
Distributed and Parallel Systems and HOOD4

"Ada in Europe 1995"

Frankfurt, Germany

October 02 - 06, 1995

Rainer Gerlich, Mladen Kerep
Dornier Satellitensysteme GmbH

RST16
D-88039 Friedrichshafen

Tel: +49/7545/8-2124
Fax +49/7545/8-5626

Distributed and Parallel Systems and HOOD4

Rainer Gerlich, Mladen Kerep

Dornier Satellitensysteme GmbH
D-88039 Friedrichshafen, Germany

Phone +49/7545/8-2124 Fax +49/7545/8-5626

Abstract: For distributed and parallel computing the new version of HOOD, HOOD4 [1],
brings a significant advantage: it decouples the logical design from the partitioning
required to map software onto a net of processors. The HOOD Run-Time Support System
(HRTS), introduced for HOOD4, will support an engineer to distribute the software. With
the HOOD4 approach a software engineer can concentrate on the required functionality and
has not to care about a certain hardware configuration which may have to be changed when
he has finished the implementation. HOOD4 tackles the problem of software distribution in
threefold manner: Firstly, it introduces clearly defined planes in a design where a cut can
easily be done without impacting the logic of the software system. Secondly, the HRTS
provides the means needed to establish the communication channels between the physically
separated partitions. Thirdly, it allows to provide timing information from which a
performance prediction can be derived. This allows to evaluate the performance of a
hardware and software configuration already during the design phase. Based on the results
of the performance prediction the optimum hardware configuration can be evaluated in
advance. The HOOD4 concept for support of distributed systems was defined during the
SOFTPAR project [2] by customising approaches for migration of software [3,4] and for
real-time processing [5]. During the SOFTPAR project an exercise with this concept will
be done for a high performance parallel C++ application [6,7] using tools of the project and
a PowerPC network [8] and a workstation cluster.

Keywords: HOOD, Distributed Systems, Parallel Systems, Software Partitioning,
Software Design

1. INTRODUCTION

Partitioning of software over a network of processors is a difficult task. Potential cuts must
already be considered during design and the engineer must foresee the communication
links. This makes the software rather inflexible for repartitioning. Usually, poor
performance is detected when design and implementation is finished, unfortunately not
before. Then much effort is needed to change partitioning of software.

The problem one is faced with here is well known, but difficult to solve if the following
cyclic dependency between design, software partitioning and performance exists:

- the design fixes partitioning,

- partitioning impacts performance,

- performance constraints impact design.

 If design and partitioning are not decoupled, one has to spend a lot of effort for another
system configuration. Again, whether a change in design will solve the performance

problem can only be analysed when one has done the code change. So one has to perform a
maintenance cycle in addition, but still the risk not to meet the performance goals when
starting the re-design.

A solution to break this cyclic dependency is (see Fig. 1)

1. to make the design invariant against partitioning by introducing a concept
which allows to perform the cuts where and when needed,

2. to ensure that a cut has minimum impact on the overall software system,

3. to ensure automated insertion of communication interfaces at the cut planes.

This is the way HOOD4 supports partitioning of distributed and parallel systems. The
chosen approach also satisfies (hard) real-time needs because the interface between
operations is not changed when an operation is accessed remotely1 2.

Moreover,
HOOD4
supports

specification
of real-time

properties
now. This

information
can be
accessed via
the HOOD
SIF (Standard

Interchange
Format). In the

SOFTPAR
project a

Performance
Prediction

Tool (PPT)
will be

established
which allows early evaluation of performance of a distributed / parallel system already
during the design phase based on this timing information.

The advantage of using the PPT is that one can get the performance figures in less time by
simulation. Here the term "less time" is overloaded: firstly, one does not need to wait for
completion of system development. Secondly, real runs may need more execution time. So
one will get the performance figures faster. In consequence, more system configurations
can be analysed for their performance.

1 HOOD4 will also cover hard-real time processing by introduction of related attributes for operations. A
final decision will be made in near future.

