point division either in
software or in hardware is much more complex than
the specification above may imply. The same is the
case for most other software. The effect is even
more critical for more complex code.

In the deterministic / manual approach, selection of test
cases would be quite simple – in this case. When
inspecting the code, one could easily identify the need
for four test cases (we ignore here the fact, that most
probably an inspection would request the change of the
code to 1/x). When generating test data on a statistical
basis automatically, depending on the probability

distribution of the generator and the range of x the
probability of hitting one of these interesting cases may
be quite low. And all this considering only the case that
x is a direct parameter. If x is, e.g., the height of a data
tree passed to the function, the probability of generating
a tree with one of the required heights 0, 1 or 2 may be
even infinitely small in case of random testing.

For manual test case generation this would be a fairly
simple example. Consider, however, large call
hierarchies and more complex code scenarios. Even
taking out multiple iterations for loops, the number of
different alternatives to be considered raises
exponentially with the maximum block nesting depth
and the length in terms of basic blocks. Obviously the
complexity limit for proper manual test case generation
will be exceeded by far in realistic applications.
Therefore any reduction of test cases here is a reduction
in test case set quality.

Deterministic approaches perform a-priori test case
reduction, relying purely on the validity and
completeness of the test constraints imposed by the test
goals and other additional information provided, e.g., by
a model applied for code testing.

Statistical testing does not make any direct assumption
on the SUT or the test criteria, and hence cannot be
biased. As will be explained in chapter 3 below this is
why statistical testing will provide answers to questions
which where never asked, provided test evaluation do
not suppress such answers.

The difference between statistical and random testing is
that a uniform distribution is applied. Starting with a
uniform distribution is straightforward when nothing is
known about the implementation. As soon as more
information is collected, the distribution could be better
adapted to the profile of the SUT and the test criteria as
to allow proper coverage even of small target values.

In case of [AISVV] this was exercised (to Ada code) for
“case” where the specification used an integer type
(“int”) which is converted to an enumeration type for the
“case”. Obviously, a random distribution over the full
32-bit range would poorly cover the range actually used.
When taking an adapted profile covering each integer
between 0 and 200 (the highest observed “select”-value
in a case) the overall coverage increased slightly by
about 3% points for an SUT consisting of about 20,000
blocks.

However, this was not really a statistical approach,
because between 0 and 200 there was no random choice
possible for the first 200 test cases, they were selected in
a deterministic manner. Only the remaining test cases
were chosen randomly from the complementary range.
This leads over to the question whether an adapted
profile is meaningful at all. When knowing details

already, why not directly choose the discrete values
rather than select them randomly?

In case of statistical testing each point of the input
domain has the same chance to be selected. However, a
point may be chosen multiple times or even not at all.
Therefore, taking the probability 0.005 for a set of 200
points, the probability that one of the 200 points is not
hit after 200 tests is approximately

e-1 ≈ 36%

Even after 2400 tests the probability is e-12 ≈ 10-5.
When combining the statistical and the deterministic set
it is ensured that the interval 0 .. 200 is really covered
for 100% even after 200 test cases, only. In this specific
case the deterministic part of test case selection is
specialised for the "case"-statement and the case that the
argument to the switch is a direct input to the SUT.
Similar adaptations are possible for other cases.
However, there is no need to stop there. The main
difference to the purely random approach is that more
formal and informal coverage can be reached by the
same or even a smaller number of test cases. This way,
the generation of test cases benefits from a simple
deterministic adaptation and still does not lose the
general benefits of unbiased random testing. The
adaptation can be understood as a goal-directed
modification of the probability distribution.

Statements related to fault handling can never be
reached when test cases in the nominal range are
generated. Therefore a test generator should also
support fault injection. When the nominal input domain
is known, the non-nominal domain is known, too.
However, if the nominal domain already spreads over
the whole possible range, from a formal point of view no
non-nominal range exists. This may happen if a type is
declared as "int" (in C) although the effective range is
only 0 .. 200. Consequently, for automated test
generation more precise specifications are needed.

However, in some cases the derivation of invalid test
cases may even be impossible, because there are no
means to drive test generation into the right direction
from specification level. An example is (in C):

fd=fopen(myFile,"w");
if (fd==NULL) { <error handling> }

In this case it is nearly impossible to ensure that the
body of the "if" will be entered when the pattern for
“myFile” is generated randomly. Therefore a statistical
test tool needs to undertake specific actions to cover
such branches as well.

2.4 The Challenge of Finding Non-Anticipated
Faults
The success of test case execution may depend on
conditions which are not identified by deterministic
testing or cannot be identified because the complexity is
too high or information is missing.

A sequence of two test cases, e.g., may yield correct
results, while they will fail when executed in inverse
order, because a fault condition is activated due some
side-effect of the previous test case. The goal of
executing both cases only in one sequence implies
missing the fault condition.

By statistical testing the determinism of the test
sequence is removed. Hence, there is a reasonable
chance to detect a non-anticipated fault, i.e. a fault for
which a test condition cannot be derived from the
available information or verification requirements.

2.5 Test Approaches
In the following sections a brief survey on the
deterministic and statistical test approaches is given.

2.5.1 Statistical Approaches
The basic statistical approach applies a random number
generator to generate test inputs based on the input
specification of an SUT. Typically, the random number
generator follows a uniform distribution, but based on
such a uniform random number generator any applicable
and calculable distribution law P(X=a)=f(a) can be used.

Adaptive Random Testing (ART, [Chen]) tries to
minimise the chance of generating more than one test
input detecting the same fault. The method considers
different patterns which faults may produce in the input
domain, such as stripe patterns, point patterns or grid
patterns. The method targets a better distribution of
“good, successful” test cases over the input domain
(regarding fault identification).

When generating a high number of test cases with
Chen's original ART algorithm, the set of generated test
cases approximates a grid of equidistant points in the
input set. This is similar to “incremental testing” where
the range is covered from the minimum to the maximum
value (type’first .. type’last) by monotonically increasing
equidistant test cases. The strategy of ART is to look for
areas where most probably other faults may be detected
once a fault was detected by a certain test vector.
Assuming that it is very unlikely to detect another fault
close to the current fault, the distance to the next
potential test vector has to exceed a minimum length.

