

Overview on the FAST Process
and

the DCRTT Tool

Overview on the FAST Process and the DCRTT Tool

T a b l e o f C o n t e n t s

1. INTRODUCTION ... 4

1.1 THE SCOPE OF AUTOMATION IN CONTEXT OF FAST AND DCRTT .. 4
1.2 HISTORY .. 4
1.3 CONTENTS OF THIS DOCUMENT .. 4
1.4 DEFINITIONS ... 6

1.4.1 The Test Process ... 6
1.4.2 Terms .. 7
1.4.3 Acronyms and Abbreviations .. 9

2. THE FAST PROCESS AND DCRTT ... 10

2.1 THE LOGIC FLOW ... 10
2.2 PROCESS DETAILS .. 11
2.3 INTERFACES .. 12

3. TEST PREPARATION ... 14

3.1 PROVISION OF A TEST ENVIRONMENT .. 14
3.2 TEST DATA GENERATION ... 15

3.2.1 Test Purpose ... 15
3.2.2 Test Mode ... 16
3.2.3 Generation of Test Stimuli .. 16

4. TEST MONITORING AND CONTROL .. 18

4.1 ANOMALY DETECTION .. 18
4.2 COVERAGE ... 20
4.3 DATA RANGE MONITORING ... 21
4.4 RESOURCE MONITORING ... 21

5. TEST EVALUATION ... 22

6. REPORTING .. 25

6.1 THE TEST LOG-FILE ... 25
6.2 GENERAL INFORMATION ... 26
6.3 THE ANOMALY REPORT FILE .. 27
6.4 THE TEST DOCUMENT ... 29

6.4.1 General Test Information.. 29
6.4.2 Resource Consumption ... 29
6.4.3 Information on Code Anomalies ... 30
6.4.4 Information on Run-Time Anomalies .. 30
6.4.5 Anomaly Analysis .. 30
6.4.6 Coverage ... 30
6.4.7 Decisions and Conditions .. 30
6.4.8 Exceptions ... 30
6.4.9 Input-Output Vectors .. 31
6.4.10 Execution Time ... 31
6.4.11 Data Range Monitoring.. 31
6.4.12 Test Case Visualisation ... 31
6.4.13 Test Cases and Coverage .. 32
6.4.14 Code Analysis ... 32

7. OPEN TOOL INTERFACE .. 33

Overview on the FAST Process and the DCRTT Tool

8. REQUIREMENTS-BASED TESTING ... 35

8.1 THE CONCEPT ... 35
8.2 EXAMPLE ORACLES... 37
8.3 INTERFACES TO DCRTT .. 39

9. EXPLORING AN INTEGRATED SOFTWARE ... 40

10. USING WRAPPER FUNCTIONS .. 41

11. PLATFORMS ... 43

11.1 LANGUAGES .. 43
11.2 OPERATING SYSTEMS.. 43
11.3 COMPILER .. 43

Overview on the FAST Process and the DCRTT Tool

1. INTRODUCTION

1.1 THE SCOPE OF AUTOMATION IN CONTEXT OF FAST AND DCRTT

The FAST process (Flow-optimised Automated, Source-code-based Test) extends the scope of test
automation to an earlier step in the test process compared to the current understanding of the term “test
automation”, thereby supporting massive stimulation, and in consequence collection of plenty of
information on the properties of the source code which is automatically exposed to a high number of test
conditions.

The test process already starts from provided source code and ends up with generated reports, covering

 preparation of the test environment for function and integration testing,

 generation and injection of test data,

 injection of faults at the given interfaces,

 support of stress and robustness testing by massive stimulation,

 collection of information on anomalies occurring during execution,

 collection of information on data ranges and execution times,

 generation of test drivers for execution on host and target platform and of regression tests,

 requirements-based testing and generation of oracles for automated test evaluation and bottom-
up propagation of pass/fail information from low-level to high-level requirements,

 an open interface to other test management tools,

 generation of a number of code metrics, amongst which are code coverage and cyclomatic
complexity, and

 provision of reports documenting the test results and properties of the source code.

The tool DCRTT (Dynamic C Random Test Tool) was the starting point for definition of the FAST process
in context of the European Space Agency (ESA) project “Automated, Source-code based Testing”.

1.2 HISTORY

The starting point for development of DCRTT was to replace the time-consuming manual task of test
preparation for function tests by an automated approach together with random generation of test data –
as the “R” in its name is saying. The first tool based on this approach was DARTT (Dynamic Ada Random
Test Tool), from which the name was created by replacing the “A” for “Ada” by “C” for C language.

The feedback obtained from real-life projects executed for ESA or German Space Administration
stimulated a number of improvements, and helped to prove the scalability of the implementation.

Over the years, the tool evolved and a number of additional features were added. Grid-based and
constraint-based test data generation were added. Black-box testing was complemented by white-box
testing. The focus of reporting was extended from pure detection of exceptions to a number of further
anomalies and properties of the source code. Test vectors were converted into test drivers. The support
for target platforms was extended.

1.3 CONTENTS OF THIS DOCUMENT

This document highlights the features of the process and the tool DCRTT implementing the FAST process.

Overview on the FAST Process and the DCRTT Tool

In Ch. 2 an overview is given on the FAST process and principal features of DCRTT as the tool supporting
the process.

Then, the following chapters provide an overview on the DCRTT features for the test process regarding

 test preparation (Ch. 3),

 test monitoring and control (Ch. 4),

 test evaluation (Ch. 5),

 reporting (Ch. 6),

 the open tool interface (Ch. 7),

 exploring an integrated version (Ch. 8), and

 using wrapper functions (Ch. 10).

Ch. 0 provides information on the platforms supported by DCRTT.

For further information please contact GSSE at dcrtt@gsse.biz.

Overview on the FAST Process and the DCRTT Tool

1.4 DEFINITIONS

1.4.1 The Test Process

Software testing aims to find faults in existing software by exposing the software – or parts thereof – to
pre-fabricated stimuli, observing the reaction of the software and ascertaining whether the reaction
conforms to the expected behaviour of the software – as expressed by requirements – given the stimuli.

The process of software testing consists of

 the selection of stimuli,
 the determination of the expected behaviour of the software under test,
 the injection of stimuli,
 execution of the software-under-test,
 the extraction of the actual reaction of the software under test, and
 the determination of whether the actual behaviour of the software under test conforms to the

expected behaviour.

Software unit testing is software testing applied to the so-called unit level. The term unit usually refers to
the smallest non-separable functional elements of a software product. Often these are the individual
functions or procedures defined at code level, but a unit may also be composed from a group of such
functions which are intended to be used in combination in order to provide atomic functionality. The latter
is often the case when object-oriented methods are used in the design and implementation of the software.

Testing of the integrated software system exposes its top-level function (main function) and its external
data interfaces to stimuli similarly to unit testing.

Automated software testing refers to the process of performing the task of software testing in an automated
manner. In this context, the term shall be used specifically to mean the full automation of the process,
consisting of all steps of the software testing process.

Automated software unit testing as a special case is the application of automated software testing at the
unit level.

A combination of stimuli and expected reactions/outputs is usually referred to as a test case. If the actual
behaviour of the software matches the expected behaviour, the test case is said to be passed, otherwise
it is said to fail. This result is called the verdict.

Note that while the expected behaviour is often expressed in terms of requirements, testing may also be
used for validation, challenging the validity of the requirements in the first place. The more general term
“expected behaviour” encompasses both cases.

Overview on the FAST Process and the DCRTT Tool

1.4.2 Terms

In the context of the project and the respective test process the following terms are of relevance.

Term Definition

CBTDG

Constraint-based Test Data Generation

An approach applying constraint-programming
methods to identify values of function
parameters and global data by which a certain
location (checkpoint) in the code can be
reached or a certain condition or decision can
be made to evaluate to TRUE or FALSE.

Context In case of FAST context is related to the
environment in which functions are executed.

It is represented by a set of possible values for
(global) variables and parameters used by a
function.

This set may be constrained to an actual subset of
the values allowed by the respective variable and
parameter types when a function is called. The
constraints may be imposed due to initial
conditions (e.g. values of global variables and
parameters), conditional execution or operations
yielding only a specific set of outcomes, including
the history of execution preceding the actual call of
a function.

Defect A defect commonly refers to troubles with a
software product, with its external behaviour or
its internal features (e.g., its maintainability).
This includes consideration of the risk of faults
by potential changes of the context

Error An error is a bad or undesired state in a
software system

Failure A failure is a non-compliance regarding external
behaviour being recognized between expected
and observed properties of the software product
as a consequence of an error.

FAST Flow-optimised Automated Source-code-based
testing Process

A test process which starts with automation of
test preparation, auto-generation of test stimuli,
covers automation of test execution and
documentation, generation of test drivers
according to coverage criteria.