 2 Of course, one has to pay in terms of performance for communication through the network. But by parallel
execution several reporting ER's may be executed in parallel so that deadlines can really be met whilst they
may be lost when the ER's are executed on a single processor.

Generation of System Configuration

User HDT (invariant) Transformation configured actual HDT

Tool Support

HDT

System Configurations

Fig. 1: Principles of VN Concept

2. GETTING DESIGN STABILITY BY OBJECTS AND STUBS

Object-oriented software engineering introduces objects as entities of high stability: they
encapsulate operations and data, provide a well-defined interface and hide everything else.
Consequently, in an object-oriented approach objects are the ideal units of distribution.

The software architecture of a HOOD design is represented by a HOOD Design Tree
(HDT) consisting of objects. Fig. 2 shows a sample HDT. It comprises six objects: two
non-terminal objects 1 and 4 (including the root object) and four terminal objects 2, 3, 5
and 6.

The letter in upper left corner indicates
whether the object is an Active or
Passive Object. However, in fact the
nature of an object can be ignored when
partitioning an HDT in HOOD4. So
actually we do not care about these
letters. In the HOOD4 approach a
Passive Object has not to become an
Active Object when it is migrated. This
is an important step towards design
stability: objects using a migrated object
shall not recognise that an object is

migrated. Design would become rather instable, if a Passive Object would have to become
an Active Object when (re)-partitioning a HDT. The chosen VN approach is compatible
with the CORBA concept.

Fig. 3 shows the partitioning of this sample HDT into three pieces: VN1, VN2 and VN33.
The shadowed (terminal) objects represent the real objects available on a certain node, the
non-shadowed objects indicate that the corresponding software has been migrated to
another node4. So we have the following situation for each Virtual Node:

VN1: objects 2, 5 and 6 must be accessed via the network5,

3 We will call these pieces "Virtual Nodes": these are the units of distribution. Seen from an HDT they look
like software entities allocated to processor nodes. But they are independent of physical nodes. Therefore they
are called "Virtual Nodes" to indicate partitioning of the HDT w.r.t. to units of distribution.

4 The non-terminal objects have a special status: as empty shells they can exist on each Virtual Node.

5 The term "network" implies direct communication on the same physical node, e.g. by message passing.

Object 2 Object 3 Object 4

Object 5 Object 6

Object 1

A

AP

P

Fig.2: Sample Hood Design Tree

Object 2 Object 3
Object 4

Object 5 Object 6

Object 1

Object 2 Object 3 Object 4

Object 5 Object 6

Object 1

Object 2 Object 3
Object 4

Object 5 Object 6

Object 1

VN 1 VN 3VN 2

A

A

A

A

A

A

P

P

P

P

P

P

Fig. 3: Step1: Allocation of Objects to VN'S

VN2: objects 3 and 6 must be accessed via the network,

VN3: objects 2, 3 and 5 must be accessed via the network.

As some objects are missing in each VN the resident objects cannot be executed. Therefore
each VN needs a complementing functionality for handling of remote execution of missing
operations. To build a specific environment for each of the VN's, this is one solution.
However, this is a solution which makes the design heavily dependent on the allocation of
objects to nodes. If a configuration is changed, then the complementing environment on
each node has to be changed as well.

But one can easily see what is stable and identical for each of the nodes: this is the HDT
which is still completely shown in Fig. 3. So the goal is to keep the full HDT on each node.
The object-oriented design makes it easy: when keeping the interfaces of each of the
missing objects, we will get identical HDT's on each node, although we do not have
available the full functionality. Only by remote access we will get the needed functionality.
But that is another problem, we will care about later.

The available objects in each VN cannot recognize the missing functionality of the
migrated objects. So they can execute. In an object-oriented approach it is just sufficient to
provide the interfaces in a VN. This ensures correct compilation and linking for each such
HDT which is incomplete from a functional point of view. The missing functionality can
be provided by remote execution, but this mechanism is hidden to the client objects.

The stability we aimed to get we have now achieved by means of stubs, which are (nearly)
empty shells. They just keep the interface and a little bit more: the capability for
communication and remote access of operations.

