
Performance and Robustness Engineering:

From A Conflict Towards Fair Coexistence

Rainer Gerlich, Ralf Gerlich

BSSE System and Software Engineering, Auf dem Ruhbuehl 181, 88090 Immenstaad,
Germany, Tel. +49 (7545) 91.12.58, Fax: +49 (7545) 91.12.40, E-Mail: gerlich@t-online.de,
URL: http://home.t-online.de/home/gerlich

Abstract. Performance engineering aims to meet a system’s resource constraints which implies to
make the code as lean as possible. Robustness engineering has to support fault identification and
fault recovery. To make a system sufficiently robust, code needs to be added. Hence, robustness
engineering is in conflict with a system’s performance. This paper will discuss this potential
conflict in the context of operating systems. Operating systems are significantly impacting
performance and robustness properties according to what they are providing or do not support.
Current practices and related impacts are identified and recommendations are given how this
conflict can be minimised.

Keywords: Performance engineering, robustness engineering, operating systems, shared
address space, separate address space, pre-emptive scheduling, cooperative
scheduling

Preface

This paper represents a revised version of a contribution to the "2. Workshop on Performance
Engineering" [PE2001]. It considers new experience (dated August 2001) in this subject since
the submission of the paper by January 2001, and discussions we had, especially during the
workshop.

We started witth the sub-title "A Potential Conflict?" and added a question mark at the end.
When finalising the paper we deleted the question mark, because then it was clear for us it is a
conflict. At the time of the presentation we stated it is not a conflict, because both topics have
to be considered well if we want to get reliable and performant software. This is our opinion
now.

By the discussions we had and the experience we made it is our beliefe that robustness issues
are still underestimated and we would like to take this opportunity to point out the importance
of robustness enginering. We have experienced that multiple effort is required when software
is used which does not check for valid conditions - either due to dormant bugs and fault
propagation which could not be identified due to missing checks - or due to user errors which
remain undetected.

We hope that by this paper we can convince software engineers of the importance of these
topics and can give a guideline how both aspects can be sufficiently considered.

Finally, we would like to describe the current situation according to what we have seen so far
by a rather provocative statement which however bears a lot of truth in it: it seems that

craftsmen are better trained for quality issues and they are getting more pressure to care about
it than software engineers during their education. And we do hope that this will change in
future.

An explanation for this situation is: nearly no tools exist which make (poor) quality visible.
Hence, nobody can really conclude on the quality of software when it is delivered. However,
we suppose that lack of such tools is related to lack of user demand. Consequently, this causes
a deadlock. We did a first step to escape from this situation by an approach we presented on
the first performance workshop in 2000 [PE2000]

1 Introduction

Performance engineering is essential for successful completion of a software project
[Scholz/Schmietendorf 2000]. To meet a customer’s functional and performance requirements
is a pre-condition for a system’s final acceptance. To succeed at the end evaluation of
performance is continuoulsly needed during development. This issue guides an engineer to
continuously care about performance matters.

A system’s robustness can only be evaluated by fault injection during the development phase1

or by presence of faults during the operational phase. While poor performance is already
recognised when the system is in use under real conditions, poor robustness is not of such
evidence. As far as no fault occurs robustness cannot be measured. Consequently, robustness
can only be demonstrated if a lot more is done than usually is required for normal operations.
In fact, due to the increased effort robustness engineering is limited today to high integrity
systems as needed in the domain of aerospace, transportation and nuclear applications.

Currently, the importance of performance engineering is more deeply recognized, after it was
underestimated for a long time in the past ([Scholz/Schmietendorf 2000] and the references
listed there). While for performance engineering the situation is now continuously improving,
it is not for robustness engineering. Higher priority is still assigned to performance than to
robustness issues in case of non-high-integrity systems, presumably because the impacts are
less evident under normal operational conditions. Faults only occur sporadically, therefore
their impacts remain unknown if the system is not stimulated by fault injection or stress
testing.