Following this idea the optimum distance between two
consecutive test cases in a set of n test cases, is – for a
scalar type –

∆ = (type’last – type’first) / n

 For nested types this approach is applied to each leaf
type, i.e. a scalar type. Compared to real random
generation of test cases there are two major differences:

1. all test cases of an incremental test set are hit
exactly once when moving in equidistant steps
from the minimum to the maximum value.
Compared to real random testing this is an
advantage because then the probability that a
certain value out of n is hit at least once after n
cases is 100% compared to only ~64% in case of a
uniform random profile.

For an enumeration type with six literals (“dice”)
it is well known that after 6 trials not every value
will have occurred. A much larger number of test
cases is needed to be sure that every possible
value will have occurred. After 72 trials the
probability is 10-5 that every value will have
occurred once at least. To achieve a coverage of
100% much more test cases are needed.
Consequently, “incremental testing” is better for a
small number of possible test vectors, because all
cases can be met by a minimum number of trials.

2. some test cases of an incremental test are never hit,
while in case of real random generation for finite
types there is a finite, though possibly small
probability, that every value out of a (large) range
will be hit.

In this approach test case generation is no more
statistical at all, but the “random character” of test
case selection is still preserved to some degree,
because there is no preference for a certain fault
assuming that faults themselves are distributed
randomly and their occurrence is not bound to one
singular value, but to an ε-region around a centre.
From this point of view the probability to exactly hit
a fault condition or to come close to the related test
vector with incremental testing is as good as with real
random distribution, because the real location of
faults is not known. Therefore any test case selection
can be considered as random regarding a hidden
fault. When covering systematically the input domain
with a “deterministic”, but still random approach is
even better than by real random data implying
smaller coverage of the whole domain for the same
given number of trials.

As for statistical and random testing, incremental
testing may also get a certain profile when
reasonable, i.e. the equidistant steps are replaced by
steps with varying distance.

All the approaches discussed above suffer from fault or
test case patterns with extremely small hit probabilities

and therefore tend to generate a huge number of test
cases when trying to fulfil a given test criterion.

2.5.2 Deterministic Approaches
In deterministic test case generation test inputs are
derived by mainly deterministic methods from the
original test goal. They are often based on constraint
solving techniques.

Gotlieb, et al. [Gotlieb00, Gotlieb01] proposed a
Constraint Logic Programming (CLP) framework for
generating test inputs based on statement or decision
coverage. The method reduces the input set based on
constraints derived from the code and the statement to
be covered and then selects one test case from the
remaining set. Several similar approaches exist, e.g.,
Durrieu, et al. for tests of Scade models and a structural
coverage criterion related to influence of inputs to the
outputs [Durrieu]. Similar approaches can be found in
testing of hardware processors (e.g. [Bin02]).

Note that solving such constraint sets is not generally
possible. Solvers may take exponential time, provide
incomplete solutions or lose possible solution values in
the process, which may lead to a falsely inconsistent
constraint set. Also solvers may be unable to detect that
a given constraint is not satisfiable, which is important
in the context of entailment checking used by Gotlieb
for detecting whether specific paths through the SUT
must be traversed.

Furthermore the method proposed by Gotlieb requires
the full information about the SUT and all called
subprograms to be transformed into a constraint set
problem which is to be solved. It is to be expected that
with practical code sizes (like about half a million LOC
for ATV FAS) application of the method is infeasible.

Nevertheless the above-mentioned methods seem to
achieve their goal quite well for small problems.
Unfortunately, their adaptation to other or more general
coverage criteria is not necessarily straight-forward.

2.6 Synthesis
The aim of test generation is to produce results for
verification of an SUT. In case of deterministic testing
and manual testing test case generation is "goal-
oriented", i.e. the test cases are derived from the goal to
get a result for certain items of interest, related to the
specification and the implementation. This procedure
implies a reduction of test cases according to the
identified goals. Simple coverage criteria like "statement
coverage" can be applied only.

This is different for statistical testing and automated
testing2. Here a large number of test cases is derived to
get a reasonable coverage and more complex coverage
criteria can be used. The test tool generates "test
vectors" (inputs and outputs) itself, and the results of
interest can be selected from this set. It should be the
task of an automated test tool applying statistical testing
to support the user in selection of such "interesting" test
cases.

In order to reach 100% coverage (of the applied
coverage criterion) statistical testing has to be tuned. For
a black-box approach a uniform distribution is
reasonable (“random testing”). When extending such an
approach towards white-box testing and deterministic
testing, a non-uniform statistical profile does not lead to
optimum results as the considerations in section 2.3
shows. Therefore a tuned random testing approach
should be based on a combination of random testing and
deterministic test case identification, for such cases
which can hardly be covered randomly, i.e. when the
probability is too low that such cases will really occur
during a practical test.

3 FEEDBACK FROM EXERCISES IN
STATISTICAL TESTING AND
AUTOMATION
In the past a number of activities with full test
automation (from test generation to test evaluation) were
executed at BSSE, based on tools automatically
generating statistical / random test cases from a
specification, in several languages (Ada [AISVV], C
[DCRTT] and Java [SmartG]) and for different types of
test goals. This experience provided essential hints on
how to improve automated statistical testing.

In this context a "specification" is machine-readable and
provides information on the inputs which an SUT shall
accept. It may be a prototype of a subprogram defined
by the types of its parameters and return type – if any, or
a spreadsheet including equivalent information on an
SUT's interface.

The goal of this survey is to demonstrate that

1. a number of opportunities exist for automated
random testing, and

2. it is an inexpensive way to complement
conventional testing due to automated extraction of
test information from existing source code or data.

2 Only a combination of statistical and automated testing
is useful, because it is hard to believe that an engineer
can generate a large number of test cases (justifying the
term "statistical"), with uniform profile.

3.1.1 The Tools
The applied tools derive test cases from a specification,
but the test goals and the type of the inputs depend on
the type of the software. In principle, in this respect we
can distinguish between "type-based", "state-based" and
"database-based" test generation for the executed
activities. To a larger part, the automated tests were
executed after the software had undergone the usual
tests and verification procedures including ISVV – when
applicable.

