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An Alternative Lifecycle Based on Problem-Oriented Strategies

ABSTRACT

 Up to now, quality of on-board software is achieved by
tailoring the software for each application and  by its
final tuning to the needs of the environmental constraints
like timing and sizing. A significant part of the  effort
has to be spent for testing at the end of the lifecycle.
Hardware and software is specified separately and a
system's capabilities become visible at the end, when it
is usually too late for corrective actions. Today on-board
users demand more functional capabilities, because
processors are able to deliver the needed processing
power.  Therefore systems, and especially software,
become more complex. Consequently, traditional
development  procedures are becoming inadequate,
because they require too much effort for fine tuning and
testing and do not consider the iterative nature of system
specification and design. In all areas of software
development, not only in  the field of on-board software,
new development methods and lifecycles are discussed.
But it is felt that the  required quality of on-board
software and related higher effort makes it a leader
concerning efficient development  of quality software.
Recognizing this ESA has initiated numerous activities
investigating new methods and approaches for satisfying
the high demands put on reliable on-board software.

We will in the following describe the problems
concerned with the development of real-time embedded
software in general and on-board software in specific.
The activities of real-time development and required
tool support will be highlighted and an alternative
lifecycle will be proposed. The descriptions and
proposals made will capitalize on individual
ESA/ESTEC activities in the on-board domain, results
and practices in the domain of avionics and safety
critical software, and  on experiences gained from
utilizing these in operational projects.

1. INTRODUCTION

Embedded systems in general (i.e. hardware and
software) are broadly used for control and data
management. A large number of such applications is
safety critical and is required to be highly reliable. With
increasing needs (Fig. 1) for more functionality and
performance, embedded systems are becoming more
complex and the amount of functionality implemented in

software is increased significantly. Furthermore, the
higher the percentage of software in the system, the
larger its potential impact will be in case of faults.
Consequently, we have to assure that software will be of
better quality in the future.

However, the current situation in software development
in general and on-board software in specific may be
characterized by:

(1) some few  activities during the
specification phase,

(2) a number of activities during design and
coding phase including corrective actions
by iterations,

(3) a huge number of activities for system
integration and validation  at the end of
the  development lifecycle.

Currently, tools are mainly used for syntactical checks
of design and code. Before the coding phase usually no
validation of the resulting behavior and performance of
a system's implementation is done. Reuse is still an
issue.  Most of the used tools just help to ensure
consistency between components used during a certain
lifecycle phase, but not to achieve consistency between
lifecycle phases. They neither do help to confirm in an
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early lifecycle phase, that the intended implementation
will represent what the customer (expressed in the
mission requirements)  has  in mind and that it fulfills all
his expectations. The major tasks, coding and testing,
needed to achieve the  desired  goal, are still done
manually.

Complexity of systems is increasing, but the maturity of
the software development approach is still not
appropriate to meet the needs of (future) high quality
on-board software. With increasing complexity the costs
will  explode due to the still low degree of automation of
software development. Compared with other engineering
disciplines "software engineering" is still done like "fine
arts" leaving much freedom for experimenting  with new
ideas rather than trying a systematic development
approach. Methods and tools are more supporting
verification of syntactical entities than validation of a
system's properties like functionality, behavior and
performance.

Consequently, from this point of view more emphasis
must be put at the beginning of the lifecycle on
understanding of the problem and on fixing the desired
properties by getting a feedback from what is defined.
Tools must help to concentrate on such properties.
Direct code generation from specification and design is
more efficient than just to automate the transition  from
design to manual coding. Code generation is a very good
area where tools can do the job, no corrective  action is
needed any more when by specification and design the
behavior is already fixed and tests are defined  which
prove the desired capabilities.

Hence, producing reliable or say trustworthy real-time
systems is a complex task that calls for numerous means
to be applied during its construction. Fundamentally,
two elements are involved in this scheme, namely

(1) the real-time development process, and

(2) the real-time software products to be
delivered via the activities of the process.

Accordingly, higher software quality can be achieved by

(1) improvement of the real-time
development process itself, by for
instance dictating a certain data and
control flow of the activities in the process
model thereby contributing also to a better
sub-product but also to optimization and
risk reduction.

(2) improvements of the quality of the sub-
products generated during the route of
development activities by requesting
appropriate methods, standards, and tools.
Ffor instance, dictating a specific
method/tool to be used in the design
activity leading to a quality design
document (i.e the sub-product).

In the past, ESA/ESTEC initiated a number of activities
investigating new approaches and  introducing new
techniques, especially for on-board software that should
support the above two main elements and lead to a more
reliable end-product being the “executing on-board
software”.

Firstly, such activities covered feasibility of
specification, design or implementation like
schedulability [1] and performance analysis [2].
Secondly, they  addressed architecture and stability of
design [3]. Thirdly, optimisation of development
lifecycle was initiated [4].  The experience gained in the
past by separate projects [2,5,6] has now to be
synthesized towards an efficient integrated  approach,
integrated via the lifecycle.