But even if such testing techniques are applied a certain risk remains that a fault is not
detected. Then it is important to limit its impact when it occurs, e.g. by prevention or
limitation of fault propagation.

Performance and robustness issues may significantly be constrained or enhanced by the
capabilities of an operating system (OS). We will discuss below that it is of extreme
importance for the overall properties of a software system which capabilities an OS supports
and how it tries to solve the conflict between performance and robustness. For instance an OS
can optimise its own peformance to the disadvantage of the overall system performance or
robustness.

Chapter 2 classifies operating systems according to their performance and robustness
properties and describes the overall impact.

1 Bugs which are present during software testing and which can be identified are as helpul as intentionally
injected faults

Chapter 3 gives recommendations on how performance and robustness issues can be
harmonised. Finally, chapter 4 makes conclusions on the previous discussion and the current
status of performance and robustness engineering.

2. The Impact by Operating Systems

As the functions of an operating system are frequently called by all application software they
need to perform well. This leads to an approach, e.g. in case of VxWorks [VxWorks] and
Linux RT [Linux RT]), which does not prevent fault propagation due to use of a shared
address space or omittance of error checks2.

In order to decrease the criticality of fault propagation if an OS does not sufficiently support
robustness issues, checks need to be added by the application which in fact make the overall
performance worse than in the case when the OS provides such checks, apart from the fact
that more development effort is needed.

The following Table 1 lists the essential characteristics of a number of OS regarding
performance and robustness.

The following classification criteria are applied:

- memory organisation

shared or separate address space

- scheduling

cooperative or pre-emptive

- basic error checking

check on invalid addresses, address verification

The next sections provide detailed information on the classification criteria and the observed
consequences for the listed operating systems.

2.1 The Classification Criteria

The selected classification criteria are described by the following sections regarding their
impact on performance and robustness.

2.1.1 Memory Organsiation

Two principal organisation schemes are analysed: shared and separate address space.

Regarding performance a shared address space minimises the data access time. Data can
directly be accessed by each application, no messages need to be exchanged to access data of
another application as it is required in case of a separate address space.

However, from a robustness point of view sharing of the same address space is an extreme
disadvantage. A fault in an application can easily corrupt memory of another application or of

2 This list is non-exhaustive. The list only includes such OS which have been used in practice for a number of
projects. The fact that such problems occured for the listed OS neither does imply that such OS are worse than
others nor that other OS not listed here are more robust or performant.

the kernel - which is the worst case, but happens frequently. In latter case the complete system
may halt or crash.

It was observed that address violations inside an application, e.g. by invalid pointers or indices
of arrays, will cause a system crash at a high probability in case of a shared address space.
Unfortunately, such violations cannot be detected by C compilers at compile time. Moreover,
due to the system crash no information is available indicating the reason of the crash.
Therefore additional tests must be performed to get an idea on what caused the crash. This
significantly increases the development effort.

Additional means for pre-mortem tracking must be added to get a chance for fault
identification. If such a fault occurs only sporadically, there is no chance at all for
identification. Then the engineer has to wait until the fault can be reproduced, he needs to
identify the error condition which also requires a lot of effort, or he needs to find the bug by
analysis.

Such sporadical faults are much more probable on systems with a shared address space
because then all the memory can be accessed, irrespectively whether it is a code and data area
or unused. In case of an address space limited to the code and data area of a program
uninitialized or malformed pointers access critical locations or illegal addresses at a higher
probability. Hence, the chance is higher to fix such bugs. If only a small portion of the
available memory is used, then most address errors will lie outside the critical area, so that the
chance to detect them is lower. Consequently, a low ratio between used and unused memory
increases the probability of sporadic faults occuring after delivery of the software. Of course,
the probability to fix them is increased if checks are added, and this is matter of robustness
engineering.

In our projects the effort was increased by a factor of 2 .. 5. In fact, more time was needed to
get software running in a shared address space which was already tested for a separate address
space. E.g. when porting software from Un*x to VxWorks the effort for testing of the specific
software related to VxWorks interfaces was much higher than the effort needed to test the
complete software on Un*x.