The test evaluation criteria depend on the type of
testing.

3.1.2 Type-Based Test Generation
In this case test data from the range of types are derived,
more specifically of types of subprogram parameters, to
stimulate the subprograms by provision of test vectors
from the valid or invalid range. The test data are (1)
selected randomly or (2) incrementally taking test
samples in an ordered manner from the type range.

The assumption is that

1. when valid data are passed to a subprogram, no
anomaly shall be observed (“anticipated fault”).

2. invalid data shall be recognised and rejected by a
subprogram (“non-anticipated fault”). Therefore, as
in the previous case, no anomaly shall be observed.

The test issues are: the analysis of the robustness of the
subprogram-under-test ("robustness testing"),
documentation of observed anomalies and provision of
test vectors for manual inspection.

These assumptions may raise a discussion regarding
"design-by-contract". In this case a callee expects that a
caller will not pass invalid data, and therefore a callee
does not check for invalid conditions. Obviously, this
will raise exceptions when a parameter is of type "int"
but the callee only accepts data in the range 0 .. 100,
when being stimulated over the full range of “int”
according to the prototype definition.

However, during tests the "design-by-contract" must be
doubted until it has been proven that the caller really
complies with the contract. Therefore the callee must be
capable to identify violations during testing thereby
suppressing fault propagation. Hence, about
assumptions should apply, and stimulation according to
the prototype definition is a valid check whether
violations of the contract can really be identified by the
callee, at least during testing.

3.1.2.1 Test of Ada Software
The DARTT tool [DARTT] has recently been applied to
two major space software applications: the "Flight

Application Software" (FAS) of ATV (Automated
Transfer Vehicle) [AISVV1] and the "Monitoring and
Safety Unit" [ACG] of ATV.

The FAS amounts to about 900,000 lines of source code
(~430,000 LOC), including about 5400 subprograms to
test and about 4000 type definitions. It is category C
software. The DARTT tests identified a number of
inconsistencies between a subprogram specification and
its body, a dormant fault, potentially unsafe code, and
potential memory misalignment. For the real FAS target
the identified weakness did not lead to a manifestation
of the fault, as could be shown by code analysis, which
however was not performed for all cases. A statement
coverage of about 57% was achieved by
random/incremental testing.

The MSU software amounts to about 70,000 lines of
source code (~30,000 LOC), including about 818
subprograms to test and about 540 type definitions. It is
category A software. The DARTT tests identified seven
locations where a potential anomaly could not be
excluded from the information available in the context
of the subprogram. The DARTT test results were subject
of the "Test Readiness Review", during which a deeper
analysis was initiated showing that no anomaly can
occur under operational conditions. A statement
coverage of about 67% was achieved by
random/incremental testing.

3.1.2.2 Test of C Software
The DCRTT tool [DCRTT] is the equivalent of the
DARTT tool for testing of C functions. These are the
results from two applications:

1. a customer package of about 32,000 source lines (~
13,400 LOC), including 54 functions and about 50
type definitions,

2. the specification of the MSU software expressed in
C code which was automatically generated from a
Scade [SCADE] model, amounting to about 7,200
source lines (~ 4500 LOC), including about 75
functions and about 210 type definitions.

For application 1 an unexpected termination of a test
was observed 4 times. Analysis of the detailed report
(automatically generated) showed that in two cases the
SUT exited in a controlled manner by an exit statement
(“anticipated fault”), due to unacceptable conditions
which were correctly identified.

In case of application 2 no crashes and no exceptions
were observed. One test required about 32 million test
cases, resulting from 25 input parameters, another one 1
million due to 20 parameters, even though for each
parameter the minimum of 2 cases was selected only. A
later context analysis may yield that the 25 or 20
parameters may not be independent, so that the number

of test cases could possibly be reduced. The coverage
achieved by random testing was 60%.

The following figures 3-1 – 3-4 show some results as
presented in the automatically generated document.
Equivalent information is also provided by the DARTT
tool. Fig. 3-1 gives an overview on observed exceptions
per functions. This allows easy identification of critical
functions. Fig. 3-2 provides an example of the
presentation of input and output vectors. For each
parameter and each mode (in, out, return) the variation
of the parameter value is shown for each test case. Fig.
3-3 visualises the block coverage in %. In this case most
of the functions reach a coverage of 100%. The gap for
function 11 is caused by an intended timeout condition
(for-ever-loop). In Fig. 3-4 all blocks of the functions
are shown and the height of the bars indicated the
number of block executions (logarithmic
representation). For each branch of the control flow a
truth table and the number of observed decision values
are provided.

3.1.2.3 Test of Java Software
The SmartG tool [SmartG] is (currently) a prototype
developed during a diploma thesis aiming to improve
coverage criteria. It is being upgraded to a commercial
version.

The activities lead to definition of a new coverage
criterion, the path class coverage (cf. Section 2.2).

The path class coverage criterion is defined based on a
set of rules transforming an abstract syntax
representation of an SUT to a number of path class
descriptions. The rules aim to take into account typical
implementation mistakes, such as not considering the
special case of a loop not being executed at all.

The main goal of the basic concept is the establishment
of a database for conservation of test know-how in the
form of such rules. Instead of focusing on a minimum
and uniform coverage of structural elements of the code,
the focus is on the coverage of typical mistakes.

Research for extension beyond the simplifying
limitations imposed by the time frame of a diploma
thesis on the concept is currently in progress as PhD
research project.

Test inputs are generated randomly. All test cases are
taken into account in a general statistical evaluation.
Based on the path class coverage criterion a subset of
the total set of test cases is selected for manual
inspection. The coverage rules thereby define what kind
of test cases are interesting to the test engineers, without
generally limiting the scope of the test.

For each of the path classes derived by the rules the
same number of test cases is required. This ensures that
also special cases – which seldomly are considered by
testers and implementers, if at all – are considered by
the generated test case set. Actual test case generation
follows a uniform profile and any faults detected
according to the fault model (exceptions, timeouts, non-
plausible or incorrect results) are highlighted in any case
by the test case selection algorithm, independent of
whether the test case represents a special or a more
general case.

