
A Strategy for Development of High Quality Embedded Systems

Translation of the contribution to

CASE Anwendertag 1995
DLR, Göttingen

September 19, 1995

Rainer Gerlich

e-mail: gerlich@t-online.de

R.Gerlich: A Strategy for Development of High Quality Embedded Systems

- 2 -

A STRATEGY FOR DEVELOPMENT OF HIGH QUALITY EMBEDDED SYSTEMS

1. INTRODUCTION
Embedded systems are broadly used for
control and data management tasks. A large
number of such applications is safety
critical and/or requires sufficient reliability.
With increasing needs (Fig. 1), (e.g. for
more functionality or better performance),
embedded systems are becoming more
complex. As the amount of flexibility and
functionality required increases, software
takes up an ever larger percentage of the
system.

From the past we know all the problems
related to software development, especially
pertaining to real-time software. The higher
the percentage of software in the system,
the larger its potential impact, especially if
faults occur. Consequently, we have to
ensure that software will be of better
quality in future. Surely, this is a must for
safety-critical applications.

Quality implies reliability, dependability
and safety together with the desired

functionality and performance (Fig. 2). Higher quality also
means higher effort. For industrial applications, effort in
terms of costs and time is also a critical parameter for
system development. If effort becomes too high, the
economical benefit may be not achieved and development
of the system-of-interest is dropped.

One cannot conclude from the "shape" of the software, (i.e.
its source code), whether it is correct or not. Correctness of
software can only be demonstrated when the results
produced by software are visualised. This usually occurs at
a rather late phase of the development lifecycle; for

example, in case of the V-
model, during test and
integration (Fig. 3) at the right
branch of the "V".

Hardware faults are mainly
due to material degradation
which tend to occur randomly;
only in some very rare cases is
hardware improperly specified
or designed. Software cannot
degrade. All software faults
are related to wrong

Rainer Gerlich

e-mail: gerlich@t-online.de

more capabilities more flexibility higher safety

Increasing Needs Larger Application Field

Higher Effort

Higher Quality

Effort Reduction

AutomationEarly
Risk Reduction

Fig. 1: Increasing Needs for System Development vs.
Efficiency

Quality

Compliance

functional performancebehavioural

Reliability Safety

Dependability

Fig. 2: Quality Measures

Specification Validation

System Development Process

Architectural
Design

Detailed Design

Coding

Unit Testing

Integration
Testing

Feedback

System
Operation

Problem
Informal

Specification

Fig 3: Development Risk in case of the V-Modell

R.Gerlich: A Strategy for Development of High Quality Embedded Systems

- 3 -

specification, design or coding.

Hardware faults caused by degradation can be corrected with redundant components. In the case of faults
related to wrong specification, design or coding, redundancy cannot help. To decrease the probability of fault
occurence, fault avoidance techniques have to be applied. These include formal verification of the system and
its validation by execution and visualisation of the results.

To be prepared for the future, first, identification of the weaknesses of the current system and software
development methods are needed concerning remaining risks and effort. Secondly, one has to provide an
alternative. It is essential to consider optimizing the complete system lifecycle and not just concentrate on its
individual phases. Also, task sharing between an engineer and tools must be reconsidered (Fig. 4).

In the field of space applications, system complexity is also
increasing. Reliability and safety demands in this application
field are extremenly high. But costs and development risks
also have to be considered for future spacecraft, and must be
kept at an acceptable level. Therefore ESA initiated activities
by which new system and software development methods
were defined to help to master the development of future
systems.

During two pilot projects HRDMS [1] and OMBSIM [2],
new approaches were applied and tested. In OMBSIM the
development methodology "EaSyVaDe" was defined which
introduces a systematical approach concerning early
validation, incremental development and embedded systems.
In the follow-up project, DDV [3], EaSyVaDe is applied to
the specification and design of the fault management part of a
future comet mission. EaSyVaDe (Early System Validation
of Design) [4] is the result of investigations and feedback
from projects since 1986.

EaSyVaDe can also be applied to other application fields.
Even smaller projects can take advantage of it. The EaSyVaDe methodology is supported by the development
environment, EaSySim.

2. EARLY AND INCREMENTAL VALIDATION
To achieve higher efficiency, optimisation
of task sharing between engineers and tools
is a must (Fig. 4). An engineer shall
concentrate on the creative part of system
development, whilst tools shall take that
part which can be formalised and
automated. Therefore an engineer will be
more involved in the early development
phases and less is the later ones. This leads
to early validation and an increased degree
of automation (Fig. 5). Currently, it is just
the other way around. An engineer spends a
lot of time coding, module testing and
integrating during rather late development
phases.

Consequence, quality is increased for the
following reasons:

- With incremental and early validation the expected system properties are known and can be
continuously be refined. The system is validated for functionality and for performance. With
executable models nominal and non-nominal scenarios can be simulated and evaluated. This
strategy decreases the danger of not achieving the desired goal.