To summarize: From a performance point of view a shared address space would be the best
choice. Regarding robustness a separate address space would be preferable. The possible fault
propagation in case of a shared address space has a dramatic negative impact on a system’s
robustness and development effort. In worst case no recovery from a crash is possible by the
system itself, while it is in case of a separate address space 3.

2.1.2 Scheduling

Cooperative and pre-emptive scheduling are the schemes most frequently supported.

Cooperative scheduling means that an application only gets control of the processor when the
active application releases it. This makes response times indeterministic. In worst case, an
application can block the whole system for ever. Then rebooting is the only possibility to
recover from such a situation. From this point of view cooperative scheduling brings in
negative aspects on performance and robustness. However, it also has some positive impacts
on robustness: the scheduling of applications is much simpler and bears less risks.

3 provided that the fault does not occur in the system’s kernel

Pre-emptive scheduling allows to react immediately on a certain event. A supervisor can
always take the control on the system even if an application program hangs. These are the
positive aspects regarding performance and robustness.

The higher complexity introduced by pre-emptive scheduling impacts the robustness from a
principal point of view. More development and testing effort and more sophisticated
algorithms are needed, especially in the area of prevention and resulution of conflicts resulting
from several tasks accessing the same resource.

In case of cooperative scheduling no recovery from blocking is possible, while it is in case of
pre-emptive scheduling 3.

2.1.3 Basic Error Checking / Address Verification

The meaning of “basic error checking” is limited here to “address verification”. All OS - as
known so far - do not support more than such checks. The impact on performance is limited as
the checks are mostly done by hardware which raises exceptions in case of a wrong address.
Also, the checks are limited to whether the address is in the allowed address space or not.
Hence, the checks do not imply detailed range checks. However, in case of uninitialised
indices or pointers the resulting address is - at high probability - not part of the application’s
address space and an exception is raised by which the fault can be identified. Such checks are
only possible in case of a separate address space.

An easy way to check proper initialisation of a pointer would be to initialise it by 0 (NULL).
Some OS or hardware check on NULL pointers, so that non-initialised pointers which are out-
of-range of the valid address space can be identified this way. If there is no such support, then
it is hard to detect such bugs4.

Basic address verification has nearly no impact on performance because the checks are usually
performed by hardware, while the robustness is increased due to the higher possibility for fault
identification, especially during development. It is our experience that the probability to detect
an adressing bug is higher the smaller the allowed address space of the application is.

Having tested on a VxWorks platform with 128 MB we ported our software to a 16 MB
platform and immediately observed a crash due to an address error. The explanation is: in case
of a smaller physical address space hardware may detect the illegal address, and the
probability to corrupt a program's code or data is much smaller when a lot of address space is
not used.

4 Although tools exist which search for non-initialised pointers it is not always possible to identify such bugs by
source code analysis. E.g. a number of irrelevant warnings may make the whole report unreadable so that it is
difficult to find the serious messages.

2.1.4 Summary on Evaluation Criteria

Table 1 summarises the results of the previous discussion.

Feature Type P R Performance Robustness

Address Space
shared + -

more performant data
access

fault propagation

non-shared - +
less performant data
access

no fault propagation by data
access violations

Scheduling
pre-emptive + -

faster reaction on
events

higher complexity of code

non-pre-emptive - -
potentially slower
reaction on events

danger of blocking

Error Checking
implemented - +

additional checks take
time

additional checks allow to
detect, identify and remove
faults

not / poorly
implemented + -

no overhead by checks faults may not be detected
and may propagate, high risk
for dormant faults

Table 1: The Impact of the Classification Criteria on Performance (P) and Robustness (R)

2.2 Observations

A number of OS have been used or analysed in the past which represent a set of combinations
of above classification criteria. The impacts on performance and robustness are discussed by
the following sections. Table 2 summarises our observations.