Previously the “F” stood for “fully” but was
replaced in the context of the project by “flow-
optimised” to avoid the impression that also
result evaluation would be automated in any
case.

Overview on the FAST Process and the DCRTT Tool

Term Definition

Input vector The set of data provided in the test input
relevant for a test.

Fault A fault is the cause of an error having its origin
in the code which may be called a mistake

Oracle An oracle is a function which can determine
whether a test has passed or failed, i.e. which
can automatically conclude on the correctness
or compliance of expected and observed
results.

Apart from an exact comparison of results, an
oracle may also apply heuristics from which an
approximate pass/fail conclusion can be
derived.

Output vector The set of data related to the test output at the
end of a test step.

Requirements-based Testing A testing approach aiming to prove that
requirements are fulfilled. The executed test
cases and the obtained results are correlated
with requirements. In case of auto-stimulation
of functions the issue is to perform the
correlation with requirements automatically.

Robustness testing In context of the process described in this
document, robustness testing systematically
explores the domain of all inputs or conditions
to which the software may be exposed under
nominal and non-nominal conditions.
Robustness testing in terms of performance is
out-of-scope in context of this process.

RQBT see Requirements-based Testing

SOW Statement Of Work

Test step The execution of a function-under-test for a
given test vector.

Test vector The combination of input and out vector
representing the test data

Overview on the FAST Process and the DCRTT Tool

1.4.3 Acronyms and Abbreviations

ATG Automatic Test Generation

CG Code Generator

CBTDG Constraint-Based Test Data Generation

DCRTT Dynamic C Random Test Tool

ESA European Space Agency

FAST Flow-optimised Automated, Source-code-based Test process

FI Fault Injection

ISVV Independent Software Verification and Validation

LC Lifecycle

LOC Lines Of Code

MMU Memory Management Unit

n/a not applicable

OS Operating System

OSS Open Source Software

RQBT Requirements-based Testing

RTF Rich Text Format

TOC Table of Contents

V&V Verification and Validation

Overview on the FAST Process and the DCRTT Tool

2. THE FAST PROCESS AND DCRTT

2.1 THE LOGIC FLOW

Fig. 2-1 shows the principal logic flow of the FAST process from test preparation to result evaluation.
DCRTT is the tool implementing the FAST process.

The process is driven by

 the source files,

 requirements or oracles

 the test configuration files, and

 annotations or meta-information like constraints on type ranges or correlation of data items

thereby adding information to the application software which cannot be expressed in the C
language itself, but necessary to tune testing, e.g., to reduce the number of false positives by
providing information on the context in case of unit testing.

Fig. 2-1: The FAST Process – From Test Preparation to Result Evaluation

Multiple runs may be executed under different test configurations.

The process starts with analysing the source code and ends with provision of test reports and test drivers
with recorded input-output vectors of functions-under-test, proposing test cases for regression testing with
DCRTT or other test tools. Every step between is fully automated by the process. A user should check the
reports and approve the proposed input-output vectors (test vectors) provided in the test drivers by
conforming compliance with requirements. The test drivers can be used for regression testing on host and
target.

The manual compliance check replaced by automated checks when oracles are derived automatically
from – suitable – requirements. Then the passed/failed result can be propagated bottom-up in the
requirements hierarchy – if the tracking information is available. An oracle represents a requirement and
may be derived automatically from a machine-interpretable requirement.

Annotations and meta-information complement a possibly insufficient context, e.g., to provide constraints
and correlations. Constraints represent information not available in the source code, but required for
certain test configurations, e.g., to constrain test data to nominal data – thereby excluding invalid, non-

Overview on the FAST Process and the DCRTT Tool

nominal data from stimulation – and to ensure proper initialisation of the test environment. Other
correlations on data items instruct DCRTT to consider dependencies between function parameters, e.g.,
between a pointer and the length of the area it points to.

DCRTT tries to derive such information automatically from the source code to the degree possible. A
suitable programming style does help to do so.

Stimulation of the functions and test driver generation is performed in a host environment. The input
vectors are automatically generated.

2.2 PROCESS DETAILS

As shown in Fig. 2-2, the individual functions-under-test – in the sense of program subroutines or functions
– are automatically stimulated in the test environment based on information extracted from the source
code, possibly complemented by user-provided meta-information on pre-conditions or from oracles.

For stimulation, information on the prototypes of the functions is automatically extracted from the body of
the function, providing the types of the parameters to be passed, as well as information on type definitions
and control flow information. Similar information is extracted for global data which are used in the function-
under-test.

Target-specific features in the source code may be automatically adapted to the host environment by auto-
porting. Such support is already available for a number of platforms.

Feedback to the user (test engineer) is given immediately after automatic building of the test environment
and after stimulation and execution of the test drivers on the host or target system.

Fig. 2-2: The FAST Process – Detailed Flow

Information on resource consumption by the function-under-test, coverage, anomalies and more properties
are recorded. The test drivers form the base of the Open Interface to other tools (see Chapter 7 for more
details).

From the large set of stimuli, a subset of test case candidates is automatically selected based on criteria
of interest such as coverage or occurrence of anomalies, where each candidate is defined by the input
provided to the FUT and the observed output from the FUT. Using these data, test drivers are automatically
generated for (re-)execution on the target, followed by automated comparisons of results achieved on
target and host, documented in detailed and summarised reports.

Overview on the FAST Process and the DCRTT Tool

The test drivers are generated in an intermediate format. This format is the central part of the Open Tool
Interface, from which the native test drivers of DCRTT is derived and the link to other test management
software, such as Cantata and VectorCAST is established.

When the stimulation phase is completed, the reported anomalies are manually analysed. The data in the
report point to the location of the defect – except when no post-mortem information is available – line in
case of a heavy crash. In latter case the closest location for which recording was possible is reported.

The source code of the application or the generated test environment may be modified for further analyses
– e.g., by inserting test printouts for debugging purposes – and tests can be easily and quickly rerun.

The anomaly report – a csv-file – provides information on line numbers in the pre-processed c-files and
the original files.

Explicit fault injection can be activated. Then constraints placed on the allowed values for input parameters
and global variables in stimulation are ignored – without any need for manual intervention. Modification of
global variables declared as constant, blanking of initializers for global variables and modification of output
and return values from called functions are supported.

Together with massive stimulation, fault injection creates a harsh environment for the functions subject of
testing in order to increase the probability of occurrence of anomalies.

2.3 INTERFACES

Fig. 2-3 shows the interfaces of the FAST process,

 at the input interface the various modes for stimuli generation, and

 at the output interface

 the report(s) and

 the test drivers

where other tools can be attached. Currently, interfaces to Cantata and VectorCAST are supported.

Fig. 2-3: Interfaces of the FAST Process

Overview on the FAST Process and the DCRTT Tool

Four principal stimulation mechanisms drive test data generation using different sources of information:

 black-box stimulation
based on a function’s prototype

 grey-box stimulation
by applying genetic algorithms

 white-box stimulation
based on information about a function’s body,

 contracts
providing additional information on parameters and data ranges constraining black-box and white-
box stimulation.

Any such mechanism may be applied to global data used in the function-under-test, too.

For robustness testing the information on type ranges is sufficient to derive stimuli. Then the contracts are
not required. However, if the range of the stimuli shall be limited to the valid range, i.e., the range for which
a function shall work correctly, more information on the context in the intended operational environment is
required.

Not all information on the context can be found in the C code. Therefore, additional information on range
constraints can be provided by a user or is obtained automatically to the degree possible by heuristic rules
applied by DCRTT.

Missing functions or data are generated automatically. For out- and return-parameter values are generated
randomly according to the type. Composite structures are supported.

A number of reports is provided as text or graphics.

Overview on the FAST Process and the DCRTT Tool

3. TEST PREPARATION

The task of test preparation is to support test execution under – an intentionally huge – variety of
conditions. The following steps are part of test preparation;

 provision of an environment for execution of the tests,

 generation of test data.

3.1 PROVISION OF A TEST ENVIRONMENT

Provision of a test environment comprises the following steps for DCRTT:

 checking of the provided source code for feasibility of compilation,

 generation of batch-files driving the tests,

 completion of the source code regarding missing symbols (functions and data),

 identification of the parameters to be stimulated,

 support of initialisation, and

 provision of means for check on run-time errors, exception handling, test monitoring and test
evaluation.

Checking of the source code is performed by compiling the provided files on the host environment. If the
source code is not developed for MS-Windows, the files are adapted automatically based on additional
files provided by DCRTT for already supported platforms. In case a platform is not supported, GSSE needs
to define the support. If compilation errors occur the process is terminated.

Generation of batch-files for execution and control of the tests is done automatically. Batch-files related
to unit / module tests are collected in a single batch file for execution. It is started automatically when test
preparation is completed.