Surprisingly, logical faults could be identified just by
the recorded coverage figures and the statistical
evaluation. One such scenario included the detection of
a divergence between the expected and the actual
weights of the targeted kinds of test cases. The
identification of a fault with the help of a coverage
profile was really not expected. This demonstrates that
not necessarily the precise result is needed, but more

"fuzzy" information is sufficient.

A simple example shall help to clarify this result.
Consider a typical algorithm used for calculating the
greatest common divisor of two positive integers:

while (a!=b)
 if (a>b) a=a-b; else b=b-a;
return a;

One would expect that none of the alternatives inside the
loop – a>b or a<=b – is favoured. If the statistics show
that one alternative is heavily favoured over the other in
the test cases, we can conclude that the algorithm is
faulty. A specific look at the test cases for manual
inspection and at the source code can then reveal the
origin of this fault. If necessary, the set of selected test
cases can be refined by addition of appropriate test
rules.

3.1.3 State-Based Test Generation
State-based test generation aims to prove the correctness
of a set of FSMs and to demonstrate that 100% coverage
of the states and actions can be achieved. During testing
the FSMs are stimulated by automatic generation of test
cases out of the set of inputs expected by the FSMs.

The ISG tool [ISG] was applied for verification of the
consistency of the Finite State Machines (FSM)
included in the FAS Ada code. The related information
was automatically extracted from the Ada code and

Fig. 3-3: Block Coverage vs. Functions

Fig. 3-1: Number of Exceptions vs. Functions

Fig. 3-4: Number of Block Executions vs. Function

Fig. 3-2: Input-Output Vector

Filename : whitebox.c
Function : correctWB
Line : 14
Expression : if((a>1) || (b==0))

: if(A || B)
Control Flow Item False True
(a>1) || (b==0) 1890 1485
a>1 2025 1350
b==0 1890 135

A B Res
0 0 0
1 0 1
0 1 1
1 1 1

Fig. 3-5: Control Flow Decision Table

converted into the modelling language ISGL of ISG by
model transformation. Due to time and budget
constraints only the information on high-level
commands (HLC) could be extracted. Extraction of all
commands would have required a detailed data flow
analysis and exploitation of the mission database.

39 FSMs were constructed with more than 1000 HLC,
nearly 400 states, and more than 10,000 atomic FSM
actions in less than 7 seconds by analysis of the Ada
code.

The static analysis of the FSMs by the ISG tool
[FSMana] confirmed the completeness and consistency
of the FSMs. However, the stimulation did not yield a
full coverage of the states for most of the FSMs. A
deeper analysis showed, that the set of states of a
number of FSMs consists of subnets which cannot be
reached from each other, when applying the HLCs only.
The hypothesis is that full coverage could be achieved,
when the full set of commands is injected, but this could
not be proven due to lack of information.

The existence of such subnets, not reachable from each
other, was a surprise because it was expected that
already the set of HLC would be sufficient to achieve
full state coverage. Therefore the detection of such
subnets originally was not an explicit test goal, but was
detected by the rather abstract coverage criterion, not by
evaluation of data processing results.

Though it was not possible to fully prove the
reachability of each state under all possible conditions,
the result is still of interest: only by low-level commands
(LLC) the SUT can escape from such a subnet, and this
makes verification of LLCs a more critical issue.

Formal analysis can now be refined to ask also for the
reachability of any state from any other state, while it
might previously have only asked for the theoretical
consistency of the FSMs (e.g., no invalid target states or
commands). Here the results of statistical test methods
have raised important questions which would not have
been posed otherwise.

3.1.4 Database-Based Test Generation
This test type aims to check the consistency of the
source code with the database which holds the data for
commanding of the software.

The TCinjCT tool [TCinjCT] was applied to check the
consistency between the definition of FAS
telecommands (TC) as included in the ATV mission
database and the reception of the commands as
implemented in the FAS Ada software. The mission
database (MDB) includes about 5600 commands, of
which about 5500 were injected. 126 commands were
not injected because they could not be received by the

Ada software, but were directly transferred to the
hardware.

5 errors were detected and confirmed: in one case the
definition of a TC in the MDB was not compliant with
the implementation in the Ada code, in one case the
range of a TC parameter was not compliant with the
corresponding Ada type definition, in three cases out-of-
range conditions were observed in Ada code when
processing a TC.

Moreover, a dormant fault3 in Ada compilers was
detected, and portability issues of Ada for record and
length representation clauses were identified. These
findings can be considered as answers for questions not
being asked. Furthermore they highlight the fact that
using Ada does not imply reliable and safe software by
itself.

3.2 Lessons Learnt
When starting the above tests with the test automation
tools, the basic expectation was just to get a huge set of
test vectors and reports on observed anomalies.
However, much more information on potential weakness
of an SUT was identified. In many cases hints on
existing or potential problems were observed which
never would have expected, and therefore never would
have been subject of deterministic test generation. In
fact, the additional observations complement the usual
test goals and increase the quality of an SUT.

In case of DARTT a dormant fault (write on logically
protected memory, “storage error”) was identified,
which could not be detected by usual tests from a
principal point of view. In addition potential constraint
errors and potential misalignments of data were
detected. In case of manual and deterministic testing,
such test cases would never have been identified to
detect such faults.

As a β-version of DCRTT was available right now, no
huge SUT was tested so far. For manually generated
code similar weakness of the code like for DARTT was
observed amongst which where overflow conditions and
illegal pointers. A positive result was that the code
automatically generated by Scade did not show any
weakness when being stimulated with valid data. This
may be not a big surprise, because the SCADE code
generator is certified.

In case of SmartG logical program errors could easily be
identified due to strange coverage figures. During the
experiments not only deliberately introduced faults –
such as singular mutations of conditions or arithmetic

3 A dormant fault is a fault which is not activated during
a number of tests, and therefore cannot be removed.

operations – in the example algorithms were detected
but also inadvertent bugs in the implementation. Some
of these faults concerned very special cases of the
application. For example, in case of a binary search
algorithm a fault resulted in an item not being found if it
was the first item in the array. This was detected based
on the specific analysis of exception-raising test cases.
Furthermore coverage asymmetry in algorithms
expected to be symmetric lead to the detection of faulty
condition statements.