2.2.1 VxWorks

VxWorks is a real-time operating system with the following characteristics: shared address
space, pre-emptive scheduling, no (support of) address verification.

From a principal point of view the combination of “shared address space” and “pre-emptive
scheduling” is the absolute worst case regarding robustness, especially from a developer’s
point of view.

Moreover, no range checks are performed or supported, neither for the OS functions nor the
user’s functions although they are urgently needed due to high negative impacts on robustness
by the chosen memory organisation and scheduling mode.

In total, this leads to big instabilities during the development phase due to possible
propagation of application errors into the OS kernel or inside the OS kernel in case of
overflow of OS buffers. Nevertheless, it is possible to provide a robust and stable application
on top of VxWorks, but to the expense of increased development effort and additional
provisions made by the application to avoid fault propagation.

From a performance point of view VxWorks does not take the full advantage of pre-emption
because most actions are related to the system’s clock period (system tick) which is usually
1/60 s and asynchronous features are not fully supported like for asynchronous BSD sockets.
In fact, time progresses only in units of the system tick unless a high-resolution timer is
available and the user takes care about it himself.

Also, the advantage of a shared address space, the direct access of data, causes overhead on
data access or the system’s data organisation. As no direct comparison is availabe
(implementation of the same application for shared and separate address space while the other
conditions remain the same) a direct conclusion is not possible on whether a shared address
space gives a real benefit for performance or not.

The overhead we see is related to organisation of data of process instances which share the
same data names. Following solutions are used in practice to cope with that problem:

- arrays are needed to keep the data independent of each other

but access of an array is less efficient than of a non-indexed data,

the data structures become more complex, this increases development effort and potentially
decreases robustness

- overloading of data names is needed

which requires temporary storage of such data in the task frame of each process instance

this causes an overhead because for each task (thread) switch, such data must be retrieved and
restored

- due to pre-emption synchronisation is needed for data shared by tasks which probably
requires execution of much more instructions than can be saved by direct data access.

In case of a separate address space such measures are not needed.

Also, in most cases the direct access of data as means of intra-processor5 communication is
not applied, because instead message exchange is used for reasons of process synchronisation.

However, when interfacing with I/O devices the shared address space is of advantage because
no context switches are needed when an application needs to read data from or write to a
peripheral device.

A positive feature of VxWorks compared to other OS like Un*x-based systems is its rather
small kernel size, a criterion which is out of scope for this discussion, however.

Provided that bugs which may cause corruption of memory have been identified during
development by additional measures of the project, and no overload situation occurs by which
OS buffers can overflow, VxWorks will run rather stable.

An overhead of about 200 .. 500 % was observed compared to Un*x OS to get rid of the most
dangerous bugs. It is doubtful if the shared address space really helps to increase performance
due to above mentioned organisational overhead. On the other side, the architectural concept
of the OS significantly compromises a system’s robustness.

5 “intra-processor” communication means local communication on the same processor, while “inter-processor”
communication covers communication between processes residing on different processors

OS Experience Memory
Organisation

Scheduling Error Checking Biggest Impact Comments

VxWorks practice kernel and
application share
the same address
space

priority-based
preemptive

no boundary-
checks,
no check on valid
addresses

crash of the complete system,

potential corruption of file system and
damage of peripherals

may lead to a highly instable system if no
additional means are added by the application,

development effort is rather high due to
insufficient means for fault prevention and
identification,

no post-mortem dump possible a priori

Linux practice separate address
space for kernel
and application

preemptive
(time slices)

address checks, in
most cases
identification of
out-of-range
addresses

only the faulty application crashes kernel survives a crash of the application
post-mortem dump possible
system can fully recover from the fault
no impact on other applications