Completion of the source code is required when functions or data are not part of the provided source
files. In this case the declaration of the missing symbols must be visible, so that DCRTT can generate
stubs for the functions and define the missing data. Random values are assigned to return and output-
parameters of stubs.

Identification of parameters of a function is required for calling and execution of the function-under-test,
which also could be the main-function. For every parameter – including global data used in a function – a
copy is created which takes the values before the function call, so that a comparison before-after can be
done – even for every element of a composed structure.

To support initialisation patterns for functions and files can be provided to select initialisation functions
which shall be called prior to test execution to ensure that the tests are executed in a properly initialised
application environment. The functions may be part of the set of functions-under-test or provided in
addition.

Provision of means for test execution and result evaluation is required to ensure that a huge number of
test steps can be executed and the result be documented. In principle, the function-under-test is a non-
cooperative partner which may cause a crash of the test sequence – including e.g., an endless loop – and
prevent any further test progress. Therefore, means have to be implemented which ensure a continuity of
the – possibly thousands of – functions-under-test, and to continuously record the execution results.

DCRTT does all these tasks automatically.

Overview on the FAST Process and the DCRTT Tool

3.2 TEST DATA GENERATION

Test data generation has to consider a number of aspects:

 the test purpose,

 the test mode, and

 the generation of stimuli for a function-under-test.

3.2.1 Test Purpose

A test purpose supported by DCRTT may be

 unit testing (module testing),

 robustness testing, or

 testing of the integrated software.

In all cases the test process is automated by DCRTT to allow injection of a huge number of test steps.

Unit testing aims to provide test data for the function-under-test to demonstrate compliance with
requirements by a check whether the output vector complies with the input vector. In most cases, this
implies that the input data must be valid data w.r.t. to the code of a function, i.e., the values must lie in the
nominal range. Depending on the test requirements invalid data, i.e., non-nominal data, may be fed in as
well. In the latter case unit testing does cover robustness testing, too.

Consideration of the nominal range in case of auto-generation of test data is a challenge, as the required
information on the valid data range might not be provided explicitly nor implicitly in the source code. In this
case, additional information needs to be provided in files or by annotations. However, DCRTT tries to
identify the missing information from the source code – to the extent possible – by applying heuristic rules.

In case of automated provision of test data – as supported by DCRTT – the function-under-test is called
in a loop for a given number of test steps.

In case of robustness testing a function-under-test is exposed to nominal and non-nominal data. Then
test data generation is not limited to the nominal range. A function is considered as robust if it can tolerate
non-nominal conditions and does behave as defined in the requirements. The check on compliance of
input-output vector is also part of robustness testing.

Testing of the integrated software means that the main function and – possibly – external data interfaces
receive the test data – nominal or non-nominal data, similarly as for a function-under-test.

If more than one main-function does exist – e.g., in case of multitasking – a single entry-point function
should be provided or constructed. The entry-point function is called in a loop like for the function-under-
test in case of unit testing.

All the means (see Ch. 4 and Ch. 6) provided for unit or robustness testing can and should be used for
integration testing, too. Therefore, testing of the integrated system requires generation of the test
environments for all the functions-under-test in a previous step, i.e., execution of unit or robustness testing.

In contrast to automated unit testing, auto-testing of the integrated testing brings the advantage that the
internally passed data are in the valid range for all functions below the main-function, except when a
function behaves erroneous and provides invalid data.

In case of tasking a challenging issue is the automatic construction of the entry-point functions and the
implementation of task synchronisation in the entry-point function, because of a missing standardised
interface for access of the required information.

Currently, DCRTT supports a specific interface, which however can be reused for an application applying
the format or adapted to another customer-specific format.

Overview on the FAST Process and the DCRTT Tool

3.2.2 Test Mode

By the test mode fault injection (FI) may be activated, i.e., exposing a function to non-nominal conditions.
By enabling or disabling this DCRTT feature either unit or robustness testing can be performed.

Faults may be enforced for the following cases:

 fault injection after a function call1

o return value of a function
e.g., to enforce that malloc returns NULL

o output-parameter of a function

 fault injection for input vectors.

The first case is supported for scalar return and pointer parameters. The second case applies to all data
types subject of auto-test data generation.

If the general FI feature is disabled it is still possible to inject NULL pointers by activation of a configuration
option.

The rate of fault injection after a function call w.r.t. to a sequence of calls can be configured – independently
for the scalar and pointer case. As the number of calls during a test step is not known, a fault is injected
always for the first call.

3.2.3 Generation of Test Stimuli

Several approaches are applied for generation of test stimuli:

 type-based generation

 constrained-based generation, and

 generation with genetic algorithms.

Type-Based Stimulation is supported for every type including complex user-defined types, except for
function pointers (development of support for the latter is in progress). In this case the value of a scalar
type is derived

 randomly, or

 grid-based / incrementally

from the related range in C. In non-nominal case this is the full range of C types, in nominal case the range
is limited by provided constraints, if any.

Grid-based / incremental generation means that a grid – not necessarily with equidistant intervals – of a
given number of points is put over the type range / input domain, starting with the minimum available value
for the type and then incrementing stepwise until the maximum value for a user-defined number of steps.
In this case for every parameter of the function-under-test – including global data used by it – a loop is
generated for stepping through the grid.

Random generation means use of a pseudo-random generator for which a user can give a seed value. In
this case the function-under-test is called from one loop only, and the test data for the items of a parameter
are generated simultaneously.

Constraint-based generation and genetic algorithms complement type-based generation when activated.
They need significantly more time. However, as by random or grid-based date generation not all branches
may be reached which results in a coverage figure less than 100%, constraint-based data generation may
be needed.

1 Functions declared as static are currently not supported by this feature.

Overview on the FAST Process and the DCRTT Tool

In case of constraint-based generation, a coverage target is identified which has not yet been met. For
missing block/statement coverage, a location in the code is given which was not reached, yet. Similarly,
for decision or condition coverage, an edge may be specified which has not been traversed yet. In both
cases a path through the code is identified – starting with the related parameters at the top – by which the
desired coverage can be achieved. The constraints – in terms of conditions – along the path yield a system
of inequations which needs to be solved. The result is a set of values for the parameters which are fed into
the function-under-test during additional test steps.

Genetic Algorithms2 apply the principle of natural evolution to generate test data for achievement of
coverage. They are still a research topic. Typically, they are applied to untyped byte streams – like
occurring for telecommands or telemetry data – of which the structure is dynamically varying and unknown
when being received. In this case the decoding or encoding is defined in the code.

When knowing the correlation of such a stream with a parameter and its rules for constructing the contents,
the construction rules could be applied. Such a typical case is the provision of contents of telecommands.
For example, when getting a composed type where the contents can vary dynamically based on included
information, genetic algorithms may be the right choice.

Genetic algorithms correlate the chance of survival and procreation of individuals with their level of
adaptation to their environment. The formalised concept describes the progression of a population of
candidate solutions over a number of generations.

Each generation arises from the previous by application of a set of evolutionary operators to the individuals
of the previous generation, including recombination in pairs, mutation, survival of elite individuals into the
next generation and immigration of new individuals. An individual’s progression into the next generation
or preservation of part of its features depends on its fitness to the purpose of optimisation.

A cost function decides on the fitness of a generation, by considering the relevant properties required for
survival.

2 Genetic algorithms are currently a research topic in context of DCRTT. This feature is currently evaluated in context of generation
of telecommands.

Overview on the FAST Process and the DCRTT Tool

4. TEST MONITORING AND CONTROL

Test monitoring aims to collect information about

 detection of anomalies,

 coverage,

 data ranges for data used inside a function, and

 resource consumption.

Test Control modifies the control flow, e.g., for fault injection after a function call.

Instrumentation of the source code is required and implemented by adding code, expanding existing code
or substituting the code, e.g., to modify the control flow.

4.1 ANOMALY DETECTION

DCRTT support for anomaly detection includes

 index checking in the provided source code,

 index checking for a subset of C library functions,

 address verification in case of pointers, and

 checking for corrupted malloc-memory.

For support of index checking index expressions are instrumented. In case of (constrained) arrays the
size of the array is used to detect out-of-bounds conditions. In case of pointers or unconstrained arrays
the size is detected by bookkeeping of DCRTT at run-time. This allows to identify the size of statically or
dynamically allocated memory blocks pointed to by the array base pointers used.

Parameters are allocated in the test environment. In case of pointers and unconstrained arrays the actually
required size is not part of the prototype of type information. It may be deeply hidden in the code and/or
even defined at run-time. To avoid false positives due to allocation of the wrong size, DCRTT supports
dynamic and silent resizing of such objects, and does not issue a message, if the index is beyond the
current size. Instead, it logs the required size so that a later check against requirements can be done in
order not mask a true positive.