The task of a HOOD tool is now, to replace a real object (which shall be migrated to
another VN) by such a stub (placeholder) which forwards messages to the remote object
and returns its messages. This task is usually not too difficult and can be automated in most
cases. What the tool has to do is:

1. to provide remote access, and

2. to convert pointers to values and vice versa and to pack/unpack values of
parameters,

There may be some exceptions, when too complex types occur in the parameter
list of operations. Then a user has to provide operations which do the
transformation.

The HRTS specifies which support a HOOD4 toolset must provide for "Virtual Nodes". So
a user just establishes a HOOD design, defines the allocation of objects to Virtual Nodes
and then asks the tool to generate the code for the Virtual Nodes and adds - if needed -
operations for parameter transformation. Finally, a user has to specify which VN's shall be
loaded on which Physical Node.

3. VIRTUAL AND PHYSICAL NODES

Having introduced the principal mechansim which ensures design stability we can now
look on "Virtual Nodes" (VN) in more detail. Virtual Nodes consist of a subset of real
objects of a HDT plus a set of stubs complementing this set towards the full HDT. VN's are
heavy-weight processes which can be migrated. They include

- the full functionality of their real objects,

- the information visible via the interfaces of the migrated objects, and

- the capability for communication so that remote objects can be accessed.

A VN is executable under an
operating system and the smallest
unit of migration. By the size of a
VN a user defines the granularity
of load balancing.

The fact that VN's are heavy-
weight processes is rather trivial.
As they represent the full HDT
(from a logical point of view),
they represent the full system. As
the full system is a heavy-weight
process by definition, VN's are
also heavy-weight processes.
They may include Active Objects
as light-weight processes if the
operating system supports it6.

VN's are allocated to "Physical
Nodes" (PN) for execution. The
mapping is not necessarily one to
one7. More than one VN may be
allocated to a PN (Fig. 4). Even
all VN's may be allocated to one
PN, only. This case is equivalent
to a single processor system, but
bears some communication
overhead, of course. Also, a VN
may contain only one object or it
may contain all objects: these are
the two extreme cases of
partitioning a HDT into VN's.

Hence, distribution of a HDT
across a network of processors is
a two-step process:

1. a HDT is partitioned into
VN's,

i.e. objects are allocated to VN's

2. VN's are allocated to physical processors.

6 In the SOFTPAR project the operating systems MPI and PVM allow only one heavy-weight process per
physical processor. Therefore only one Active Object is possible in a VN. This is the worst case.

7 This is the reason why we distinguish between "Physical Nodes" and "Virtual Nodes".

Processor 1 Processor 2

VN1 + VN2 VN3

Fig. 4: Step2: Allocation of VN's to Processors)

TCH Obj2 Object 3 Object 4

TCH Obj5 TCH Obj6

Object 1

Object 2 TCH Obj3 Object 4

Object 5 TCH Obj6

Object 1

TCH Obj2 TCH Obj3 Object 4

TCH Obj5 Object 6

Object 1

VN 1

VN 2

VN 3

RCH Obj3

RCH Obj5

RCH Obj2

RCH Obj6

Fig. 5: HDT Extension and Duplication

In HOOD4 the first step is performed at pre-run-time, the second step at pre-run-time or at
run-time.

There is a high flexibility for selection of objects. Objects included in a VN may belong to
different branches and different levels of the HDT hierarchy. There is no rule limiting the
selection of objects. Passive Objects remain Passive Objects when they are migrated.
Migration of other objects of an HDT is hidden for the objects inside a VN.

Fig. 5 shows what must be included in a VN: the remaining objects and communication
handlers. "Transmitting Communication Handlers" (TCH) take the role of the migrated
objects. For VN1 a TCH is needed for Object2, Object5 and Object6. They forward all
execution requests to the real object and return output data. "Receiving Communication
Handlers" (RCH) take the task to forward execution requests to the objects which shall be
remotely accessed. In case of VN1 a RCH is needed for Object3. For VN2 and VN3 it is
similar.