Solaris practice same as for
Linux

same as for
Linux

same as for Linux same as for Linux same as for Linux

Linux RT analysis kernel and time-
critical tasks
share the same
address space

priority-based
preemptive

no checking of
boundaries,
protected null-page

same as for VxWorks, if a time-critical
application fails

unknown

but possibly similar to VxWorks

Win 3.11 practice separate address
space for kernel
and application

cooperative address checks,
boundary checks

crash of the complete system due to
potential corruption of other address
space,
blocking of system operations possible

corruption of file system possible

no post-mortem dump possible, may lead to an
highly instable system, memory protection may
be overridden

Win 95

Win 98

practice

analysis

same as for Win
3.11

preemptive address checks,
boundary checks

same as for Win 3.11 same as for Win 3.11
corruption of file system encountered in case of
Win95, user data were lost, OS re-installation
was required

Mac OS 9 practice kernel and
application share
the same address
space

cooperative no check on valid
addresses

same as for Win 3.11 high development overhead as for VxWorks
corruption of file system encountered

Table 2: OS Characteristics

2.2.2 Linux

Linux is a Unix-based system supporting a separate address space, basic address checking and
pre-emptive scheduling.

Pre-emption is mainly based on time slices, therefore its response times may be larger than for
VxWorks which applies priority-based pre-emptive scheduling. However, handlers for
asynchronous inputs are supported which allow a faster response time than in case of
VxWorks which does not support this feature6. Time resolution is determined by the available
timer, there is no need for the user to spend extra efforts on getting the highest possible time
resolution.

The separate address space requires message exchange for intra-processor communication.
But - as mentioned above - this makes no principal difference for an OS which is based on
shared address space because for synchronisation purposes message exchange is needed
(used) in any case. Shared memory can be introduced in Linux applications, but then
synchronisation is required as for shared address space due to pre-emption.Access of I/O
devices is managed by the kernel and context switches are required. This is a disadvantage
compared with a shared address space.

However, the separate address space brings in a higher degree of robustness and suppresses
fault propagation by corruption of data or code of foreign processes. Especially, in case of a
fault in an application, the OS kernel and the other processes are not affected. Hence, the
system can autonomously recover from such a fault, even from non-anticipated software
faults3. This is a significant advantage.

2.2.3 Solaris

Solaris is a Unix-based system and all the considerations are valid as given for Linux above.
In practice, no signficant differences were observed regarding the points of discussion.

2.2.4 Linux RT

Linux RT ([Linux RT]) (and other real-time derivatives of Linux) takes an ambivalent
approach. As Unix-based system it supports a separate address space but it introduces a shared
address space for access of peripherals. This way it inherits the advantages of direct access of
peripherals regarding performance, but it also inherits the disadvantages regarding robustness.

Linux RT allows application code to share the same address space with the OS kernel while
processes with separate address space are also supported.

If the application code which shares the kernel’s address space is well tested (as good as the
kernel itself) there should be no (big) impact on robustness. From this point of view the
conceptual mix fairly considers the needs of performance and robustness. Consequently, the
size of code sharing the address space of the kernel should be as small as possible, and all
functionality not dealing directly with I/O access should be moved to processes executed in an
address space separate from the kernel’s one.

6 This observation was made for version 5.3 of VxWorks

2.2.5 MS-Windows

The different versions of MS-Windows represent different conceptual approaches. Regarding
scheduling all schemes are used starting with cooperative scheduling for Win 3.11, supporting
pre-emptive scheduling for Windows NT and ending with a mixed approach with cooperative
and pre-emptive scheduling for Windows 95/2000.

In case of Win3.11 the system can be blocked due to purely cooperative scheduling. In some
cases it is possible to cancel a blocking task, in most cases it is not. Blocking also can occur if
a modal input box of the user interface is hidden (for what ever reason) and there is no
possibility to access the desktop to get it into foreground.

Applications have their own separate address space, but it is possible that application faults
can propagate into the kernel from where they seriously can corrupt memory or the file
system. For Windows 95 a number of corruptions of the hard disk were encountered which
caused loss of user data and required re-installation of the OS.

2.2.6 Mac OS

Up to Mac OS 9 a shared address space and cooperative scheduling is supported. OS X will
support a Unix-like concept but as it is not officially available, there is no experience so far.