C library functions are substituted by DCRTT functions which check the parameters for valid address
and out-of-bound conditions, and perform resizing of the passed parameters if required. The following
functions are currently supported:

strchr
strcmp, strncmp, memcmp
bzero, memset
memmove, memcpy
strcpy, strcat, strncpy, strncat
sprintf

The feature of address verification checks addresses for whether they are writable, readable or none of
both. For objects the start and end addresses are checked. Although this is done in the host environment
where the memory layout may be different from the one on the target system, invalid addresses detected
this way on the host environment may occur in both environments. It even may happen that the chance to
detect it on the host may be higher than for the target because the host uses an MMU, but the target does
not.

DCRTT supports detection of corrupted malloc-memory. The previous checks aim to localize an
anomaly in the source code and have information on the file and line. However, if such checks are not

Overview on the FAST Process and the DCRTT Tool

applied at the respective location, memory can be corrupted because the invalid condition cannot be
prevented.

DCRTT applies its own housekeeping for malloc, for detection of memory usage in general and memory
leaks in particular, and for detection of corrupted memory. DCRTT allocates malloc-memory for declaration
of data in the test environment, to the degree possible. To increase the chance to detect corrupted memory
DCRTT adds buffer zones in front and behind the allocated memory area and initialises it with a certain
pattern. A check on the integrity of these two additional areas for all allocated data is performed after each
call of the function-under-test per default. If integrity of a data is violated, the whole allocated area is printed
in hex-format into the log-file together with more information and the corrupted bytes are marked. The
location of corrupted bytes may already give an idea on the source of the defect

When a violation is detected, the test run is terminated and a re-run is started with a debugging option
allowing generation of a detailed pre-mortem trace. To localise the location at a higher granularity the
coverage instrumentation does checks when a block is entered and left, to identify the earliest location of
violation. If the information on the block level is not sufficient, the user may insert own checks into the
code. This procedure is described in the User Manual.

Tab. 4-1 provides the list of messages issued by DCRTT on anomalies in the third column. In the first
column of the table standardised terms are given onto which all DCRTT specific messages are mapped.
These so-called “standard defect types” were defined to support comparison of messages coming from
tools which usually differ in the message text, although referring to the same symptom. The contents of
the second column “Criticality” shall indicate a measure for the probability that the defect type will impact
the quality of service. In fact, “Criticality” here represents experience from evaluation of tool messages and
following assessment on the impact weighted with the probability that the defect really will impact quality
of service.

The classification on criticality shall allow prioritisation of reports based on experience at presence of the
challenge of evaluation of a large set of reports.

Standard Defect Type Criticality DCRTT Messages Description

Array Index Out-of-Bounds Critical CorrMem Corrupted memory detected

Array Index Out-of-Bounds Critical OutOfRangeLow Index <0

Array Index Out-of-Bounds Critical OutOfRangeHigh Index > maximum value for constrained arrays

Assert failure Critical AssertFailed Assertion failed

Dereference of Invalid or NULL Pointer Critical *Excp
A number of different messages on exceptions depending on the
location in code (application or test environment)

Dereference of Invalid or NULL Pointer Critical ExcpMissFunc Exception in a generated stub

Dereference of Invalid or NULL Pointer Critical ExcpBasicFunc Exception in a support function of a stub

Dereference of Invalid or NULL Pointer Critical ExcpDataProcess Exception in data range monitoring function

Dereference of Invalid or NULL Pointer Critical ExcpNULLInj Exception after injection of a NULL pointer

Dereference of Invalid or NULL Pointer Critical StdExcpC++ Standard exception from C++

Dereference of Invalid or NULL Pointer Critical TermExcpC++ Termination exception from C++

Dereference of Invalid or NULL Pointer Critical InvalidAddr
Access of an invalid address, general message if source cannot be
exactly determined

Dereference of Invalid or NULL Pointer Critical AddrIsReadOnly Address is not writable

Dereference of Invalid or NULL Pointer Critical AddrIsNotRW Address is not readable and not writable

Dereference of Invalid or NULL Pointer Critical AddrIsNULL Address is NULL, e.g. passed to index checking

Dereference of Invalid or NULL Pointer Critical NULLptrDeref Dereference of a NULL pointer

Dereference of Invalid or NULL Pointer Critical Uexit
Unexpected termination of a test, condition could not covered by any
of the implemented exception handlers, probably due to an invalid
address

File Access Error Critical FileHandleErr File handling error (open, close, file access, not opened, not closed)

Non-terminating Loop Critical FileTooBig Log-file too large, possibly an indication of an infinite loop condition

Possible Recursion Critical RecursExcp Exception during exception handling

Possible Recursion Critical Recursion Stack overflow possibly due to recursion

Resource leak Critical Resource leak file File not closed

Resource leak Critical Resource leak malloc malloc-memory not freed

Overview on the FAST Process and the DCRTT Tool

Standard Defect Type Criticality DCRTT Messages Description

Arithmetic Overflow Warning FpNan Contents of floating-point data is not a number

Arithmetic Overflow Warning FpInf Contents of floating-point data represents infinite

Arithmetic Overflow Warning intOverflow Integer overflow occurred

Concurrency Issues Warning tbd The support will be given soon.

Invariant Condition Warning WasAlwaysTrue The condition was always true, possibly invariant condition

Invariant Condition Warning WasAlwaysFalse The condition was always false, possibly invariant condition

Timeout during Execution Warning TimeoutIntMonitor
The test run was terminated due to reaching the time limit, possibly a
deadlock or the system hangs

Unreachable Code Warning WasNotReachedBlk The block was never reached3

Unreachable Code Warning WasNotReachedCnd The condition was never reached4

Tab. 4-1: List of Reported Defect Types

4.2 COVERAGE

Block, condition and path coverage is supported. In case of block coverage, a checkpoint is inserted at
the entry and the end of each block. The end of a block is reached if no exception occurs in the block. In
latter case exceptions of a block are flagged.

Block coverage is recorded for

 each FUT separately,

i.e., the block coverage when executing the function-under-test,

 the sum over all FUT, collected over all function tests, and

 the cumulated coverage,

considering contributions to coverage of a certain FUT when execution another FUT as function-
under-test.

Differential block coverage is supported for test cases in both directions, i.e., correlation of a block with
test cases, and correlation of a test case with blocks covered when it is executed.

Path coverage is integrated into the block coverage recording – when the related configuration option is
on.

In case of condition coverage, the cumulated condition coverage is recorded for true and false. From this
information MC/DC can be derived. Also, differential condition coverage is recorded for test cases as
for blocks.

The coverage of a case of a switch is handled by block coverage. Discrete values occurring for a switch
are currently not collected (as the set could result in a huge number of cases), but could be.

As an option, coverage obtained during initialisation can be counted, too.

Graphics are provided for the structure of a function based on decision coverage and for differential
coverage w.r.t. test cases.

As an option coverage information of blocks of a function-under-test can be printed into the log-file together
with the number of accesses of a block and consumed time starting measurement at the function entry.
This may help to detect the block of a deadlock or an infinite loop.

3 Such a report should only considered as valid if the block coverage is about 90% or higher. Otherwise the probability is high that it is just a
matter of insufficient test data.

4 Similarly, such a report should only considered as valid if the condition coverage is about 90% or higher. Otherwise the probability is high that
it is just a matter of insufficient test data.

Overview on the FAST Process and the DCRTT Tool

4.3 DATA RANGE MONITORING

For every location in a function where an assignment happens – including initialisation in a data definition
– the data contents is recorded before and after the assignment, and for both cases the minimum and
maximum values are determined and reported. This also applies to complex and nested data structures.

The intention of supporting tracking of ranges is that this way unexpected or invalid values can be
identified, or a feedback can be given on the ranges.

4.4 RESOURCE MONITORING

Resource monitoring is supported for

 malloc usage,

 heap and stack usage,

 file usage

 execution time

Malloc usage is tracked with size and location (function, file, line). This applies to allocation and free. In
case data can be subject of resizing, the size of the related type is tracked, too. Due to tracking resource
leaks can be detected. Optionally, information can be printed into the log-file on which data items were
allocated by the application, but not freed.

In case of resizing, all data items which depend on the same literal initially used when allocating memory,
are subject of update.

Heap and stack usage is tracked with total size, element/type size, data name, type name, object
properties such as the array represented, and location (file, line). In case of stack objects and dynamic
heap objects, allocation and free is considered.

By taking the address, information can be obtained at run-time regarding malloc, heap and stack objects.
Especially, this feature is used by DCRTT itself to minimise false positives.

As an option time consumption of blocks of a function-under-test starting measurement at the function
entry can be printed into the log-file together with the number of accesses of a block. This may help to
detect the block of a deadlock or an infinite loop (see also 4.2).