The challenge is to consider software development as a
real "engineering discipline" rather than a  matter of
"fine arts". Such a rigorous approach requires more
precise rules similar to "cooking rules" for system /
software development and its management rather than
weak guidelines leaving a lot of freedom for ending in
inefficiency. It requires a rigorous procedure for
streamlined implementation. Validation shall be a matter
right at  the beginning. Consequently, this leads to
specification-based implementation: deriving an
implementation  directly from specification in a
staggered approach allowing at each stage to verify that
one is still on the right  way to the envisaged goal.

2. CURRENT REAL-TIME SYSTEM
DEVELOPMENT

We will in this section give a short description of the
activities and the phases of current real-time software
development arising from results of previous
ESA/ESTEC activities together with experiences from
the domain of avionics.

Fig. 2  presents the basic structure of the current
software life-cycle. It represents the classical "waterfall
approach" and requires hidden iterations between a
number of activities and procucts. Typically, each of the
development phases is applied to the whole system. This
yields lifecycle products like User Requirements,
Software Requirements,  Test Specifications,
Architectural Design, Source Code and finally the
Executable Code.

For each product a consistency check has to be
performed in order to ensure compliance between input
and output of each phase. Fig. 3 shows in detail the
sequence of the phases, compliance checks and method
and tool support. "S" means "Software Requirements
Specification", "Ve" represents "Verification,
Consistency Checks", "D" stands for "Design", "C" for
Coding", "MT" for "Module Testing", "IT" for
Integration Testing" and "AT" for "Acceptance
Testing". Finally, the validation "Va" of the system
against user requirements is performed.



Typically, during the specification phase methods and
tools like HOORA [7], CORE [8], Yourdon (SA) [9],
Coad [10], SDL [11,12,13], RAISE [14]),  VDM [15] or
Z [16] are used. In view of correctness, reliability and
safety formal notations like SDL, RAISE, VDM or Z
would be preferable.

During the design phase(s) HOOD and HRT-HOOD
(for hard-real time systems), Yourdon (SD), SDL and
RAISE may be applied. In general, we propose formal
notations to be used.

For coding languages like C, C++ or Ada are used. Ada
should be the choice for safety-critical systems.

Testing is supported by a lot of tools and test software.
Ada has significant advantages for module testing e.g.
test of subprograms against their specification in an
automated manner [17], and for integration testing due
to its checking capabilites across library units.

Tests of real-time software are carried out in two
different environments: the host environment and the
target environment. Again, the target environment may
consist of two different types: the real target and of what
is known in the space environment to be a Software
Validation Facility (SVF). Such a facility encloses a
board with the target processor, memory, and I/O
together with a fan of services making it possible to

control the tests (especially the clock) and having the
environment (seen from the real-time software) look like
the "real thing". This also offers the potential to apply
fault injection techniques may be applied thereby
providing a strong means for approaching verification of
non-nominal conditions.

A prominent SVF configuration allowing for the above,
is the SVF used in the Cluster and SOHO projects [18].
This kind of configuration makes it possible for every
developer to have a high fidelity test platform on table.

In the traditional development approach methods and
tools as mentionned above do not care about
performance of (real-time) software, i.e. if the timing
constraints can be fulfilled. Performance not only
addresses processor power, but also performance of a
(on-board) data network.

Currently, checks on performance are mostly done
during testing and validation phases in a target
envrionment which is rather late in the lifecycle.

Verification between lifecycle phases is done by
engineers, methods or tools do not support a consistent
and coherent transition between the phases.

3. COST ISSUES
To summarize, in the current development approach  a
number of verification activities have to performed,
mostly by engineers and not well supported by methods
and tools. This creates significant overhead. Moreover,
validation cannot be done early in the lifecycle as the
needed means like executable code or the target system /
SVF are not available. This increases the risk to end up
with insufficient system capabilites which is especially a
problem for real-time systems.

Iterations are a consequence due to better understanding
of a system when feedback is given by system execution.
They are needed because nobody is able to have the full
overview on final needs and one only can approximate
them by smaller steps. This is true especially for
complex software systems. However, as a system cannot
be executed before end of coding phase, such
improvements are not well supported in early phases of
the current development approach.

To be prepared for the future firstly identification of the
weakness of current system and software development
methods is needed concerning remaining risks and
effort. Secondly, one has to provide an alternative. It is
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essential to consider optimisation of the total system
lifecycle and not only to concentrate on its dedicated
phases. Also, task sharing between an engineer and tools

must be reconsidered.

To achieve higher efficiency optimisation of task
sharing between engineers and tools is a "must" (Fig. 4).
An engineer shall concentrate on the creative part of
system development, whilst tools shall take that part
which can be formalised and automated. Therefore an
engineer shall be more involved in early development
phases and less in the later ones: this leads to early
validation and risk reduction by simulation, hierarchical
and stepwise refinement with execution of nominal and
non-nominal conditions and increased degree of
automation by use of formal methods and code
generation (Fig. 5).