In case of ISG tests on the FSMs non-reachable subnets
were detected though this was not a test goal.

Finally, in case of TCinjCT inconsistencies between the
MDB and the Ada code were detected, and a dormant
fault in Ada compilers and non-compliances between
Ada compilers and the Ada standard (ambiguous
interpretation of the Ada standard while neither of the
compiler vendors was wrong).

Surprisingly, as could be observed in the experiments
described above, very general test criteria ("fuzzy" w.r.t.
to the specification) like achieved coverage or
consistency checks are very strong for identification of
faults or potential weakness, while not requiring precise
results for the performed calculations. The essential
point seems to be that statistical tests do not make any
assumptions about test issues, thereby not constraining
the scope of the tests. This helps greatly in identifying
faults which most probably never would have been
detected by manual and deterministic tests, of course
including such faults which also could have been
detected by such tests. A successful combination of
deterministic and statistical testing therefore must make
sure that the fuzziness of test case selection is kept intact
and amended instead of being replaced by more directed
test case selection methods.

Another result of these exercises is that “incremental
testing” seems to be more suited than real random
testing. This could be a consequence of the strategy to
optimise the selection of test vectors w.r.t. to a given
region or range. Especially, when many enumeration
types are used, this strategy delivers much better results
for coverage at a given number of test cases.

It was even observed that the fault identification
probability is – surprisingly – rather high when only 2
test cases are selected, type’first and type’last. This
simple solution was necessary when the input domain is
spawned by many parameters, and the number of
combinations has to be reduced by choosing a low
number per parameter. Obviously, these boundaries are
rather error-prone. While range checks can be made by
compilers giving a reasonable probability to detect out-
of-range conditions in case of strong-typing languages,
this is not valid when data from outside are entering a
system which by their nature do not have a “face” at all.

Then even a compiler cannot identify inconsistencies,
because inconsistencies between an external database
and a compiled program are out of its scope. Indeed,
most of the faults were found for this case.

3.3 Observed Weaknesses
In case of DARTT, DCRTT and SmartG test data may
be generated or conditions may occur, which can never
happen under normal operational conditions, and against
which a subprogram does not protect itself. This causes
false alarms. Typically, this happens when a sequence of
subprograms is called where subprograms called earlier
ensure correct parameter values e.g. for pointer
parameters in C, while they are correctly defined in
context of the full system.

The reason is that such tests are executed in a limited
scope. To avoid such false alarms a broader scope needs
to be considered. Such "false alarms" could be useful as
well regarding the robustness of a SUT. But if such
conditions can really be excluded under operational
conditions, they may be confusing.

Moreover, when many parameters are passed to an SUT
a huge number of test cases is derived, though only a
very small part may be sufficient. In case of tests with
DARTT and DCRTT subprograms with 20 .. 26 scalar
parameters were observed. When testing with TCinjCT
a TC with more than 200 scalar parameters was
recognised. Finally, when testing the code generated by
Scade with DCRTT one parameter was identified, a
structure, having more than 100 elements on top level,
expanding to more than 8000 scalar items in total. Even
if the base type of all scalar elements would be
“Boolean”, a huge number of test cases would have been
to be exploited. This raises the need to identify
constraints on test case generation.

The number of test cases still increases when not only
considering subprogram parameters, but static data
which impact the flow of execution during a test.

In case of SmartG the basic problem of statistical testing
– the need for a high number of test cases for
satisfaction of a given coverage criterion – re-occurred
in another form: Some specific cases had such a small
stake in the input set that the mean number of test case
trials needed to get one test case for the given path class
would have been too high to execute the required
number of test cases in a reasonable time frame.

3.4 A Challenging Issue
Having entered the first step of full test automation for a
number of languages and types of software, the
following challenge has to be tackled: mastering of a
huge amount of test cases identified for real

applications, which even cannot be executed by
powerful computers within a reasonable time.

Taking the example of 200 and 8000 scalar items which
drive a test and assuming a boolean type (only two
values TRUE and FALSE are possible) for all items,
then we get 2200~1060 and 28000~102400 independent test
cases. Even if 1,000,000 test cases per second can be
executed, this would respectively require ~1046 years
and ~102386 years, taking roughly π * 107 seconds per
year from which yields ~1014 test cases per year.

Comparing these huge figures with the expected
properties of a software system, it is quite clear, that a
huge number of test cases is mapped on the same
property. This can be explained by the example of 1/x.

In principle a limited set of test cases is sufficient
(theoretically 2 samples) out of the huge set of floating
point values resulting from the given granularity of ~10-6

(float, 32 bits) or ~10-15 (double, 64 bits).

Therefore the solution of the problem obviously is the
identification of equivalence classes within a reasonable
amount of computer time. Apparently, the problem
cannot be completely solved regarding the theory, but
the goal is to find a practical solution which allows to
identify a large number of faults, especially the critical
faults, by an acceptable number of test cases.

4 OPTIMISING AUTOMATED TESTING
A key issue of test case reduction in case of statistical
testing is the understanding on how many test cases are
needed for identification of a fault. When testing
statistically, the probability of identifying a fault
condition needs to be considered. Identification of a
fault requires activation of the fault condition and
recognition of such an event by the engineer.

From a principal point of view the probability of fault
identification P depends on the following three sub-
probabilities, when dividing an SUT in independent
blocks (without branch) which can randomly be selected
for execution:

where

PE is the probability for execution of a block during the
tests,

PF is the probability that the fault is activated when the
block is executed, and

PI is the probability for identification of the fault (by an
engineer) when it really occurs.

In case of a uniform distribution among blocks, PE is the
quotient of the number of covered blocks divided by the
total number of blocks. E.g. if a SUT comprises 1000
independent blocks which can be entered independently,
the probability is 1/1000 for one covered block per test
case. For n trials (test cases), it is n/1000. Hence, PE
increases with the number of executed test cases.