A TCH has to provide the following functionality (the numbers refer to Figs. 6-1 and 6-2
where the principal steps are shown in detail):

T1. ER service request (source: box 1, OP1 ER)

a. parameter transformation (box 2, OPCS_ER)

Parameters have to be transformed to a single data stream attached to an
execution request. Only "values" can be included in such a data stream.
Therefore addresses (pointers) have to be replaced by their values. In case
of data structures the full data structure has to be included in the data
stream. Also for nested data structures all addresses have to be replaced.
In case of linked lists or cyclic references this transformation becomes
very complex. Therefore a user has to provide the operations for
parameter transformation. In simpler cases the transformation process
may be automated.

b. putting the ER on the network (box 3, Client_OBCS)

The ER has to be transmitted to the VN and PN where the missing object
has migrated to.

T2. Reception of results (destination: box 12, ER Termination)

a. getting results from network (box 10, Server_OBCS)

Results must be returned to the calling operation when they are received
from the network including identification of the object and operation
which shall receive the results.

b. inverse parameter transformation (box 11, OPCS_SER)

Now the received data stream has to be converted into a format which is
equivalent for the normal direct access of an operation. Values which
correspond to addresses or data structures have to be stored at the
appropriate memory places. This step is inverse to step T1a.

A RCH has to include the following functionality:

R1. Reception of an ER (destination: box 6, OP1 OSTM)

a. getting parameters from network (box 4, Server_OBCS)

The object and operation to be executed must be identified. The data
stream must be forwarded.

b. inverse parameter transformation (box 5, OPCS_SER)

The data stream must be converted to a format which corresponds to the
direct call (see step T2b above).

R2. Transmission of results (source: box 7, OP1 Body)

a. parameter transformation (box 8, OPCS_ER)

The return parameters must be converted to a data stream similat to step
T1a.

b. putting results onto the network (box 9, Client_OBCS)

The data stream including the results has to be sent to the requesting VN
and PN .

Steps T1a, T2b, R1b, R2a, the parameter transformations, are depending on the actually
called operation. Steps T1b, T2a, R1a and R2b are independent (or can be made
independent) from the actually called operation.

In fact, box 3 and box 9 have to transmit data through the network. Their functionality is
similar. So the same object Client_OBCS can be used. Also, boxes 4 and 10 receive
information from the network and distribute it to dedicated objects. They can share the
same object Server_OBCS, too. Similarly, parameter and result transformation can be
allocated to one object OPCS_ER and the inverse transformation to object OPCS_SER.

Fig. 6 which is divided into a client part (6-1) and a server part (6-2) shows in detail the
communication and transformation steps.

Of course, network performance may impact real-time performance of a distributed system.
However, this is unavoidable when one needs to use a set of processors. But the

Request of

Operation

OP1 ER

(User Object)

Provided by User

Parameter

Transformation

OPCS_ER for

User Object

Tool or User
Provided by

"packing"

ER

Transmission

Client_OBCS

HRTS
Provided by

(standard)

"requesting OP1"

Termination of

ER

OP1 ER Termination

(User Object)

Provided by User

Parameter

Transformation

OPCS_SER for

User Object

Tool or User
Provided by

"unpacking"

Result

Reception

Server_OBCS

HRTS
Provided by

(standard)

"sending
data stream"

"receiving
data stream"OP1 ER"

"completing

1 2 3

12 11

1

10

Server

Fig. 6-1: Communication between Operations / Client Part

performance of a distributed / parallel system is surely better than the performance of a
single processor system bearing all the load of the complete software system8.

By introducing VN's as independent units of distribution one decouples partitioning of
software from allocation of software to hardware. First comes design stability, then
partitioning to VN's and then allocation of VN's to PN's. This leaves a high degree of
freedom to the engineer to optimise the hardware and software configuration of distributed
and parallel systems.