Optimisation

Engineer Tools

Creative
Activities

Formal
Activities

Specification

Design
Validation

Coding
Module Testing

Integration
Verification

Accept. Testing

Fig. 4: Optimisation of Task Sharing

refinement
stepwise
hierarchical

simulation
nominal conditions
non-nominal conditions

formal methods

automated checks

code generation

Risk Reduction Automation

Increased Reuse

executable models
(simulation)

late hardware-software
trade-off

tool integration

tool improvement
(add-on's)

hardware-software
homogeneous system approach

co-design

from simulation

Fig 5: Strategy to Increase Quality and Efficiency

R.Gerlich: A Strategy for Development of High Quality Embedded Systems

- 4 -

- By using formal methods, tools are able to automatically detect discrepancies in a system such
as incompatible interfaces or wrong behaviour. Automated (target) code generation also
becomes possible, and development efficiency is increased by this higher degree of automation.

The higher the degree of formalisation, the higher the percentage of system develoment which can be covered
by tools.

Quality is increased because more development faults are detected earlier and automatically and to a higher
percentage by optimizing tool usage. Automated (target) code generation from pre-validated models ensures
that no faults are introduced as might occur in the case of manual coding.

The percentage of reuse increases, because by standardisation and formalisation, similarities can be readily
identified early-on. If needed, properties, behaviour and interfaces of the new components can be harmonised
with those of already existing components.

EaSyVaDe helps to identify development risks rather
early because executable models are used for
specification and design. Only by executing the
software can one identify what is specified and
designed and if this is compliant with what is
expected. EaSyVaDe ensures a smooth and
consistent transition between specification and
design.

After each step of refinement, a functional and
performance check is possible by executing the
models; a preliminary, "early" validation of the

specification and design can be achieved in an early development phase. Obviously iterations have to be
performed. When the system is sufficiently understood and when it is compliant with the user needs at a
certain level of refinement, it is then expanded to the next lower level of the system hierarchy (Fig. 6). Again,
the system is validated under consideration of the extended components.

Refinement of a system is performed incrementally in
a hierarchical approach with associated early
validation at each level. Early Validation is based on
the assumption that the properties requested for the
lower level components can be fulfilled. Of course,
there is still a risk that the lower levels may not
provide what is imposed on them. Only, if the lowest
level has been successfully reached, one can be sure
that all what is requested can be provided. However,
as the needs are well known, the probability is
significantly higher to identify what is not possible
compared to the case when the needs are uncertain or
completely unknown. This is of special importance for
performance properties which are usually not
considered.

The models represent system components, neither
hardware nor software (Fig. 7). Therefore the
hardware-software trade-off can be postponed until
the needs are accurately known. Currently, this
decision has to be done rather early. It can hardly be
revised later on if needed, and then only with rather
high effort.

All system components can be executed and validated within a "homogenous" environment (i.e. a unique
consideration of hardware and software.) If one decides that a certain component shall be represented by
software the target code is generated automatically. In case one opts for hardware, the model will be
translated into "Behavioural VHDL". This translation is currently under development [5,6], specifically the
transition from SDL [7] to VHDL [8]. After the translation, the component can further be refined in VHDL.
As tool vendors are improving tool interfaces towards co-simulation, it may become possible in near future to
perform SDL-VHDL co-simulation with VHDL models refined down to gate-level.

Specification Validation

Early Feedback

System Development Process

System
Operation

Problem
Informal

Specification

Formalisation

layer n+1
layer n

layer n-1

Fig. 6: Early and Incremental Validation

System Specification & Design
Hardware - Software

Translation to VHDL
behavioural

VHDL Refinement

Hardware Manufacturing

HW & SW Execution by Simulation
Pre-Integration & Early Validation

refinement
&

iteration

Target System Validation
Hardware - Software

Software Generation
Target

co-simulation

Fig 7: Homogeneous Approach for System
Development

R.Gerlich: A Strategy for Development of High Quality Embedded Systems

- 5 -

System validation implies verification and consists of two primary activities (Fig. 8):

- verification of static and dynamic properties done by tools, and

- validation of the operational behaviour under nominal and non-nominal conditions done by the
engineer.

Due to formalisation, the verification steps can automatically be performed by tools, whilst the validation is
an engineering task
supported by tools for
execution and result
analysis.

Consequently, the
possibilites to drive
development in early
phases are better. Tools
are used for such tasks
for which their benefit
is most appreciable.
This allows increased

quality with a comparable or greater development efficiency.

3. CONCLUSIONS
EaSyVaDe makes the development of embedded systems more efficient at high quality levels by introducting
early validation, formalisation and automation. This is of high interest for safety-critical applications and
applications for which a high degree of reliability and dependability is required, but also for applications
outside the area of embedded systems because development time and costs shall always be kept low. The task
of an engineer is concentrated on the creative and critical activities. Tools are applied to activities like
consistency checks and code generation. This requires use of formal methods, even for description of real-
time behaviour.

