
Downscaling Generation, Verification and Validation of Software into the Range of Hours -

The Benefits of Complete Formalisation and Automation

Abstract

Rainer Gerlich

BSSE System and Software Engineering

Auf dem Ruhbuehl 181
D-88090 Immenstaad

Phone: +49/7545/91.12.58
Mobile: +49/171/80.20.659
Fax: +49/7545/91.12.40
e-mail: gerlich@t-online.de

www: http://home.t-online.de/home/gerlich/

BSSE System and Software Engineering

- 1 -

BSSE System and Software Engineering

Copyright Rainer Gerlich BSSE 2000 All Rights Reserved

Downscaling Generation, Verification and Validation of Software into the Range of Hours -
The Benefits of Complete Formalisation and Automation

Rainer Gerlich
BSSE System and Software Engineering

Auf dem Ruhbuehl 181
D-88090 Immenstaad, Germany

Phone +49/7545/91.12.58 Mobile: +49/171/80.20.659 Fax +49/7545/91.12.40
e-mail: gerlich@t-online.de internet: http://home.t-online.de/home/gerlich/

Abstract: Usually, the process of software
generation, verification and validation takes
weeks, months, in some cases possibly years. By
applying a completely automated development
procedure the turn-around time required for an
iteration can be scaled down into the range of
hours. Such an iteration cycle starts with delivery
of (preliminary) system engineering information
and ends with reading of the evaluation report.
Everything what happens between delivery of the
information and result analysis is automated.

The high reduction of development time and
related costs and effort is achieved by the use of a
process model which allows complete automation
of all of the required steps. This is different from
the currently applied development procedures and
process models which still require a significant
manual contribution which prevent short turn-
around cycles.

Moreover, due to the manually executed steps
inconsistencies may occur or - vice versa - the
effort to avoid or to remove detected inconstencies
is rather high.

This is different for a completely automated
process model which cares about such issues itself.
The philosophy of the automated development
environment called ISG (Instantaneous System and
Software Generation) is to take the user inputs and
to check them for correctness and completeness.

Having accepted such inputs the tool transforms
them in executables, distributes the executables to
the given CPU's of the network (which may
include different platforms), executes them and
establishes an evaluation report on the system's
properties.

The generation process also considers
instrumentation for analysis of the system's
properties and automated test stimulation
including stress testing and fault injection. The
analysis report not only provides figures on the

logical aspects like data flow and state coverage,
but also performance and resource, sizing and
timing aspects.

Due to the short turn-around time incremental
development is possible. A user may start with
very little information and then refine his view on
the system getting always immediately full
feedback on what he has defined. This allows to
validate a system right from the beginning and
continuously until the very end.

The achieved high degree of automation is based
on formalisation. Firstly, the user inputs are
subject of formal checks. Secondly, the system
software is built according to formal construction
rules. Thirdly, the generation steps are based on a
formal process model which can be completely
automated.

On this formalisation verification and validation
techniques are based on and it is even possible to
define application-independent checks of the
properties. An important consequence is that the
automated evaluation of system properties can
give answers without being aksed for. This is an
advantage compared with other verification
approaches for which the engineer has to ask the
right question. If he doesn't do it he never will be
informed about potential problems.

The current application domains which are
covered by ISG are (hard) real-time and/or
distributed systems. Basically, by ISG the compete
infrastructure of such systems is generated
automatically, i.e. ISG provides a drawer into
which the application-specific processing
algorithms may be plugged-in as user-defined
functions (UDF). At the beginning ISG provides
(instrumented) stubs for the UDF's which are
replaced incrementally by the real functions.

The recently executed projects showed that the
automated generation of UDF's is also possible for
a number of application areas.

- 2 -

BSSE System and Software Engineering

Copyright Rainer Gerlich BSSE 2000 All Rights Reserved

The engineering inputs as provided by the user
define the components of a system like processes
and the network, the internals of the processes like
states and expected inputs, the UDF's for
processing of the inputs, and the outputs (if any) to
be sent as response. Furthermore, the CPU needs
to be given on which a process shall reside, also
the expected consumption of CPU and the
(estimated) amount of data to be sent. All the
inputs are given in terms of literals, no code has to
be written.

For a space project the user was familiar with
spreadsheets. Therefore most of the inputs were
defined by spreadsheets. However, it is possible to
adapt the format of the user inputs to the user's
needs.

Although a spreadsheet does not look very formal
it is possible to formalise such inputs due to a
meta-model which correlates the various types of
entities. This is the same for other input formats
even if they are based on plain text.

The space project consists of about 40 (real-time)
processes distributed over two processors. It takes
about 45 minutes to generate the complete system
from the engineering inputs (spreadsheet), another
30 minutes to execute the system until a coverage
of 100% of the input dowmain is achieved and

another 5 minutes to establish the report.
Recompilation of all files requires about 10
minutes. An assistant tool will make the decision
automatically when to start from scratch again e.g.
in case of a structural change or when just to do
recompilation.

ISG is currently available for Sparc and Intel
hardware, for Solaris, Linux and VxWorks
operating systems. To move from one platform to
the other just requires to change an option in a
configuration file.

A (heterogeneous) distributed system is
automatically installed at each node and started
across the network.

The topology may be changed by redefining the
mapping between processes and nodes (which
represent a CPU from a logical point of view) and
the nodes and the real CPU's. This is very efficient
and allows to easily evaluate different network
topologies.

The paper will also discuss problems and issues
related to a completely automated installation and
distribution procedure and its portability.

Keywords: automation, formalisation, incremental
development, early system validation, distributed
systems, process models