Overview on the FAST Process and the DCRTT Tool

5. TEST EVALUATION

Apart from the provided reports as described in Ch. 6 below, evaluation support is given by

 Test drivers, and

 Requirements-Based Testing (RQBT)5.

Test drivers are generated according to selection criteria (coverage, exceptions, requirements coverage).
They represent test cases when the test input can be correctly linked to a requirement, otherwise they are
test case candidates. A test driver allows to (re-)execute a certain test step which is considered as
interesting according to the selection criteria.

In case of test case candidates, the check on compliance of input- and output vector regarding
requirements has to be done manually. Once done, the output-vector is a reference for regression testing.

Test drivers support regression testing and comparison of output-vectors between host and target
system, e.g., to detect numerical instabilities.

A test driver

 establishes the environmental conditions observed before the call of a function-under-test,

 calls the function-under-test, and

 records the output-vector when executing a test step, and compares this vector with the vector
obtained by execution of the function-under-test,

 compares input- and output vector for in-out parameters in order to identify which element did
change.

Input- and output vector generation and comparison apply to the full set of elements of a possibly complex
and nested data structure (currently except function pointers).

In case of DCRTT and Cantata all test drivers generated during a test of a function are collected in a test
environment for re-execution. In case of VectorCAST re-execution is organised according to the tool
interface (see Ch. 7).

Support of RQBT aims to close the gap between test inputs independently generated of requirements and
requirements coverage and verification, and takes benefit of massive stimulation to check the
requirements.

Requirements coverage means that a requirement was covered by a certain test step executed for a
certain function-under-test, requirements verification to assess whether the test yielded pass/fail for a
requirement. The information on coverage and verification can be propagated bottom-up provided
that the information for propagation is made available in machine-readable format. DCRTT expects a
certain format, but other formats may be converted if needed.

A requirement should contain information on the related subject, the initial property (pre-condition) and the
expected, final property (post-condition). For example, a subject may be a state transition (subject) from
an initial state (pre-condition) to the final state (post-condition).

Support of RQBT requires information on a requirement in machine-interpretable format. Currently, such
requirements do not exist in space projects – according to our current knowledge. Therefore, a machine-
interpretable format has been defined for expressing suitable test requirements.

In DCRTT such a suitable requirement is formalised by an oracle (Fig. 5-1) with pre- and post-condition.

5 For details see Ch. 8

Overview on the FAST Process and the DCRTT Tool

Fig. 5-1: Principle Format of an Oracle

For each oracle a set of functions is constructed automatically and included into the test environment.
Whenever the pre-condition of an oracle is true for a test vector, the post-condition is checked. The result
of the check (pass/fail) is recorded and later propagated bottom-up through the requirements hierarchy.
Usually, the pre-condition check only applies to the output-vector, but it also may apply to the input-vector
when the value of an item before execution of the function-under-test is referred to. In this case the
conservation of the input vector by DCRTT is required for evaluation after execution of the function.

The notation of an oracle is

<short name> ; <pre-condition> ?6 <post-condition>; [<function pattern>[,<file pattern>]];

Pre- and post-conditions must be valid C / C++ logical expressions evaluating to a boolean value.

A short name refers to a requirement and correlates a requirement with an oracle. More than one
requirement may be correlated with an oracle. Vice versa, more than one oracle may be correlated with a
requirement.

The function and file patterns are optional. They may constrain the set of functions to be considered for
matching of oracles. Any names supported by the respective file system are allowed. Wild cards (*, ?) are
allowed, with “*” matching any sequence of characters, and “?” matching a single character. If a function
or file pattern is missing, “*” is taken instead by default. Tab. 5-1 provides some examples of (simple)
oracles and Tab. 5-2 shows the results for mathematical oracles and the information provided by DCRTT
on the oracle checks.

Function Oracle Description
x *x (square) FORALL(x)?(sqrt(ret)-fabs(x))<eps An inverse function is applied in the post-condition

abs(x) FORALL(x)?ret>=0
The abs-function should always return a positive
result or 0

invariant p==c? pInput==p
In this case p should not change, and pInput is the
value of p before execution, preserved by DCRTT

Tab. 5-1: Examples for Oracles

6 The question mark used here is part of the oracle syntax. It should not be interpreted as “?” used in the syntax of the C language
in case of a conditional expression. It has a similar meaning as it follows a condition expressed in C code, but it is not inserted in
the code context of the FUT. Only the pre-condition and the post-condition must be provided in valid C-syntax.

Overview on the FAST Process and the DCRTT Tool

Tab. 5-2: Results Obtained for Mathematical Oracles

Overview on the FAST Process and the DCRTT Tool

6. REPORTING

Reporting about test results can be grouped in

 the log-file for a test (Ch. 6.1),

 a set of files providing information during the test process for a number of topics (Ch. 6.2),

 the anomaly report file provided in csv-format (Ch. 6.3), and

 the test document (Ch. 6.4).

6.1 THE TEST LOG-FILE

For every test log files are created:

 lg<testId> for the stimulation step,

 lgExecDCRTT<testId> for execution of the corresponding test driver in DCRTT mode,

 lgExecCantpp<testId> for execution of the corresponding test driver in Cantata mode,

The log-file provides information on test mode, test progress, files left open, malloc-memory not freed
(optionally), and anomalies.

For every anomaly the execution trace over checkpoints is printed together with information on the context.
Also, summary information on anomalies is provided and optionally checkpoint counts and execution time
related to checkpoints (see Ch.4.4, Execution Time).

Overview on the FAST Process and the DCRTT Tool

6.2 GENERAL INFORMATION

Tab. 6-1 provides a list of files with information recorded during execution of DCRTT referring to different
features supported by DCRTT.

File Description

recordCBTDGerror.file Errors related to constraint-based testing (CBTDG)

recordCBTDGunreachableLoc.file Information about unreachable locations as reported by CBTDG

recordCompletionStatus.file Information about completion of a test of a function-under-test (FUT)

recordCompMsgs.file Messages from compilation and linking of test environments

recordCompMsgs_filtered.file Messages from compilation and linking of test environments, but filtered for critical messages

recordConstraintDef.file Statistics on applied constraints

recordCriticalIndex.file
Messages on out-of-bound conditions with full information on the context and for every location
supporting identification of value==upLim conditions

recordCritIdxCompr.file Filtered messages on out-of-bound conditions

recordDefDupl.file Information of duplicated symbols found in more than one file, but not declared as static

recordEnforcedTestModeSwitch.file Information whether the configuration for type-based stimulation had to be modified

recordFileOpen.file Information on file open and close per location

recordFileSummary.file Summary on file open/close

recordMallocAllocated.file Details on malloc-usage

recordMallocSummary.file Summary on malloc-usage

recordMemUsedInfo.file Information on malloc-memory

recordMinMax1.file
Information on automatically defined constraints (min/max) for arrays derived from index information in
the source code

recordParaInitTime.file Information on (max.) time consumed for generation of test data for a parameter

recordParaPrintByte.file Information on the number of bytes printed into the report for parameters

recordResizeReports.file Information on resizing of pointer arrays and unconstrained arrays

recordRunTimeMsgs.file
List of observed run-time messages extracted from log-file of a test regarding error messages from
DCRTT library functions

recordSfmfLeftUndefSymbols.file
List of missing symbols for which an instance could not be provided (excluding symbols form compiler
library)

recordSfmfUndefSymbols.file
List of missing symbols for which an instance could not be provided (including symbols form compiler
library)

recordTCcnt_vs_testId.file Information on number of test cases generated for a certain function-under-test

recordTCfilePreemption.file File pre-emptied while reading the information on which block has been covered by a test case

recordTCinherit.file Information on test cases already generated in previous unit tests to minimise the number of test cases

recordTCmatrix.file Information due to which event (block/condition coverage, exception etc.) a test case was generated

recordTCmatrixBlockNotPath.file Similar ot recordTCmatrix.file, but only blocks are considered

recordTCmatrixMCDConly.file Similar ot recordTCmatrix.file, but only conditions are considered

recordTCmatrixPathNotBlock.file Similar ot recordTCmatrix.file, but considers contributions from path coverage, only

recordTCsccCover.file Information on coverage of short circuit conditions for decisions

recordTCselection.file Information on TC and related blocks and condition for further evaluation, for DCRTT internal use

recordTCselMissTestId.file Information on unit tests for which basic path did not contribute

recordTestAnomalies.file Information on anomalies occurred during test execution

recordTestdriverStmtLimit.file
Information on test cases where the test driver could not be completely generated as the limit of source
code lines was exceeded

recordTestModeTimeAnalysis.file
Information on number of test cases, covered blocks and conditions, execution time for each of the
generation modes random, incremental, CBTDG, genetic (cumulated information over the generation
modes)

recordTestSteps.file Statistics on number of generated stimuli

recordWrongParaList.file Information on functions for which an inconsistent parameter list was detected by DCRTT

Tab. 6-1: Overview on Files providing Information on Test Results

Overview on the FAST Process and the DCRTT Tool

6.3 THE ANOMALY REPORT FILE

The found anomalies are reported by DCRTT in compressed manner in a csv-file called

PerToolReportList_DCRTT.csv

The format of the file can be processed as text file or imported by a spreadsheet program.