PF depends on the granularity of the data type and its
range. Usually, the probability is very low that a fault
really occurs when the statement is executed. In case of
1/x the probability is ~2-56 or ~ 10-16 if x is of type
"double" (a mantissa of double comprises 56 bits). This
is where deterministic methods will help to hit the
critical values by identification of equivalence classes.

The goal of optimising automated testing therefore must
be to increase both PE and PF as far as possible, ideally
to 1. PF clearly depends on the number of different
contexts in which the faulty statement is executed.
Simple statement coverage obviously does not require
more than one such context. The coverage criterion is
therefore critical for the improvement of PF. Some types
of faults may be anticipated and need to be targeted
specifically by means of deterministic test case
generation. This knowledge helps to increase PF from in
most cases close to 0 towards almost 1. Still non-
anticipated faults can only be covered by statistical
testing.

An example on how this can be achieved is: “if
(x==10.123)”. If x is a subprogram parameter a code
analyser can easily identify “10.123” as specific test
case and can add it to the set of random (or incremental)
test cases. Then even for “statistical testing” the
probability is 100% that the “then”-branch will be
entered.

Finally, PI represents the capability of a human being to
identify the fault when it really occurs. According to
previous experience, it happened that a fault occurred,
but it was not recognised by an engineer because the
information on the fault was embedded in a lot of other
information, which – in fact – was hiding the fault.
Therefore, proper and automated evaluation of tests will
increase PI towards 1 and help to identify and to remove
the fault.

4.1 Already Implemented Improvements
As an immediate feedback from the exercises described
in chapter 3 a number of improvements were
implemented:

! for reduction of false alarms

Now execution of subprograms prior to execution
of the SUT is possible. Initialisation subprograms to
be called prior to execution of a SUT are identified

P=PE x PF x PI

by patterns and automatically called before a test is
started.

! classification of faults or anomalies

to improve identification and analysis of reported
anomalies and faults,
and

! optimisation of test case distribution

deterministic coverage of integers in the range of
e.g. -200 .. 200 to better cover enumeration types in
the body of a subprogram while an integer value is
used in the prototype.

! identification of simple singular cases like “if
(x==3.141)” which are added to the statistical test
set.

Such test cases are executed when all other test
vectors have been generated according to the
selected test strategy (statistical, random or
incremental testing).

By these improvements the block coverage could be
increased. While for the FAS of ATV about 60% and
for MSU Ada software of ATV about 70% could be
reached without improvements, a recent test with the
improved version of DCRTT applied to customer
software yielded about 95% block coverage. Of course,
the coverage figures strongly depend on the structure of
the SUT, especially on the impact by subprogram
parameters in the current version. A further
improvement can be expected when test case generation
will consider static variables in addition – as far as
meaningful.

4.2 Planned Improvements
The next planned steps are to identify and to apply
improved coverage criteria and test strategies. So far
only "statement coverage" is the "criterion of choice",
which – however – requires that PF is 1, i.e., it is
assumed that all faults can be detected immediately by a
single execution of a statement, which is not really true.
Therefore the much stronger "path class coverage"
criterion – as discussed above – is being introduced in
DARTT and DCRTT, considering different types of
paths which the program can traverse.

In a near-term perspective constraints shall be
considered by which the coverage of low-probability
elements of the coverage/selection criterion can be
improved, and the use of generic test rules ("test meta-
information") shall be extended.

4.3 Synthesis of Statistical and Deterministic
Testing
A synthesis of statistical and deterministic testing must
merge the strengths of both worlds together with
automation capabilities, considering automated
statistical testing as root which is enhanced by the
advantages of deterministic testing. The rationale for the
use of statistical testing as the base for testing is that no
specific information is required to generate tests cases.

It has been shown that 60 .. 70% (up to 95% by recent
improvements) of block coverage can be reached by
random testing. In case of path class coverage, lower but
still acceptable figures have been reached. Therefore the
first step in the generation process is statistical test case
generation. Any missing coverage is to be provided by
the second step, consisting of constraint-guided
statistical test case generation. As the criteria typically
do not constrain the input set to a single test case,
multiple test cases can be selected statistically from the
remaining constrained input set.

In the targeted approach statistical testing is associated
with full automation of testing from test case
identification to presentation of evaluated results. From
deterministic testing the identification of rules is
adopted which are related to information extracted from
source code. So far the constraint-based approaches only
support simple coverage criteria like statement / block
coverage (C0). These methods need to be extended for
allowing the application of generic test rule sets. A near-
term goal is C3 coverage, the coverage of paths.

4.4 Test Generation
As the distribution of faults is unknown, any profile
chosen for test generation may be good or wrong. A
uniform profile may be wrong when faults are grouping
around a certain region, it may be the right one when
faults are distributed uniformly across the input domain.
When defining a profile it is important not to exclude or
to give less attention to sub-regions where faults can be
found. Human analysis may guide the right way, but if
some conclusions are wrong, a wrong profile will be
selected. Therefore a better approach is to control test
case selection by feedback from the software-under-test.

What are suitable criteria for such a feedback? The
following two ones should be of relevance:

1. a uniform distribution for execution of statements /
blocks and a maximum coverage of path
classes,

2. the variation of the test output vector w.r.t to the
variation of the test input vector.

A high number of executed statements / blocks for
independent test cases increases the probability PExPF to

activate a fault. A uniform profile may be sufficient, but
if more information is available on PF a non-uniform
profile could be identified. When all paths are chosen by
which a block can be reached, this increases the
confidence in having generated independent test cases.

The variation of the output tells a test engineer
something about the potential fault density. If the output
is frequently changing it may depend on many
parameters and complex logic. Therefore verification
should put emphasis on such regions. Vice versa, if the
output does not change much, only a few test cases out
of this region may be sufficient for verification.

As a measure for the variation of the output, the distance
between two arbitrary nested structures could be defined
in the same way as the distance between n–dimensional
vectors is computed. Then this distance is divided by the
change of the input vector. Obviously, computation of
such a measure only makes sense when the test input
changes monotonically. Therefore the incremental test
mode is well suited to derive such measures.