Mac OS 9 gets all the disadvantages of a shared address space and cooperative scheduling,
hence it is rather instable and may block. As for VxWorks the development effort is very
seriously impacted and a significant cost and schedule overhead must be taken into account.

Due to use of cooperative scheduling no synchronisation of data access is needed, message
exchange as known from VxWorks and Un*x is not supported. This leads to exchange of
pointers instead of the data and increases the performance due to a very efficient data
exchange/access mechanism. However, as Apple does not guarantee a shared address space in
a mid-long-term perspective (possibly, Mac OS X will no longer support it), developers which
want to remain compatible with future Mac OS versions will avoid direct data access or they
have to isolate this access method. Hence, this potential benefit does not become a real benefit
under maintenance considerations.

We have encountered a number of situations where use of an OS function introduced a system
crash, and we had to spend e.g. effort of one week for several cases to identify it is not a fault
in our application. There is a high risk, that use of an OS function may lead to a problem,
possibly due to dormant bugs. Also, we had a number of problems due to misleading
documentation, by which we gave wrong inputs and missing checks on such wrong inputs.

3. Classification of Concepts and Recommendations

As can be seen by the facts listed in chapter 2 performance and robustness are really in
conflict with each other. Higher performance may compromise robustness and by adding
means to achieve higher robustness performance is suffering. So the question is: What is the
optimum conceptual mix which meets best the performance and robustness issues?

Robustness is an essential property which should not be compromised in any case. This is also
true for performance, of course. The simplest solution to solve this conflict is to use more
efficient hardware. However, this only can or will be a case-by-case solution, not a principal
one.

10

For better understanding of the problem, section 3.1 will summarise and classify the
observations and remarks of chapter 2. Section 3.2 gives general recommendations.

3.1 Classification of the Concepts

A classification of the concepts as implemented by the investigated OS is done according to
the following criteria:

- no overall performance benefit

such concepts can be excluded from the final discussion

- benefit either for performance or robustness

such concepts bear a potential conflict regarding optimisation of performance and
robustness

Unfortunately, a concept is still missing which can optimise both, performance and
robustness, without any compromise.

3.1.1 Concepts With No Real Performance Benefit

This is a category of concepts which intend to increase performance but in fact end up with
less performance compared with other approaches which look less performant at the first
glance. Hence, such concepts are out of scope for performance tuning from a general point of
view. This is even more essential if such concepts seriously compromise robustness.

3.1.1.1 Fully Shared Address Space and Pre-Emptive Scheduling

In case of a “fully shared address space” the direct data access is only of limited advantage. As
was pointed out the shared address space requires data organisation schemes which add an
overhead compared with a separate address space. Moreover, if combined with pre-emptive
scheduling the required synchronisation mechanisms cause much more overhead than can be
saved by direct access. Finally, according to our experience direct data access is not the most
frequently used mechanism of data exchange. Message passing, like used in case of a separate
address space dominates by far. Hence, no real performance benefit can be seen by this
concept, while it significantly compromises robustness.

3.1.1.2 Omitted Checks

Omitting of checks may be considered as a means to achieve higher performance. However,
this is not true.

E.g. the documentation of VxWorks frequently states that checks have been omitted in its
kernel to increase the performance. The consequence is that a user has to add own checks to
be able to identify bugs, because it is very difficult to find the reason of a bug if faults can
propagate.

The missing checks, e.g. on valid parameters on OS functions, have to be added by the user.
However, such add-ons seem to be less performant than in case the OS implements them -
apart from the fact that the user needs to spent more effort. Consequently, the application
suffers from the missing checks. The only - very questionable - benefit is that the OS itself
shows good performance to the disadvantage of the overall application.