This format may also be used to collect information from other test tools for purpose of comparison of
results from other tools.

The file format comprises 34 elements in total of which the most relevant for defect report are shown in
Tab. 6-2. The other elements address links to evaluation, more information on the location of the defect
provided by other tools, assessment results and justifications of the assessments.

The file provides information on the defect type and its location. The defect type is provided as “standard
defect type” (see Ch. 4.1 and Tab. 4-1) together with the DCRTT specific message on the defect type.

Fields 33 and 34 provide additional information on the context (Tab. 6-3) and the affected (instrumented)
code (Tab. 6-4). The contents in Tab. 6-3 and Tab. 6-4 are not related to the same defects. Tab. 6-3
shows two examples for out-of-bound conditions and Tab. 6-4 examples for out-of-bound in a strcpy, a
failed index check and a NULL pointer dereference (buf).

Item Description

1 Issue Id Tool List, unique Unique number in the list, starting at 1

5 File Filename of file-under-test

6 Function Qualified name of the function-under-test

7 Mangled Name Unique name of the function in case of C++, for C identical with function

8 Line, actual Line number in the file instrumented by the tool or original lime number

9 Line, original Line number in the original source file

10 Column Column in the line pointing to the originator of the anomaly

11 Stmt-No Statement number in the line, if more than one statements are present in the line

12 Top-Level Function Y / yes if it is not called by any other function in the set of functions-under-test, else n / no

13 Standard Defect Type An identifier describing the anomaly used for classification of anomaly messages from different tools

14 Tool Primary Message A message from the tool considered as short message describing or classifying the anomaly

15 Tool Secondary Message Another message used to map it onto the standard defect type

16 Tool Report Text Another message from the tool – if any- describing the anomaly

33 Additional information1, Information on context of the anomaly, for other tools optional

34 Additional information2 Statement or block, for other tools optional

Tab. 6-2: Description of the Anomaly Report Format (Subset)

additonal information 1: Information on condition, arrays, indices and limits

 testId=0, func=00000, block=13 condId=n/a arrId=555 idx=1 Value=33, upLim=25 lcnt=590

 testId=0, func=00000, block=1 condId=n/a arrId=666 idx=1 Value=13, upLim=13 lcnt=600

Tab. 6-3: Examples for “Additional Information 1”

additonal information 2: related statement or block (instrumented)

stmt=strcpy_BSSE(buf,"12345678901234567890123456789012")!

stmt=buf[DCRTT_INDEX_CHECK(32, buf, -1, 0, 1, ptrTypePtr, DCRTTscopeGlobal, sizeof(char), 0)]=0!

stmt=*(buf+32)=0!

Tab. 6-4: Examples for “Additional Information 2”

Overview on the FAST Process and the DCRTT Tool

Issue-

ID
File FuncName

Mangled
Name

Line,
actual

Line,
original

Col
Stmt-

No
Top-
Level

FSVW Standard Defect Type Tool Primary
Tool
Sec.

Tool Report
Text

1 test_assert.c testAssert testAssert 6897 96 y Array Index Out-of-Bounds CorrMem 2 CorrMem

2 test_assert.c testAssert testAssert 47 47 y Assert failed AssertFailed 32 AssertFailed

3 test_assert.c testAssert testAssert 6917 109 y Array Index Out-of-Bounds OutOfRangeHigh 21 OutOfRangeHigh

4 test_assert.c testAssert testAssert 6879 83 y Dereference of NULL-Pointer ExcpNULLInj 12 ExcpNULLInj

5 test_assert.c testAssert testAssert 6904 100 y Dereference of NULL-Pointer ExcpNULLInj 12 ExcpNULLInj

6 test_assert.c testAssert testAssert 6929 117 y Dereference of NULL-Pointer ExcpNULLInj 12 ExcpNULLInj

7 test_assert.c testAssert testAssert 6838 54 y Array Index Out-of-Bounds OutOfRangeHigh 21 OutOfRangeHigh

8 test_assert.c testAssert testAssert 6867 75 y Dereference of NULL-Pointer ExcpNULLInj 12 ExcpNULLInj

9 test_assert.c testAssert testAssert 6867 75 y Dereference of Invalid Pointer InvalidAddr 11 InvalidAddr

10 test_assert.c testAssert testAssert 6892 92 y Dereference of NULL-Pointer ExcpNULLInj 12 ExcpNULLInj

11 test_assert.c testAssert testAssert 6917 109 y Dereference of NULL-Pointer ExcpNULLInj 12 ExcpNULLInj

Tab. 6-5: Example Anomaly Report Issued by DCRTT

Overview on the FAST Process and the DCRTT Tool

6.4 THE TEST DOCUMENT

The information in the test document can be grouped into

 general test information,

 exception information,

 coverage information, and

 information on test cases.

The contents of the document may be customised. The chapters and sections may be all included in one
document or spread over several documents, and a subset of supported documentation features may be
chosen.

A number of so-called “documentation operators” are provided each one generating the documentation
for a certain report feature. The layout can be customised and free text can be inserted in additional
sections or a section into which an operator inserts the desired results.

The document is provided in rtf-format. If required, other formats may be supported as well.

6.4.1 General Test Information

For the following topics information is provided

 Statistics and metrics

Statistics on the whole test run, summary report
Execution time statistics for host and target

Cyclomatic Complexity (CC) per function together with information on coverage.

 Status information

Anomalous termination per file and function
Completion status of a test
Block and check point information per function (coverage, exceptions) with coverage<100%
Exceptions per file and function

 Graphics

Anomalous termination
Exceptions per file and functions
Execution time on test run
Number of blocks per function for all functions

6.4.2 Resource Consumption

The following information is provided:

 Summary Malloc Information
 Malloc Events Information
 Malloc allocation Information
 Detailed Malloc Information

 Summary File Information
 File Events Information
 File open Information
 Detailed File Information

 Heap and Stack Usage (calculated from the code and measured during execution)

Overview on the FAST Process and the DCRTT Tool

6.4.3 Information on Code Anomalies

Following code anomalies detected during parsing of the source code are reported:

 Implicit record definition
 Incomplete types
 Multiple symbols
 Recursive types
 Type and variable name identical
 Wrong parameter list
 Nonsense types (types which do not make any sense)

6.4.4 Information on Run-Time Anomalies

The following information is provided:

 Test driver statement limit exceed
 Too many bytes to print per test step
 Test anomalies
 Enforced Test mode switch due to a too high number of total test steps
 Parameter initialisation takes too long

6.4.5 Anomaly Analysis

The following information is provided:

 Anomaly type vs. function, sorted
 Function and file vs. anomaly type, sorted
 Anomaly type vs. function for every anomaly type, detailed

6.4.6 Coverage

The following information is provided:

 Summary on block, checkpoint and condition coverage over all tests
 Summary on block, checkpoint and condition coverage per function
 Checkpoint coverage per function for all functions
 List on non-covered checkpoints
 Graphics on covered blocks over all functions
 Graphics on coverage showing the structure of a function and covered blocks in green, non-

covered blocks in red, blocks with exceptions in blue, and non-existing else-blocks in orange.
 Histograms on block coverage

6.4.7 Decisions and Conditions

Information on conditions is provided as summary per function (occurrences of false, true and false AND
true) and as truth table for every decision.

For every line in a truth table the number of occurrences is provided as observed during stimulation. The
observed branching ratio may be compared with the expected one. A difference will indicate a logical error
in the implemented decision.

6.4.8 Exceptions

Information on exceptions sorted by different criteria

 filename

Overview on the FAST Process and the DCRTT Tool

 exception type,

 location

 user-defined category

6.4.9 Input-Output Vectors

The contents of input- and output-parameters and their first (numerical) derivative are represented by
graphics for every test step during stimulation. Composite types are mapped onto a scalar by a metric
considering all elements of the type. The derivative is calculated by the difference between two consecutive
steps. For an input parameter the denominator is 1, for an output parameter the denominator is the
difference of the input parameter.

The intention of the 1st derivative is to support identification of areas where the output does not change
significantly or does change significantly, so that a user can decide whether the observed behaviour is
compliant with the expected behaviour. This figure is only calculated for the incremental / grid-based mode.

