
Capabilities of the FAST Process and the DCRTT Tool

© Copyright Dr. Rainer Gerlich System and Software Engineering, GSSE, 2021-2022 Seite 1 von 7

FAST and DCRTT

the extended test automation process and tool for C and C++

to save effort in test preparation, execution and evaluation.

Get coverage figures, information on anomalies and much more

without manual intervention

just by providing (compilable) source code.

Put your software under stress instead of yourself.

Capabilities of the FAST Test Process and the
DCRTT Tool

Capabilities of the FAST Process and the DCRTT Tool

© Copyright Dr. Rainer Gerlich System and Software Engineering, GSSE, 2021 - 2022

Take benefit from full test automation:

 let an automaton do the job of from test data generation to reporting including
instrumentation,

 continuously apply the test cycle right from beginning of coding and improve your
software by feedback,

 save time and costs by automation, but not by compromising the test goals,

 easily inject large numbers of diverse test stimuli into your software,

 apply random and grid-based test data generation,

 apply fault injection and robustness testing,

 perform unit testing and testing of the integrated software system,

 automatically embed functions into wrappers for monitoring and exception handling
during testing and at run-time.

The FAST process (Flow-optimised Automated, Source-code-based Test) together with the tool DCRTT
(Dynamic Random/Robustness Testing Tool) allow you to start the test process by provision of source
code, and to get a variety of reports at the end without any further manual intervention. The provided
source code only needs to be compilable on host and target platform.

automated

manual

config
&

provide
stop

Capabilities of the FAST Process and the DCRTT Tool

© Copyright Dr. Rainer Gerlich System and Software Engineering, GSSE, 2021-2022 Seite 3 von 7

Features of the FAST Test Process and DCRTT

Test Cycle
1. Provide the source code.
2. Start the automated process (with execution on host or a target).
3. Wait for the automatically generated reports.

Languages C / C++

Lifecycle Support

function testing

integration testing

requirements-based testing

regression testing

robustness testing

tasking simulation, non-pre-emptive

early/continuous testing over LC
1

data mutation
2

Test data generation automated

black-box
random-based

grid-based

gray-box genetic (research topic)

white-box
constraint-based

source code heuristics

Script generation automated for testing of the full set of functions included in the provided source code

Test environment

automated for testing on top-level / execution of threads (non-pre-emptive)3 4

missing symbols automatically added

function, stubs
data generation for return and out-parameters
nominal/non-nominal range

global data
nominal/non-nominal range
overriding of const if desired for fault injection

type ranges automatic identification of constraints on nominal
range

Test Execution

automated, based on massive stimulation host

regression testing based on automatically generated test drivers,
remote execution on target

host

target

auto-resizing of data objects to reduce false positives unconstrained arrays

pointers

for C++
constructors / destructors

constructor calls in random sequences, random number of
parameters (if variable) and with random data

Automated generation of wrapper-functions for mitigation (return value check, monitoring of
execution time, function termination if deadline is exceed, asynchronous interruption of control
flow, a number of reporting options)

Support of file management on host: if target only supports one physical file stream (e.g. stdout,
UART), tunnelling of separate logical files through single channel and re-separation on host

Test modes

test data in nominal range

test data in nominal and non-nominal range (fault injection
5)

fault injection on return and out-parameters of called functions5 (esp. malloc, …)

Report generation Automated, based on test evaluation

csv

rtf-document tables

 graphics

xml on request

other formats on request

1 due to automation of test organisation and stubbing, tests can be executed as soon as source code is compilable

2 return value, scalar output, condition value
3 customer-specific notations may be converted into the DCRTT format
4 stimulation of external system interfaces
5 for functions-under-test: parameters and used global data; for (non-static) functions in general: return values and output

parameters

Capabilities of the FAST Process and the DCRTT Tool

© Copyright Dr. Rainer Gerlich System and Software Engineering, GSSE, 2021-2022 Seite 4 von 7

Test Evaluation

Coverage

block
6

decision, condition, MC/DC

differential coverage
7

test input vector vs. coverage
8

Fault detection

assertions

concurrency
9

exceptions

file handling faults

file-descriptor leakage

index out-of-range
10

invalid addresses / pointers
11

malloc-memory corruption

malloc-memory leakage

NULL-pointer dereference

numerics (float)
12

recursion
13

Verification

test input vector vs. test output vector, manually
14

numerical differences / float, host vs. target, automated
15

Oracles with pre- and post-condition, automated
16

Resource consumption

measurement of execution time host and target17

heap and stack usage
18

malloc, heap and stack usage
19

file usage

Reports

test data distribution

data ranges

anomaly reports (csv)

tables

graphics

compilation, link and execution times

test log-files

result comparison host-target
20

sensitivity analysis (1st derivative)
21

6 full block coverage is equivalent to full statement coverage. Intermediate percentages need to be converted.
7 identification of coverage provided per generated input test vector
8 identification of input vector(s) providing the coverage
9 scheduling issues, non-pre-emptive, checks on semaphores
10 for explicit index expressions and for dedicated C-library functions (memcpy, memset, strcpy, …)
11 For pointers in source code and provided to dedicated C-library functions (memcpy, memset, strcpy, …)
12 detection of inf, NaN and overflow conditions
13 call-stack analysis during execution, limit-based
14 manual comparison of values recorded in test-driver code
15 automated comparison of test output vectors
16 requirements-based testing, oracles derived from suitable requirements
17 depending on I/O support on the target platform
18 by static analysis
19 by measurement
20 comparison of exceptions and differences in numerical results (floating-point arithmetics)
21 metric “change of output vs. previous vs. change of input” for every parameter, graphics, grid-based data generation only