4. PERFORMANCE PREDICTION

Performance of a distributed / parallel system depends on the overall processor and channel
utilisation to which each processor contributes when it executes operations. High processor
utilisation can only be achieved when distributed operations can execute in parallel. Due to
the usually highly complex dependencies between operations one does not know if
decoupling is good or bad. Therefore one needs to get sufficient knowledge on sequential
dependencies.

Objects which use each other by unconstrained operations or by HSER's (Highly
Synchronous Execution Requests) can share the same VN. There is no advantage if they
are allocated to different processors, but there might be a disadvantage by communication
overhead. Vice versa, higher utilisation can be achieved, when objects using each other by
loosely coupled execution requests (e.g. ASER, LSER, RASER, RLSER)9 are allocated to
different VN's and different PN's.

8 Communication overhead (at least) must be compensated by parallelisation: this requires sufficient degree
of parallelisation and sufficient parallel computing resources.

9 HOOD4 introduces new types of execution requests (RASER, RLSER) to allow parallelisation with return
of results. Therefore we have: ASER = Asynchronous Execution Request, LSER = Loosely Synchronisation
Request, RASER = Asynchronous Execution Request Returning Results, RLSER = Loosely Execution
Request Returning Results

ER
Reception

Server_OBCS

HRTS

Provided by

(standard)

Parameter

Transformation

OPCS_SER for

User Object

Tool or User
Provided by

"unpacking"

Execution of

Operation

OP1 OSTM

(User Object)

Provided by User

"executing OP1"

Result
Transmission

Client_OBCS

HRTS

Provided by

(standard)

Parameter

Transformation

OPCS_ER for

User Object

Tool or User
Provided by

"packing"

Returning

Results

OP1 Body

(User Object)

Provided by User

"terminating OP1"

"receiving
data stream"

"sending
data stream"

54 6

8 69

Client

Fig. 6-2: Communication between Operations / Server Part

The problem is how shall we know which objects depend on each other and which do not
depend on each other. Usually, the problem is so complex that it cannot be analysed
theoretically. Therefore simulation is needed to provide the right information.

The degree of coupling between objects depends on the type the operations couple
themselves via execution requests (ER). Several ER types are defined in HOOD4. Some
new ER types have been added (compared with HOOD3) in order to meet the objectives of
distributed and parallel systems. For derivation of processor utilisation we need knowledge
on these dependencies. Also, we need information on the execution time.

The type of execution request, the timing information (e.g. time out, worst case execution
time) can now be expressed in HOOD410. Together with additional assumptions on the
execution time profile of operations and performance of the network, a simulation can be
executed which provides representative information of processor utilisation of the actual
hardware and software configuration. This is the task of the Performance Prediction Tool
(PPT) of the SOFTPAR project. The PPT shall provide information on the performance of
a certain system configuration by simulation and modelling of operations, processors and
network topology.

4.1 The User Interface

A user has to provide information on software design and configuration. This information
comes from different sources and may have to be defined

- only once,
-- e.g. the objects and operations during development,

- from application to application,
-- e.g. the scheduling strategy, or
-- network properties

which depend on the chosen processor type
(transputer, workstation)

- frequently for optimisation of object distribution over the processors.

In addition to above information which is precisely available by design or configuration a
user has also to provide some estimations on the timing profile on the operations. This is
necessary because the operations may not be implemented when the prediction is needed. If
the operations are already implemented and there timing profile is available a user has also
to characterise the timing profile by parameters.

The timing profile may impact the prediction significantly. This can be investigated by
running several tests with different profiles in order to see what the performance is and if it
depends critically on the profile or not.

The approach used for the PPT is that the body of an operation consists of a sequence of
local processing in the operation itself (processor time consumption by the operation) and
ER's. For better user support standard sequences can be defined and embedded in other
sequences.

Fig. 7 shows the PPT interfaces and its principal components.

10 The final decision on how the attributes look like is pending.

1. By HOOD information is provided on objects and their operations and the ER's
issued inside an operation. This allows to provide information on scheduling,
call of operations and operations' timing profile.

2. A user has to selcect a certain scheduling strategy, e.g. for hard real-time
processing. This impacts the scheduler included in the PPT.