Changes are recorded during execution of test drivers on host and target for

 in-out-parameters before and after the call separately for host and target,

 out-parameters for expected / confirmed and observed values on host and target, and

 out-parameters between host and target for the observed values.

In case of composite types all elements are considered.

Expected / confirmed relates to the value observed during the stimulation step which is confirmed either
manually or by RQBT. Observed addresses the value actually obtained during execution of a test driver.

6.4.10 Execution Time

Figures and graphics on execution times are provided for

 the total time consumed for a test of a function, and

 the average, minimum and maximum execution time consumed by a function during execution on
the host during a stimulation step.

6.4.11 Data Range Monitoring

For every location where a value is assigned the minimum and maximum value before and after
assignment are recorded. In case of composite structures, the figures for every element are reported.

6.4.12 Test Case Visualisation

In order to provide information on the distribution of test cases over the input domain, graphics are
provided. An example is shown in Fig. 6-1. For every parameter the position of the relevant value w.r.t.
the full range is shown. In case of composite parameters, a metric is applied to represent the values of all
elements.

For integer, floating point and composite types the range is divided into several categories like low, high,
very high etc. For pointers NULL and not NULL is displayed, and for strings NULL, empty or not Null not
empty.

For enumeration types all literals should be considered to the degree possible. In case of too many literals
the range is displayed as for integer, floating point and composite types.

In addition, invalid ranges are indicated by “invalid low” and “invalid high”.

Overview on the FAST Process and the DCRTT Tool

Fig. 6-1: Example for Parameter Value Distribution

6.4.13 Test Cases and Coverage

The relationship between coverage (block, conditions) as well as enforcing exceptions and test cases are
shown as graphics and in tables:

 test case vs. block id

For every function the affected blocks are listed and displayed as a structural graphic similar to the
one in Ch. 6.4.6, but showing differential coverage.

 test case vs. exception

Test cases of a function are listed for which generation was enforced by an exception.

 test case vs. block id

the list of blocks is shown covered by the test case

 block id vs. test case

For every block of a function the test case is shown which was the first one covering this block.

 true in condition vs. test case

For every condition the test case is shown by which the condition evaluated to true the first time.

 test case vs. true in condition

For every test case the condition affected for true in a function is shown.

 false in condition vs. test case

For every condition the test case is shown by which the condition evaluated to false the first time.

 test case vs. false in condition

For every test case the condition affected for false in a function is shown

6.4.14 Code Analysis

When the option is activated, graphics are generated for

 function hierarchies

caller-callee and callee-caller

 type hierarchies

fully and filtered according to a number of pre-defined criteria.

Overview on the FAST Process and the DCRTT Tool

7. OPEN TOOL INTERFACE

DCRTT supports an open interface (DOIF, DCRTT Open tool InterFace) to other tools on the basis of the
generated test drivers. It provides a set of files which shall allow other test tools to use the information on
derived test cases or test case candidates (TC) and to execute them. Currently,

 the DOIF is implemented for Cantata and VectorCAST,

 only one tool may be attached during test execution.

The principal approach for the DOIF is shown in Fig. 7-1.

Fig. 7-1: Principal Approach for Exchange of Information via the Open Interface

DCRTT exports information as needed for re-execution of the test cases / regression testing via text-files,
batch-files and templates and imports information required to establish the environment for the external
tool and to start and control its execution.

This way a tool can be attached without any need to change DCRTT. However, for every tool to be attached
such a converter must be established because the tools require rather different representations of test
information.

The interface is established by a tool-specific converter. It consists of a set of executables, batch-files
and support files. Its main purpose is to convert the provided information on the TC (input-output vectors)
in a format suitable for the tool. However, it also provides batch-files needed for control of the link between
DCRTT and the external tool.

Converters exist for Cantata and VectorCAST. Also, DCRTT needs a converter to make the information
expressed in generic notation executable under C or C++.

The converter generates the inputs in a format understood by the external tool. Based on this information
and controlled by the associated batch-file(s) the tool executes the TC in its own environment.

The converter provides plug-in information to DCRTT by batch files, which allow DCRTT to build the
environment of the attached tool.

Overview on the FAST Process and the DCRTT Tool

The execution of test drivers by the attached tool is controlled by DCRTT. There are two cases of
execution:

1. The attached tool is immediately called from DCRTT after generation of the test drivers.

2. The attached tool is called from a batch-file generated by DCRTT during test execution, including
all functions-under-test. A user may edit this file to select certain tests for re-execution.

This batch-file only exists after completion of all tests when having activated the option for the
attached tool during test execution according to case (1).

Overview on the FAST Process and the DCRTT Tool

8. REQUIREMENTS-BASED TESTING

Currently requirements are only available as free text. Therefore, the transition from requirements to
oracles cannot be automated.

The support provided by DCRTT is based on an open interface integration of oracles into the DCRTT test
process. They are automatically inserted into the relevant functions by DCRTT by applying mapping rules.
The concept allows to manually correlate (text-based) requirements with oracles and to auto-correlate
oracles with functions. It supports propagation of the requirement status bottom-up based on provided
dependencies between requirements.

Oracles, i.e., a formalized notation, need to be provided for requirements on lowest level only, while higher
level requirements may remain in text form, if their respective contents are completely represented by
associated formalized low-level requirements.

The implementation of the oracle concept allows to demonstrate the potential of automation (and related
cost saving potential) which is possible once the low-level requirements are formalized.

8.1 THE CONCEPT

The intention of the concept is to automatically correlate requirements with functions to the degree possible
based on oracles representing formalized requirements. Use of the concept does not imply that all
requirements must be provided in a formalized form.

Oracles in DCRTT need to be provided only for requirements which directly address concepts testable on
the software itself, specifically such concepts that can be expressed in terms of function inputs and outputs.
Typically, such requirements occur on the lowest level of a hierarchy of requirements. An n:m relationship
between requirements and functions as well as between oracles and functions may exist.

Given that machine-readable information for correlation of higher-level requirements with lower-level
requirements is available, conclusions on the fulfilment of higher-level requirements can be automatically
drawn from the results of testing of lower-level requirements.

The basic elements of the concept are (Fig. 8-1)

 requirements, represented by

o a short identifier, which may be a reference and point to a requirement in a document or an
arbitrary, but unique number or word, and

o full text (optionally)

The full text is the verbose representation of a requirement. It is the representation usually found
in requirements documents today. For the automated approach this text is optional because the
automated approach can only use the correlated oracle(s) as reference. For pure text
requirements, the text is mandatory, given that for these types of requirements it is the only
source of information. Note that this full text is in no way processed by DCRTT but is rather
given for user information and reference.

 dependencies between

o several requirements, establishing a hierarchy of requirements

o a short name of a requirement and oracles

Provision of dependencies between requirements are demanded usually by standards like ECSS
between two consecutive requirement levels for requirements traceability. They may be provided
by a requirements management tool – if applied – or manually. If a requirement directly addresses
a function or a set of functions, then an oracle or a set of oracles can be derived from it and a
dependency can be established between both – fully automatically.

Overview on the FAST Process and the DCRTT Tool

 oracles consisting of

o a pre-condition and

o a post-condition

both represented by valid C code, which is automatically integrated into the test environment of a
FUT by DCRTT.

 functions to be tested

with parameters, used global variables and (possibly) a return value, and the functions affected by
requirements and oracles may be distributed over a number of files.

A requirement may depend on n other requirements.

The identifier of a requirement is correlated with an oracle or many oracles on next lower level by an 1:n
dependency, i.e. one requirement may refer to n oracles, representing multiple, not necessarily mutually
exclusive usage situations. Note that oracles may also be function-independent, e.g., if they represents
invariants over the global state which always have to be fulfilled and thus do not depend on individual
function invocations or associated function parameters or return values.

An oracle may thus apply to multiple functions, and multiple oracles may apply to one function, which
results in an m:n relationship between oracles and functions, where the functions may be distributed across
several files.

Fig. 8-1: Overview on the Concept

All relationships between the elements are considered as conjunctions, i.e., the parent element is
considered as fulfilled only if all children fulfil the respective conditions.

Pre- and post-conditions must be valid C / C++ logical expressions evaluating to a boolean value.

The correlation between identifiers of requirements, oracles, functions and files is defined by the following
syntax, called RQBT oracle syntax (all syntax definitions are given in EBNF-notation):

<short name> ‘;’ <pre-condition> ‘?’ <post-condition> ‘;’ [<function pattern> [‘,’ <file
pattern>]];

The question-mark notation can be seen as a reference to the conditional operator in C (a representation
of if-then-else expressions) in that the expression on the right side of the question-mark is only considered
when the left side evaluates to true.

The function and file patterns are optional. They may constrain the set of functions to be considered for
matching of oracles. Wild cards (*, ?) are allowed, with “*” matching any sequence of characters, and “?”
matching a single character. If a function or file pattern is missing, “*” is taken instead by default.