When controlling test generation this way, it is fully
sufficient to start with a uniform, statistical distribution,
because the feedback will drive the generation profile
towards the direction as defined by the optimisation
criteria, and will give advice for which test cases
verification is important. The statistical distribution
ensures that no region of interest is excluded.

In addition to statistical test case generation the
“deterministic approach” to test generation can help to
enter branches which will hardly be covered by random
test cases due to very low probability to hit them. The
state-of-the-art for deterministic testing is to identify
only one test case by which a certain branch can be
reached, i.e. to achieve statement coverage. However,
the formula given at the beginning of this chapter
indicates that a number of test cases will be needed to
get sufficient confidence in detecting a fault. Therefore
more than one test case should be identified, which
requires more sophisticated methods for constraint
solving.

Another issue may be the identification of an optimum
test set allowing the minimisation of the effort for test
repetition. In case of full test automation such an
optimisation is not really needed, because all the tests
can be repeated without much human effort. Also, such
a test set does strongly depend on the SUT. Therefore a
replay of a test scenario optimised for a given software
structure may lead to erroneous results – faults may
remain undetected – when being applied to a changed
SUT.

However, if tests need to be repeated on another
environment, e.g on the target system, for the same –
unchanged – SUT, the test effort and duration can be

reduced. An optimum test set can be identified in the
development environment which provides better support
for execution of a large number of test cases and to
derive a feedback.

4.5 Test Execution
For test execution an environment has to be built
(automatically, to be efficient enough) which allows to
generate the test cases according to the chosen strategy,
to stimulate the SUT, to derive and record the feedback
and to capture anomalies like exceptions.

The environment for test execution forms the base for
test evaluation. It relies on instrumentation of the SUT
providing the capability for observation of properties.
The degree of instrumentation must be chosen properly
in order not to corrupt properties of the SUT resulting in
wrong results. E.g. timing properties may be impacted
by heavy instrumentation, therefore it should be
minimised when looking on such properties.

A key point of instrumentation are the capabilities for
parsing of source code and handling of user-defined
types. User-defined types may be simple scalar types,
but also complex nested structures. Operations for
generation of test cases and monitoring of such types
cannot be created automatically by means of the class
concept of OOP (Object Oriented Programming) as an
infinite variety of structures has to be covered, but only
by automatic code generation.

4.6 Test Evaluation
As the amount of information derived from the
automatically executed tests is very high, automatic
evaluation and compression of this information, e.g., by
statistical methods and graphical overviews, is a must.

Clearly, the probability PI for recognition of a fault
when it occurs is 0 when no information is provided at
all. However, it is also close to 0 when too much
information is presented, because then an engineer can
hardly detect the relevant information within a large
stream of mostly irrelevant information. These two
extreme cases are the ones which are very easy to
achieve. In case of no instrumentation there will be no
information of interest, this is trivial. If the SUT can be
properly instrumented, a lot of information will be
produced, and then this capability is useless as well.

What is the real challenge is to allow an engineer at little
effort to control what shall be provided. If an SUT
comprises 5000 functions it is possible of course to ask
an engineer to define for each of the 5000 cases the
desired filtering of information. However, this will
require a lot of effort and time, and is not very efficient,
though much effort is already saved by automatic
instrumentation.

Therefore the test environment must be intelligent
enough to identify the “interesting” information itself.
This capability will reduce the human effort to an
absolute minimum and to speed up test evaluation while
optimising the chance to detect a fault.

4.7 Improvement of Testability
A future challenge is to improve testability by getting
better information on the test input domain. This is
especially true for C and Java software, as they provide
only a very limited type system and have no means for
specific range limitations. In many cases this implies
that the range of the specified type exceeds the actual
valid and useful range by a large factor. This means that
during test case generation a huge number of invalid
inputs is generated and a high amount of test effort is
required for testing an interface. Then guards need to
make sure that invalid inputs do not cause the system to
cease functioning or – even better – are not passed at all.
In contrast to Java and C, Ada provides means for
densely restricting the value set of a type. However,
these means actually have to be used to improve
testability: At any interface the most restrictive type
regarding the valid values should be declared for
parameters. As a side-effect this also allows the
compiler to statically check whether the given type
range is obeyed in calls or at least to insert dynamic
range checks which are helpful in fault identification
during test. Otherwise such checks would have to be
done manually, increasing effort for development,
testing and maintenance, or inserted by automatic
instrumentation.

Also, the number of automatically generated test cases
can be reduced when knowing more about the nature of
a variable or subprogram parameter. When e.g. a
variable or parameter is declared as constant, it is clear
that it should not considered for test vector generation.
Similarly, when a parameter is declared as OUT
parameter no inputs need to be generated. This will
reduce the input domain by one dimension in each such
case. In principle, some information can already be
derived from the parameter type or by code analysis.
When e.g. a parameter of type “int” is passed (“by
value”), it is evident that it is an IN parameter.
Unfortunately, OUT parameters cannot be identified this
way because passing of a pointer “int *” implies
INOUT. Only by additional code analysis a conclusion
is possible whether it is a pure OUT parameter. Such a
conclusion may be very difficult when a call tree must
be analysed.

To support these issues DCRTT allows definition of
type ranges for user-defined scalar types in a separate
file, and identification of IN, OUT and INOUT function
parameters. This information is considered for test
generation.

The higher the constraints are , e.g. on type ranges, the
higher is the probability to detect faults by automatic
evaluation of properties and test results in case of
automated testing. By (automatic) instrumentation the
values of data can be automatically monitored, and any
out-of-range condition can easily be identified this way.

Consequently, the strength of test automation can still be
increased, when already during the development of a
SUT more is done for its testability.

5 CONCLUSIONS
Recent experience with statistical testing demonstrated
the benefits of this approach, but also provided hints on
possible improvements. Analysis of recent deterministic
test approaches yielded a number of interesting features
which can complement and enhance pure statistical
testing. However, the results obtained from statistical
testing clearly show that future improvements in testing
must be based on statistical methods. Firstly, the amount
of test cases needed to rigorously test an application can
only be mastered by automated statistical test
approaches, though the help of deterministic methods is
needed to reduce the number of test cases required.
Secondly, the unbiased identification of test cases is
only possible by automation combined with statistical
test case generation. Especially, the provision of
answers to questions which never would be asked in
case of a deterministic approach is a very strong point of
the statistical approach.