EaSyVaDe extends an approach already applied in control applications [9,10] using formally defined
standard components for specification and design. In a general manner it introduces this approach into system
and software development for a much broader range of applications.

Also, EaSyVaDe supports project management. It is especially useful for system development performed at
different sites. The executable models can be provided as specification and the refined models delivered in
response by contractors for re-integration.

The related development environment EaSySim consists of the commercial tools GEODE [11] and
SES/workbench [12] and additional software for coupling both tools together and improving their
functionality.

It is planned to apply EaSyVaDe for further projects, also outside the space area, and to integrate EaSySim in
an already existing development environment which also covers the other tasks of the system or software
lifecycle such as configuration management.

This paper only gives a brief introduction to the principal EaSyVaDe approach. Important aspects like
performance and reliability of automatically generated code, the transition between specification and design,
consideration of functionality and performance could not be addressed sufficiently or at all. Further
information is included in papers [13,14,15,16], which are available on request.

Principal System Validation Steps

verification

validation

dynamic properties (behaviour, state transitions, ...)

checks by formalisation

system execution

static properties (interfaces, types, ...)

nominal conditions
non-nominal conditions

(tools)

(engineer)

Fig. 8: Verification and Validation

R.Gerlich: A Strategy for Development of High Quality Embedded Systems

- 6 -

REFERENCES
[1] HRDMS (Highly Reliable DMS and Simulation), ESTEC contract no. 9882/92/NL/JG(SC), Final

Report, 1994

[2] OMBSIM (On-Board Mangement System Behavioural Simulation, ESTEC contract no.
10430/93/NL/FM(SC), Report, OMBSIM/FR/001/DOR/, September 1995

[3] DDV (DMS Design Validation), ESTEC contract no. 9558/91/NL/JG(SC), Formal Methods and
Tools, Selection & Justification Report, TR/171/PhH/95, 30.06.95

[4] R.Gerlich, V.Debus, Ch.Schaffer, Y.Tanurhan: EaSyVaDe: Early Validation of System Design by
Behavioural Simulation, ESTEC 3rd Workshop on "Simulators for European Space Programmes"
Noordwijk, November 15-17, 1994

[5] M.Lehmann: Automatischer Übergang von SDL nach VHDL (in German) (Automated Transition from
SDL to VHDL), master thesis, Fachhochschule Albstadt-Sigmaringen, September 1995

[6] T.B.Ismail, A.Jerray: "Synthesis Steps and Design Models for Codesign", IEEE Computer, February
1995, pp. 44-52

[7] ITU, Recommendation Z.100, Specification and Description Language, SDL, 1993. Blue Book, Vol.
X.1, and appendices A, B, C, D, F1, F2, F3

[8] The Institute of Electrical and Electronics Engineers: "IEEE Standard VHDL Language Reference
Manual (IEEE-1076-1992/B)", New York, 1993

[9] Matrix-X, Integrated Systems Inc., 3260 Jay Street, Santa Clara, CA 95054-3309, USA

[10] K.J.Vogel, D.H.Johnson: An Integrated COTS Prototyping and Test Environment for Spacecraft
Control Systems, EUROSPACE Symposium on "Techology and Applications for Space Data
Management Systems", January 25-27, 1994, Rome, Italy

[11] GEODE SDL-Tool, Verilog, 150 rue Vauquelin, F-31081 Toulouse Cedex, France

[12] SES/workbench, Scientific and Engineering Software Inc., Building A, 4301 Westbank Drive, Austin,
Texas, 78746-6564, USA

[13] R.Gerlich, N.Schäfer, A.Schäferhoff: Early Validation of DSM Design by a Reusable Environment,
EUROSPACE On-Board Data Management Symposium on "Technology and Applications for Space
Data Management Systems", January 25-27, 1994, Rome, Italy

[14] R.Gerlich, V.Debus, Ch.Schaffer, Y.Tanurhan: EaSyVaDe: Early Validation of System Design by
Behavioural Simulation, ESTEC 3rd Workshop on "Simulators for European Space Programmes"
Noordwijk, November 15-17, 1994

[15] R.Gerlich, Th.Stingl, Ch.Schaffer, F.Teston, G.Martinelli: Use of an Extended SDL Environment for
Specification and Design of On-Board Operations, Systems Engineering Workshop, ESTEC,
Noordwijk, The Netherlands, November 28-30, 1995 (paper available by end of September 1995)

[16] R.Gerlich, C.Joergensen: An Alternative Lifecycle Based on Problem-Oriented Methods and
Strategies, International Symposium on On-Board Real-Time Software, ESTEC, Noordwijk, The
Netherlands, November 13-15, 1995 (paper available by end of September 1995)

	A STRATEGY FOR DEVELOPMENT OF HIGH QUALITY EMBEDDED SYSTEMS
	2.	EARLY AND INCREMENTAL VALIDATION
	3.	CONCLUSIONS
	REFERENCES