1 : n, conjuction

auto-correlation
requirements functions

via oracles

Requirement

Requirement

Requirement
Dependency

Short Name

Full Text 1 : n
conjunction

Oracle

Pre-Condition Post-Condition

Functions

m : n
conjunction for 1: m,
one oracle and m functions

Overview on the FAST Process and the DCRTT Tool

Correlation of an oracle with a function depends on data matching. A function or file pattern does not
necessarily imply that the oracle will be applied to the addressed set of functions. They just constrain the
possible choices out of the full set of functions of an application.

The data occurring in the pre- and post-conditions must be found as variables used in the code of the
functions to be considered. Otherwise, compilation errors would be issued, as the pre- and post-conditions
are embedded in the code context of the FUT.

In addition to the variables declared in the context of a function, a copy of an original may be referred to
as

<original>Input

which takes the value of the original seen before the call of the FUT.

Any function visible in the context of pre- and post-conditions may be used in the code of pre- and post-
conditions. For example, functions from the C library such as sqrt may be used in a post-condition.
Similarly, any data and literal known in the context may be used. Globally visible symbols will avoid syntax
errors.

The list of correlations between requirements, oracles, functions, and files may be complemented by
additional information on

 constants
which are used in oracles, but not known in context of a function, e.g., an ε used as accuracy limit
for floating point comparisons,

 replacements,
to achieve a mapping between identifiers used in oracles and their corresponding counterparts in
the code. However, it is recommended to use the same identifiers in requirements and oracles for
the code.

All this information may be provided in a set of files

Having executed all tests for the chosen set of FUT, the summary file on test results with raw data is
evaluated, and contributions from different tests / FUT to the same oracle are harmonized and printed.

If an oracle failed for at least one FUT, it is considered as being failed in total, even if in another FUT its
post-conditions was fulfilled. The results from the oracles are correlated with the respective requirements,
and finally, the status of requirements is propagated bottom-up based on the provided dependencies on
requirements.

The resulting information is provided in a number of files and reported from different perspectives, e.g.
showing the full status (successful / failed) of all oracles related to a requirement (collected over all
hierarchy levels), or limited to failed oracles and FUT only.

8.2 EXAMPLE ORACLES

Fig. 8-2 provides some examples for different types of oracles aiming to check whether

 a variable remains unchanged in the context of a function call.

 a function (e.g. abs) does really what it ought to do.

 a function always returns a valid result using an inverse function.

 the status of data is compliant with the requirement.

Overview on the FAST Process and the DCRTT Tool

Fig. 8-2: Examples for Oracles

These are the explanations related to Fig. 8-2:

 abs-function

There is an edge case for x=-231-1 for which the converted positive value cannot be represented
in signed int with 32 bits. Therefore, the original value is returned violating the requirement on the
abs-function.

 inverse function sqrt for x2

The square of a double cannot always be represented in the 64bit-representation, then yielding the
result INF as a specific binary representation of double. Taking this value as argument of sqrt will
not yield the original value x – apart of a relative deviation epsilon.

Oracle for int abs(int xAbs)
FORALL(xAbs)? ret>=0
Will fail! Why?

Oracle for Status Monitoring
status==active && mode==mode1 ? moniFlag==true
status==active && mode==mode2 ? moniFlag==true
status==active && mode==mode3 ? moniFlag==false

Oracle for inverse function of f(xSq)=xSq
2

FORALL(xSq)? (sqrt(ret)-fabs(xSq))<eps
Wrong! Why? Check on relative deviation needed!

Two checks needed due to division by xSq
Even then check will fail, when and why?

Oracle for unchanged check
p1==c? pInput==p

Overview on the FAST Process and the DCRTT Tool

8.3 INTERFACES TO DCRTT

Fig. 8-3 shows the interfaces between the RQBT concept and the current version of DCRTT. Starting with
the requirements – formalised in terms of oracles – the additional code is included in the test environment,
which then generates test cases or finds counter examples instead of pure test vectors.

The counter examples may be found due to stimuli generation over the given input domain, only limited
by the discrete set of stimuli, also this number may be huge, but may not hit the test vector of a counter
example.

Fig. 8-3: RQBT Interfaces to DCRTT

Overview on the FAST Process and the DCRTT Tool

9. EXPLORING AN INTEGRATED SOFTWARE

In case of an integrated software the full set of functions of the software-under-test is executed like under
operational conditions, but the source code is instrumented as used for unit testing. Therefore, the same
features as during unit testing can be monitored and evaluated.

As several top-level functions like task bodies may exist, DCRTT generates an environment, called “entry-
point-function”, for calling all such functions according to several execution policies which may be

 the sequential call of a set of top-level functions in a sequence defined by the user,

 the execution of tasks based on a scheduling scheme defined by the user,

 a combination of both, where the sequential calls are executed at the end when the task execution
has completed.

Task execution is non-pre-emptive, but scheduling could follow the intended scheme of the application.
Periodic, synchronous, and sporadic tasks as well as major and minor cycles are supported based on
information available in the source code.

If required, stimulation of the integrated system can be performed at two interfaces:

 the command interface like for telecommands, and

 the interface to external data.

For automated stimulation of these interfaces, specifications are required. Based on these specifications,
generators can be established using DCRTT features which already exist for stimulation during unit testing.

For injection of telecommands (TC) a generator already exists which takes an XML specification and
provides functions for stimulation with TC of random contents, either valid or invalid.

For stimulation of the data interface information of the data types is required from a user and – possibly –
also on protocols.

Overview on the FAST Process and the DCRTT Tool

10. USING WRAPPER FUNCTIONS

DCRTT supports generation of wrapper functions for application software. By a wrapper function an
application function (original function) is embedded into an automatically generated function, with the intent
to avoid fault propagation. DCRTT currently supports the generation of code for the following principal
options:

 checking the return value for any scalar types and pointers

 catching exceptions

 managing reporting of errors identified by checks

 interrupting the control flow in case of an error to return to a function on a higher level of the call
hierarchy.

A detailed list on the options is provided in Tab. 6 below.

In case of scalar types, the check is based on a comparison of the return value with a user-defined
expression (valid in C or C++). In case of a pointer either a check on NULL is performed or on a valid
address (regarding the memory area of the platform). All options of Tab. 6 apply to both kind of checks.

To provide expressions for the check of a return value following options are supported:

 a type-specific expression as defined by a user, to be applied to all relevant functions with the same
return type,

 expressions manually defined for dedicated functions, or

 a default expression, e.g. “<0”, valid for all functions, except those for which specific expressions
are defined.

The original function is renamed, and the wrapper function keeps the original name. This implies that all
other DCRTT features like fault injection are performed in the context of the wrapper function, so that, e.g.,
an exception caused by an injected valid input, can be handled by the wrapper.

In addition,

 execution time of the original function can be measured,

 exceeding of a given deadline can be monitored.

Minimum, average and maximum execution time are reported.

If a deadline is exceeded, this event is handled and reported like an error for the return value.

A user may insert additional code into the wrapper at following locations (see options for bits 11, 12 and
13):

 before the call of the original function,

 after the call of the original function, and

 in the error handling part.

If an error occurred for the return value check, isErrRet is set to 1. If a deadline was exceeded isErrTime
is set to 1. Both variables are set to 0 before a call.

Overview on the FAST Process and the DCRTT Tool

Following options exist for generation of a wrapper body:

Option

only call of associated function

establish exception handler around a call

check return code

if return check fails

raise exception

print message to stdout and stderr

record message to file

store return value on stack

if an exception occurred pass the exception upward to the next upper function

call a user-provided C-function for error handling with a DCRTT-define standard interface.

disable exception reporting per level if exceptions are passed upward

enable monitoring of execution time

enable deadline check

insert user code before function call

insert user code after function call

insert user code in the error handling part

Tab. 6: Options for Bodies of Wrapper Functions

Errors which are stored on a stack can be accessed by two DCRTT functions, which either return the
next message on the stack or print all recorded errors which are on the stack.

Overview on the FAST Process and the DCRTT Tool

11. PLATFORMS

11.1 LANGUAGES

DCRTT has been tested for source code written in C99, C11 and C++ (2011, support for 2020 is under
development).

For C++, use of templates requires specific support for the templates used. A small subset of the STL is
already supported. Development activities for the removal of this restriction are currently under way.

11.2 OPERATING SYSTEMS

DCRTT runs on Windows® XP, 7 and 10 as host platform.

For execution of the generated test drivers on target systems support is given for RTMES, VxWorks®,
Linux and RODOS.

11.3 COMPILER

Currently, the gcc is supported from version 3 to 8 on host and target.

On request, Visual C++ may be supported.

For remote test execution on the target system the compiler and the target link can be configured.