The proposed synthesis of statistical and deterministic
methods is considered as a next step of improvement,
but it is not the final one, for sure. Hints for further
improvements can be expected when having
implemented this next step, especially regarding
mastering of highly complex software systems, huge test
case sets, required testing rules etc.

6 ACKNOWLEDGEMENTS
Ralf Gerlich would like to thank the University of Ulm,
Germany, for the support by a Ph.D. scholarship, under
which parts of this ongoing work were carried out.

7 REFERENCES
[ACG] DARTT Test Results ACG-MSU, ACG-TR1-BSSE, Nov. 2005

Automatic Code Generation (ACG), ESTEC contract no.18670/05/NL/GLC

[AISVV1] DARTT Test Results AISVV-FAS, AISVV-TN2-BSSE, 2005, Automated ISVV, ESTEC contract
no.18056//04/NL/JA
R.Gerlich, R.Gerlich, Th.Boll, K.Ludwig, Ph.Chevalley, N.Langmead: "Software Diversity by
Automation", DASIA'05 "Data Systems in Aerospace", 30 May – 2 June, 2005, Edingburgh, Scotland

[AISVV2] Report on AutoPorting and DARTT Module Tests, AISVV-TN5-BSSE, 2005,
Summary Report, AISVV-TN4-BSSE, 2005,
Automated ISVV, ESTEC contract no.18056//04/NL/JA

[Bin02] E. Bin, R. Emek, G. Shurek, A. Ziv: "Using a constraint satisfaction formulation and solution techniques
for random test program generation", IBM Systems Journal, Vol. 41, No. 3, 2002

[Chen] T.Y. Chen, R. Merkel, G. Eddy, P.K. Wong: Adaptive Random Testing Through Dynamic Partitioning,
Fourth International Conference on Quality Software (QSIC'04), 2004, pp. 79-86

[Durrieu] G. Durrieu, O. Laurent, C. Seguin, and V. Wiels: Automatic Test Case Generation for Critical Embedded
Systems, Proceedings of Data Systems In Aerospace (DASIA 2004), Nice, France, June 2004.

[DARTT] Dynamic Ada Random Test Tool, http://www.bsse.biz → Products → DARTT
DARTT User's Manual, BSSE, 2005

[DCRTT] Dynamic C Random Test Tool, http://www.bsse.biz → Products → DCRTT
DCRTT User's Manual, BSSE, 2006

[FSMana] see TCinjCT, the information is included in the same report

[Gotlieb00] A. Gotlieb, B. Botella, M. Rueher, A CLP Framework for Computing Structural Test Data, Lecture Notes
in Computer Science, Volume 1861, Jan 2000, Page 399

[Gotlieb01] A. Gotlieb: InKa: An Automatic Software Test Data Generator, Proceedings of Data Systems In Aerospace
(DASIA 2001), Nice, France, May 2001.

 [TCinjCT] TCinjector, Statistical generation of telecommands, "Report on System Tests", Automated ISVV, ESTEC
contract no.18670/05/NL/GLC, AISVV-TN3-BSSE, Nov. 2005

TCinjCT User's Manual, BSSE, 2005

[ISG] Instantaneous System and SoftwareGeneration (incl. test generation),
http://www.bsse.biz → Products → ISG
ISG User's Manual, BSSE, 2000

[Mayer] Mayer, J. 2005. Lattice-based adaptive random testing, Proceedings of the 20th IEEE/ACM international
Conference on Automated Software Engineering (Long Beach, CA, USA, November 07 - 11, 2005). ASE
'05. ACM Press, New York, NY, 333-336.

[SCADE] SCADE tool, ESTEREL Technologies, Toulouse, France

[SmartG] Ralf Gerlich, diploma thesis: Size-optimising Automatic Random Testcase Set Generation for Verification
and Validation, University of Ulm, July 2005

	I
	INTRODUCTION
	Definitions
	Deterministic vs. Statistical Testing
	Test Case Optimisation

	ISSUES OF TESTING
	The Challenge of Fault Identification
	The Challenge of Coverage
	The Challenge of Test Generation
	The Challenge of Finding Non-Anticipated Faults
	Test Approaches
	Statistical Approaches
	Deterministic Approaches

	Synthesis

	FEEDBACK FROM EXERCISES IN STATISTICAL TESTING AND AUTOMATION
	
	The Tools
	Type-Based Test Generation
	Test of Ada Software
	Test of C Software
	Test of Java Software

	State-Based Test Generation
	Database-Based Test Generation

	Lessons Learnt
	Observed Weaknesses
	A Challenging Issue

	OPTIMISING AUTOMATED TESTING
	Already Implemented Improvements
	Planned Improvements
	Synthesis of Statistical and Deterministic Testing
	Test Generation
	Test Execution
	Test Evaluation
	Improvement of Testability

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	R
	REFERENCES
	gerlich_rev_leny.pdf
	I
	INTRODUCTION
	Definitions
	Deterministic vs. Statistical Testing
	Test Case Optimisation

	ISSUES OF TESTING
	The Challenge of Fault Identification
	The Challenge of Coverage
	The Challenge of Test Generation
	The Challenge of Finding Non-Anticipated Faults
	Test Approaches
	Statistical Approaches
	Deterministic Approaches

	Synthesis

	FEEDBACK FROM EXERCISES IN STATISTICAL TESTING AND AUTOMATION
	
	The Tools
	Type-Based Test Generation
	Test of Ada Software
	Test of C Software
	Test of Java Software

	State-Based Test Generation
	Database-Based Test Generation

	Lessons Learnt
	Observed Weaknesses
	A Challenging Issue

	OPTIMISING AUTOMATED TESTING
	Already Implemented Improvements
	Planned Improvements
	Synthesis of Statistical and Deterministic Testing
	Test Generation
	Test Execution
	Test Evaluation
	Improvement of Testability

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	R
	REFERENCES