11

There is a special category of such missing checks which bear a high risk and require much
effort to recover from. These are related to functionality excluded by an OS, or an application
in general. In such cases the documentation states "a user MUST NOT do this". We found that
such a warning is usually the only measure undertaken to prevent misuse of a certain feature.
But in practice either this statement is hidden somewhere in the documentation, it is forgotten
or it is not recognised at all that it is of relevance Then it is very difficult to identify the
reasons for a crash and much effor tis needed. And at the end, the user is guilty becasue the
application provider does refer to his warning or exclusion.

Although such a mix of "forbidding, but not checking" is already bad enough, we even have
observed a higher level of criticality: to disable the functionality in certain cases and/or to
require use of other functions, but not to document it.

In our opinion the correlation of limited functionality and missing documentation of this
restriction is not surprising, both events have the same roots: the exceptional occurence of a
restriction. The user falls into the trap because he cannot imagine at all that such an exception
is needed or meanigful. The OS provider forgets to document it because it is also exceptional
for him. If no checks prevent erroneous use of such software, the chance to introduce a bug is
very high, and the effort to fix it is high, too.

3.1.2 Ambivalent Concepts

These concepts either optimise towards performance OR robustness, but do not satisfy both
needs. The two principal categories “address space” and “scheduling” are considered
independently.

3.1.2.1 Limited Shared Address Space

A “limited shared address space” as provided by Linux RT is an optimum solution regarding
fast access of peripheral hardware and avoidance of fault propagation as far as no better
concept is available which allows fast access for a separate address space. If the quality of the
software which shares the kernel’s address space is high, it is the best solution which is
currently possible.

3.1.2.2 Separate Address Space

A “separate address space” is the optimum solution if access of peripherals is not very time-
critical. Due to separation of processes the robustness is high because propagation of faults
into other processes is not possible (except for CPU overload).

3.1.2.3 Pre-Emptive Scheduling

Pre-emptive scheduling requires significant overhead for synchronisation, especially on data
access. The alternative of message passing is also less performant. Due to pre-emption a
number of provisions must be taken to avoid side-effects. This increases the complexity and
may compromise robustness. However, pre-emption is the only way to escape from blocking
and to ensure short response times. Therefore, also from a robustness point of view, pre-
emptive scheduling is a “must”.

12

3.1.2.4 Cooperative Scheduling

In case of cooperative scheduling less complexity is required which increases robustness from
a principal point of view. However, the response times become indeterministic and blocking is
possible. This compromises both, performance and robustness.

3.2 Recommendations

As no concept fully satisfies the needs of both, performance and robustness, recommendations
can only be given either towards performance or robustness.

3.2.1 Highest Priority To Robustness

In this case priority should be given to a combination of “separate address space” and “pre-
emptive scheduling”. Then a maximum of protection against fault propagation and blocking is
achieved, a system can survive even if one of its processes completely fails.

3.2.2 Highest Priority To Performance

When priority is given to performance a “limited shared address space” with “pre-emptive
scheduling” is the best choice. This results in still sufficient robustness and ensures fast data
access and response times.

If checks signficantly compromise performance they should be made removable (“compilable
comments”). This allows to reliably detect bugs during development and decreases the
probability of fault propagation during the later operational phase, although fault propagation
is not fully excluded during operation.

This is a good solution for applications for which engineers claim "we will not get the needed
performance if we add checks". To ommit checks would be the worst thing they could do. As
user of such software we have observed that a number of bugs remain dormant if no checks
are performed. Then such bugs come up after delivery and during operation by the user.
Therefore it is important to add checks and to provide the right means to remove them if
needed without introducing new faults at time of removal.

3.3 Evaluation Summary

Table 3 summarises the conclusions on OS properties regarding performance and robustness.
In case of performance the response time is taken as evaluation criterion.

Good Medium Poor

Performance Linux RT, VxWorks Un*x, MS-Windows Mac OS 9

Robustness Un*x Linux RT,
MS-Windows NT

VxWorks, Mac OS 9,
MS-Windows 95

Table 3: Classification of the OS Regarding Performance and Robustness

13

4. Conclusions

Performance and robustness are in conflict to each other. A number of OS concepts have been
analysed which confirms this conclusion. The term "conflict" is used here to describe the fact
that an optimisation of performance, e.g. by lean code which ommits error checks, decreases
robustness. Vice versa, robust code decreases performance.