3. The properties of the actual hardware configuration especially of the network,
influence transmission time of data. Data may be routed by a certain strategy
through a network, e.g. by dedicated channels between the physical processors,
by a bus to which all processors are connected or by another more complex
connection like in a crystal frame work.

4. Allocation of objects and operations to physical procesors impact degree of
parallel execution as already mentionned above. This information is delivered
from the HPC++11 configuration files.

The components of
the PPT are: the
operations, the
scheduler, the model
router which
forwards the ER's
between the
operations and
returns the results,
the nodes (physical

processors)
providing CPU
power as shared
resource for the
operations, the
channels of the
network, and the
network router
which has the
knowledge by which
channels the data
shall be transmitted
between the
processors.

For all the
components model
types are provided
which can be
instantiated for the
desired number of
elements. The

11 High Performance C++

object allocation

network topology
HPC++

network propertiesHW
Configuration

HOOD

object

operation

scheduling info

ops ER's

ops execution
time profile

Strategy
Scheduling Strategy

PPT

network
router

ops

model
router

scheduler

node

channel

Fig. 7: Interfaces and PPT Principal Components

Operation

OBCS
ER Type

OP Body
OPCS

List of ER requests

SIF Info

Timing Profile

ER

Run-Time Info

pre-run-time

Fig. 8: Operation Representation

behaviour of the instances can be customized by parameters.

Fig. 8 shows how an operation is modeled for the simulation. In object-oriented manner it
is divided into an interface and a body. The interface handles the protocol of the ER type
and receives and returns data. For simulation the length of the input and output data stream
is relevant, only.

An operation body executes normal statements and issues ER's according to information
received from a data file which may be derived from SIF information.

For each ER type a template is provided for protocol handling in an operation's interface
and in an operation's body for execution of an ER.

Execution of an operation is performed by acceptance of an ER or its rejection by the
OSTM12 and the execution of the operation body. For the PPT an operation body is
represented by a sequence of "Basic Operations" which can be reused by a number of
operations. This allows to provide templates for certain timing profiles (Fig. 9).

A "Basic Operation
Sequence" is shown
in Fig. 10. The
length of the input
and output data is
relevant only. Such
a sequence is
represented by
"local" execution of
code and ER's. The

local code may be
empty. For a block
of local code or an
ER block a
probability for its
execution and a
repetition factor can
be specified which
provide the

capability to simulate IF's and LOOPs. For each block a type is provided: for
representationn of pure code and of an ER type.

The PPT is based on the commerical tool SES/workbench [9] which is a tool for
performance simulation.

4.2 Results

The sample configuration consists of eight processors and a set of objects and operations
which are allocated to the processors. The results evaluate dependencies on network
configuration and on ER type. Also, the capabilities for evaluation of communication
between processors and channel length are shown. The graphical figures are derived with

12 Operation State Transtion Machine which is a Finite State Machine and decides according to the actual
state of an operation wheter it accepts the request or not.

Operation

Sequence of
Basic OperationsOSTM

ER

Report

Interface

Fig. 9: Operation Internal Logic

Sample Basic Operation Sequence

Report

ER ER
Execution of
Statements

Execution of
Statements

Input

Data

Fig. 10: Basic Operation Sequence

SES/graph. When the interfaces to other tools are implemented which specifically support
graphical presentation of properties of parallel and distributed systems, the visualisation
capabilities will become much better.

The system configuration consists of eight physical nodes (processors) connected by three
different network configurations:

1. all processors are connected to a bus
e.g. workstation cluster (Ethernet)

2. the processors are connected through a network described by a matrix
e.g. transputer network

We consider in the examples "virtual channels". A "virtual channel" between
processors may consist of several physical channels which connect two
physical processors directly with each other, i.e. another processor may be
involved in data transmission between two processors.

3. all processors are connected directly by physical channels.

Operations were allocated to four of the eight processors only as a starting point.