Capabilities of the FAST Process and the DCRTT Tool

© Copyright Dr. Rainer Gerlich System and Software Engineering, GSSE, 2021-2022 Seite 5 von 7

Interfaces

User

configuration of text execution

definition of range constraints

definition of initialisation calls

Tools
Cantata conversion of test drivers to tool notation,

execution of test drivers in tool environment VectorCAST

General Information

Supplier

Dr. Rainer Gerlich System and Software Engineering, GSSE
Auf dem Ruhbuehl 181, 88090 Immenstaad, Germany
Phone: +49 7545 911258 Mobile: +49 171 8020659
E-Mail: contact@gsse.biz

Customer Service

Tool Customizing

Training/Coaching

User Support
German

English

Host OS Windows

Target-OS

bare machine

Linux

Rodos

RTEMS used in context of 4.11

VxWorks used in context of 5.3

Compiler
gcc up to version 8, also cross-compiler

VC++ on request

Installation desktop / stand-alone

Licensing commercial / service-based

Robustness Testing

A major feature of DCRTT is the capability for robustness testing. The goal is to expose the software-under-test to
non-nominal conditions and to evaluate whether it can protect against them.

In case of safety issues the software shall tolerate these invalid conditions and shall not show unexpected
behaviour, e.g. in case of memory access violation, which may cause a crash or degradation of operation.

In case of security issues the concern is, e.g. that unprotected access of memory may allow penetration by which
unauthorized control over a system or unauthorized access of confidential data may be possible

Standards requesting robustness testing for safety issues are (non-exhaustive list)

 ISO 26262 - Road vehicles – Functional safety

 DO178 - Software Considerations in Airborne Systems and Equipment Certification

and for security issues (non-exhaustive list):

 ISA/IEC 62443-4-1 - Security for industrial automation and control systems – Part 4-1: Secure product
development lifecycle requirements

 ISO/SAE 21434 - Road vehicles — Cybersecurity engineering

 ISO 27001 - Information technology – Security techniques – Information security management systems –
Requirements

 ISO 22301 - Security and resilience – Business continuity management systems – Requirements

Capabilities of the FAST Process and the DCRTT Tool

© Copyright Dr. Rainer Gerlich System and Software Engineering, GSSE, 2021-2022 Seite 6 von 7

Results from a Space Project

The following tables provide information on the software-under-test and the achieved coverage results. The space
application contains 3400+ functions of criticality level Cat. B and Cat. C (Tab. 1) according to the ECSS norms (Cat.
A is the highest criticality category).

Tab. 1: Source Code Statistics of a Space Project

Test coverage is one of the criteria required by software standards for assessment of software quality. It provides
feedback about the extent to which the source code lines were reached and executed. Execution of every source
code line is a necessary – although not sufficient – condition for detecting faulty behaviour.

The more often a line is executed under different conditions while behaving as expected, the more confidence in the
proper function of the software is warranted. Due to automated test data generation, DCRTT can expose the software
to a huge number of test vectors implying that a line is executed more than once under different conditions, while
standards usually require only one execution per line, due to the limitations of manual test data preparation. For Cat.
C software the ECSS require 80% statement coverage (with an option for adaptation by negotiation with the
customer).

Figures obtained from 4 different configurations with random or random/grid-based test data generation are shown
in Tab. 2:

 3 configurations for function (unit) testing with different stimulation modes (configurations 1-3), and

 1 configuration where the integrated system was stimulated by its external interfaces (Configuration 4).

Tab. 2: Test Configurations

In the latter case (Configuration 4) telecommands and external data were injected. The telecommands were
generated according to a pre-existing XML-specification. For the data interface no specification on the nominal data
ranges and valid data sequences did exist. Therefore, most of the injected data were rejected, which resulted in a
rather low coverage. However, the merges with function tests show that a combination of different test configurations
can result in a reasonably high coverage.

Capabilities of the FAST Process and the DCRTT Tool

© Copyright Dr. Rainer Gerlich System and Software Engineering, GSSE, 2021-2022 Seite 7 von 7

The combinations of the different test runs are provided in Tab. 3. They show

 that different test configurations provide complementary coverage, and

 that higher total coverage figures can be achieved by running different test configurations.

The results were mainly obtained by black-box testing as well as random- and grid-based test data generation. Based
on the maximum coverage which is obtained by merging the coverage figures from all 4 test runs, the constraint-
based test data generation could be applied to the non-covered blocks and conditions.

The sequence – random-/grid-based first, then constraint-based – is recommended because constraint-based
generation is rather time-consuming compared to random/grid-based generation.

For the execution of all configurations no manual effort is required except for definition / modification of the test
configuration and extraction of the figures from the report, while rather high coverage figures can be achieved at little
effort – compared to the effort which would have to be spent for manual testing.

Apart from the coverage figures, a lot of other information, e.g., on anomalies, is provided in addition – with added
effort.

The number of test steps applies to massive stimulation in the first step. The number of test drivers (test case
candidates) is much smaller. Depending on the complexity of the software the observed average number of test
drivers per function is in the range of 2 – 10.

Tab. 3: Coverage Figures for Test Configurations and Their Combinations

Tab. 4: Statistics of an OSS Package with Data Range Checks

Tab. 4 provides figures of an OSS package for which the data range and index checks were activated to demonstrate
the high number of check points which were inserted. In addition to recording of data ranges, NaN and Inf events are
recorded.

In case of an index-out-of-range event the index may be set to a valid value (default 0) or may be left unmodified by
the instrumentation code. If such an event occurs for an dynamically allocated array or a pointer, the size of the array
may be extended accordingly in case of unit testing, and the observed maximum will be reported.