However, from a quality point of view the term "conflict" should not be understood such that
a decision towards one of both topics is possible, only, thereby neglecting the needs of the
other one. It is a very challenging issue to cover both at the highest level possible. This
requires a good understanding of the conflict potential. By this paper we have identified the
impacts in the area of operating systems, and to provide feasible solutions for a fair
coexistence of both topics.

The criteria for classification of the operating systems regarding performance and robustness
were “organisation of the address space”, “scheduling”, “address verification”.

A “fully shared address space” has a lot of disadvantages and is considered as out of scope for
performant and robust system implementations, while a “limited shared address space” seems
- currently - to be the optimum solution regarding performance and robustness. “Pre-emptive
scheduling” seems to be the most appropriate scheduling approach.

Checking mechanisms have been identified as a must for error identification and avoidance of
fault propagation. If checking is not supported by the OS to increase performance, the checks
which need to be added by the user may result in less overall system performance than in the
case the OS does sufficient checking. But it is highly recommended to apply checking on valid
conditions, and to add own checks if needed. If performance is signficantly compromised
“removable checks” are recommended, i.e. checks which are only active during testing and
integration.

In case of a “fully shared address space” the development effort is significantly higher than for
a “separate address space”. If combined with “pre-emptive scheduling” this is absolutely the
worst case regarding robustness and development effort.

We have observed a serious underestimation of robustness issues in the area of software
engineering outside the domain of dependable applications. Tools are missing to evaluate the
quality and robustness of software. Quality issues and standards are understood as
recommendations which merely will be checked. Quality standards and guidelines are
provided, but benchmarking on the benefit of such exercises are missing, hence corrections
and improvements are not possible.

In fact, quality assurance is understood as a passive discipline, giving guidleines only and
believing that this is sufficient to ensure quality of the deliverables. This understanding of
quality assurance is also reflected by the current practices of education in the area of software
engineering.

We do hope that by above considerations we can encourage engineers to do more to achieve
higher quality of software and to prove this by concrete facts without dropping performance
issues.

14

References

Linux: Information can be obtained from http://www.linux.org

Linux RT: Information can be obtained from http://www.rtlinux.org/˜rtlinux

Mac OS:Information about Mac OS 9 and OS X can be obtained from http://www.apple.com

PE2000: Workshop "Performance Engineering inder Softwareentwicklung", PE2000
May 15, 2000, DeTeCSM, Darmstadt, Germany

R.Gerlich: Built-In Performance and Robustness Engineering Capabilities by a Formalised and
Automated Software Development Process
updated version:
Lecture Notes in Computer Science LNCS 2047, Springer Verlag, 2001,
A.Scholz, A. Schmietendorf (editors)
R.Gerlich: Performance and Robustness Engineering and the Role of Automated Software Development

PE2001: 2. Workshop Performance Engineering in der Softwareentwicklung, PE 2001
April 26, 2001, Universitaet der Bundeswehr Munich, Germany,
Rainer Gerlich, Ralf Gerlich: Performance and Robustness Engineering: A Potential Conflict

Sckolz, A. Schmietendorf, A.: Aspekte des Software Engineerings - Aufgaben und Inhalte. pp. 33-40 In: Rainer
Dumke, Claus Rautenstrauch, Andreas Schmietendorf, André Scholz (Ed.), Tagungsband 1. Workshop
Performance Engineering in der Softwareentwicklung (PE2000), May 15, 2000, Darmstadt, Germany

Solaris: SunSoft Inc. 2550 Garcia Avenue, Mountain View, CA 94043, USA

VWKS: TORNADO / VxWorks, WindRiver Systems, Inc. 1010 Atlantic Avenue, Alameda, CA 94501-1153,
USA

Win 3.11, Win95, Win98: Information can obtained from http://www.microsoft.com

15