Fig. 11 shows the execution
time of operations for the
three network configurations
and use of RLSER's. As far as
an operation is active, the
trace is at "high" level, when
it is inactive, it is at "low"
level. The top figure
corresponds to the bus
configuration, the middle
figure to the matrix network
and the bottom figure
corresponds to the direct
physical connection of
processors. In the example the
operations have a high amount
of communication.

Between the bus and the
matrix network there is nearly
no difference in total
execution time. The matrix
network has a small advantage
which is hardly to see. In case
of direct processor connection
the execution is significantly
lower (10 000 compared to
18000). This means that the
bus traffic is a performance
bottleneck.

5000 1E04 1.5E04

Time

5000 1E04 1.5E04

Time

5000 1E04 1.5E04

Time

Fig. 11: Execution of

Operations at high bus traffic

for three different network

configurations

Fig. 12 evaluates the dependency
on the ER types. In the example
a sequence of ER calls for the
same type of ER's (HSER,
LSER, RLSER) is executed. The
execution time for a HSER is
shown by the top figure. The
repetition of ER calls is clearly
to see.

For LSER and RLSER the
execution requests are issued
one after the other in the
predefined sequence when
executing operation bodies in
parallel. In case of an RLSER no
synchronisation point for a
report is inserted. The report is
just received when it arrives.

The middle figure shows the
results for a LSER. Now we
have more traces due to the fact
that acknowledges (ACK) and
negative acknowledges (NAK)
can occur. As LSER's can be
executed in parallel an operation
can be called more than once at a
certain time. The y-axis shows
not only that a certain operation
is called, but it gives also
information on the number of
additional calls which are
rejected in our case. The steps on
the y-axis indicate how many
accesses to an operation are
performed at a certain time.

The bottom figure gives the
results for the RLSER. Of
interest are traces 7, 8 and 9

(counted from top of each figure) and 9 and 10. Trace 7 shows the number of calls and
operation execution (this operation shall be called "OPS1"), trace 8 shows the ACK'S and
trace 9 the NAK's. Similarly it is for traces 9 and 10. Trace 9 represents number of accesses
for another operation ("OPS2") and trace 10 shows the ACK's from that operation. One can
see that the second operation does not reject any request because it has already finished
when a new request arrives. For the first operation it is different. A lot of NAK's occur as
the operation is frequently called and more CPU time is consumed.

5000 1E04 1.5E04 2E04 2.5E04

Time

2500 5000 7500 1E04 1.25E04 1.5E04

Time

5000 1E04 1.5E04

Time

Fig. 12: Execution Time of Operations for three ER
Types

The worst case in view of total execution time is obtained for a RLSER, of course, because
more data and more CPU time are consumed for preparation and transmitting of the
reports.

The execution state and protocol handling for OPS1 is given by traces 8 - 11. Trace 8
shows the execution state, trace 9 the ACK's, trace 10 the NAK's and trace 11 the reports.
The report is extending the execution time sigificantly so that more NAK's occur. In case of
reception of a NAK the request is repeated in a loop for a predefined number (user-defined
parameter) of events. Between two following requests a delay (which is also a user defined
parameter) is executed. As more NAK's occured the time until a succesful reply is higher.
Therefore an operation has to wait a longer time and the total execution time is
significantly increased.

These results are interesting for two reasons. Firstly, one sees that the report may extend
the execution time at high network traffic and high data rates. Secondly, this is an example
for a case where a small increase in an operation's execution time can dramatically impact
the total execution time due to the number of additional NAK's and related wait delays.

Fig. 13: Communication between Processors

Fig. 13 shows the number of communications from one processor to all other ones for two
physical nodes. Such figures indicate how much the distributed operations depend on each
other. If processor pairs create a high amount of messages compared to the other ones one
should include the related objects into the same VN or allocate the VN's on the same
processor at least in order to reduce the overhead for message exchange.

Fig. 14 gives the amount of input and output data exchanged between one processor and
the other ones. This is another criterion for allocation of VN's to processors. The amount of
data create loads on the data channels. If this load is too high it can be reduced by
allocating objects with an high amount of data exchange on the same processor or in the
same VN.

1 2 3 4 5 6 7 8

Destination Node

1 2 3 4 5 6 7 8

Destination Node

Two processors may not be directly connected to each
other by physical channels, but by virtual channels
consisting of a number of physical channels which are
used one after the other for transmission of data
through the network. The transmission time of a
virtual channel is the sum of the transmission time of
its physical channels. As can be seen by Fig. 11 such a
time delay can extend the execution significantly if
transmission times are in the order of the normal

processing times. Therfore it is important to know how
long paths are really and how frequently they are used.
Fig. 15 gives this information for the matrix network.
The length of a virtual channel is also expressed in
HOPS13. The number of HOPS is the number of physical
channels a virtual channel consists of minus one, i.e. the
number of transitions from one physical channel to the
next one. For the bus configuration and the direct
connection there is only one physical channel to be used,
hence the maximum number of HOPS is one.

Above examples represent only a small percentage of information which can be derived on
system performance by the PPT. E.g. response times, number of time-outs, number of
ACK's and NAK's for each operation, each VN or each processor can also be derived and
presented by histograms, statistics and graphical capabilities of other evaluation tools.

Each such performance information can be provided on an average level, e.g. per
processor, per VN or per object, or more detailed for each operation, for each ER in an
operation etc. An engineer gets a lot of possibilities to identify which component in the
system consumes which amount of time. He can identify on a high level a global source of
time consumption, e.g. a VN as a performance bottleneck, and can then look into this
component to identify which of the subcomponents creates the load.

5. CONCLUSIONS

HOOD4 significantly improves the support for distributed and parallel (real-time) systems.
It shows the way how to achieve stability of design without limiting the repartitioning
capabilities and supports it by toolsets and HRTS. It further allows to define and to extract
the information needed to predict performance from the design.

This information is taken as input for the PPT. The first results obtained from the
Performance Prediction Tool prove that the essential performance bottelnecks can be
identified.

The SOFTPAR project has introduced significant improvements to HOOD4: new types of
execution requests, the new VN concept, and a proposal for harmonisation of HOOD and
hard real-time needs. It has applied it to a C++ pilot application and provides a tool for
optimisation of VN configuration.

13 A "HOP" is a transition from one physical channel to the next one.

1 2 3 4 5 6 7 8

Node

0

100

200

300

400

500

600
bytes

Fig. 14: Input - Output Data
 Transfer between
 Processors

Fig. 15: Number of HOPS

0 1 2

In summary, much experience was gained in applying HOOD4 for parallel and distributed
systems and for optimisation of system configuration. The VN concept of HOOD4 was
validated for C++ in a parallel environment. Performance prediction will be validated by
the pilot application by end of this year. This makes it easier for future users to apply the
VN concept and to optimise their system configuration.

REFERENCES

[1] HOOD4 Reference Manual, Draft,

[2] CEC ESPRIT Project 8451 "SOFTPAR" , A Software Factory for the Development
of Parallel Applications, November 1994

[3] R.Gerlich: , 1st EUROSPACE Symposium "Ada in Aerospace", December 1990,
Barcelona, Spain, pp. 254-272

[4] R.Gerlich: Dynamic Configuration with Ada, 10th National Conference on Ada
Technology, February 1992, Washington D.C., pp.276-284

[5] Hard Real-Time System Kernal Operating System, ESTEC contract no.
9198/90/NL/SF, Final Report 1993, Noordwjk, The Netherlands

[6] J.M.Letteron, J.Bancroft, K.Wolf, A.Holtz, M.Lang, R.Gerlich, V.Debus: HOOD and
Parallelism in the SOFTPAR Project, HPCN95, Milano, Italy

[7] K.Wolf, A.Holtz, M.Lang: High Performance C++, HPCN95, Milano, Italy

[8] PowerExplorer, Parsytec Computer GmbH, Juelicher Strasse 338, D-52070 Aachen

[9] SES/workbench, Scientific and Engineering Software Inc., Building A, 4301
Westbank Drive, Austin, Texas, 78746-6564, USA