Currently, it is just the other way around. An engineer
spends a lot of time for coding, module testing and
integration during rather late development phases.

In consequence, for such an optimised lifecycle effort is
decreased for the following reasons:

- By incremental and early validation the
expected system properties are known and
continously be refined. The system is
validated functionally and for
performance. By executable models
nominal and non-nominal scenarios can
be simulated and evaluated. This strategy
decreases the risk not to meet the desired
goal.
The earlier a non-compliance is detected,
the less costs are required to remove it.

- By use of formal methods tools are able to
detect automatically discrepancies in a
system like incompatible interfaces or
wrong behaviour. Also, automated code
generation becomes possible.

Efficiency of development is increased by
the higher degree of automation and costs
are reduced.

The higher the degree of formalisation is, the higher is
the percentage which can be covered by tools.

Quality is increased because more development faults
are detected earlier and automatically to a higher
percentage by optimisation of tool usage. By automated
code generation from already validated models no faults
are introduced like in case of manual coding according
to a separately available design.

The percentage of reuse increases because by
standardisation and formalisation similarities can be
better and earlier identified. If needed, properties,
behaviour and interfaces of the new components can be
harmonised with such ones of the already existing
components.

Due to formalisation the verification steps can
automatically be performed by tools, whilst the
validation is an engineering task supported by tools for
execution and result analysis.

In consequence, the possibilites to correct development
in early phases are better. Tools are used for such tasks
for which their usage gives highest benefit. This allows
to save costs.

4. AN ALTERNATIVE LIFECYCLE

The former chapters have gone through the stages of a
development lifecycle focusing on the approach
currently applied and identifying potential
improvements.

Now, a process model shall be defined which glues
together a system's hierarchical decomposition and the
previously described lifecycle phases. These phases are
taken in a generic manner and applied to each
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decomposition step. The activities of each such phase
are harmonized and optimized by introduction of
appropriate methods and tools.

Considering the lifecycle as a whole, two important
issues need to be considered:

- the transfer from one stage to another and
- the required iterations.

The transfer issue has to do with how well the linkage is
between the methods used at one stage and at the
following one. Clearly, to go from one stage to another

should be achievable in a controlled manner. Notations
and notions used on two connected stages should be
compatible. For instance, if the underlying concurrency
model of the design method is not compatible with the
one embedded in the programming language, the
activities of the coding stage would be both
troublesome, and likely to be error-prone.

The method and the techniques used at one stage of the
lifecycle should be built on an understanding of what is
feasible at the next stage. Only in this way, the
construction of real-time software may be viewed as a
series of transformations. A view, that will make it
possible for managing and controlling the process.

Fig. 6 shows for the proposed alternative lifecycle the
view equivalent to Fig. 2. The keypoints are:

(1) Stepwise refinement.

(2) Combination of specification with coding
and of design with coding.
This leads to executable models in both
phases with the option for production of
target code (if supported by a tool).

(3) Validation against user requirements by
execution of the models.

(4) Iterations in each step if non-compliances
or improvements are identified.

Starting bottom up, the plateau that glue together the
top-level software requirements with the executing
system, is the programming language Only by
understanding what can be achieved at this plateau,
appropriate design approaches can be taken.
Consequently, if from the very beginning, the
programming language is given, one should choose a
design method that in fact could be glued to the
possibilities offered by the programming language.

In the scope of real-time systems, it becomes mandatory
that iterations are introduced, giving early feedback on
how performance and resource constraints may be met.
Some early hands-on experiences may be required to
know what is possible and how this may best be
achieved. Consequently, rather than addressing design
horizontally (i.e. design in breadth), where the complete
system is approached and refined by a stage-by-stage
single-shot waterfall approach, design should enclose
some vertical activities (i.e. design in depth).

Hence, a lifecycle should be arranged according to early
and incremental validation and delivery. We have in the
previous sections highlighted a set of methods and tools
that should be  used today in each of the mandatorial
development phases. These are tools that brings a high
degree of automation into the development and in
combination will increase the quality of the on-board
software.

The lifecyle shown in  Fig. 6 will encourage to spend
more effort on the specification and design phases. It
considers the iterative nature of system development,
and it identifies problem-oriented methods and tools and
when they are to be applied.

The quality is increased for the following reasons:

(1) Having executable incremental models
nominal and non-nominal scenarios can
be simulated/animated and thus evaluated.
This will decrease the danger of not
achieving the desired goal.

(2) By using formal methods, tools are able to
automatically detect discrepancies in a
system such as incompatible interfaces or
wrong behaviour. Automated (target) code
generation becomes possible and
development efficiency is increased by
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this high degree of automation. Clearly,
the higher the degree of formalization the
higher the percentage of development
which can be covered by tools

(3) More development faults are detected
earlier and automatically . When using
automated code generation (either fully
(which is the ideal case) or partially)
ensures that no faults are introduced as
might occur in the case of manual coding.

(4) The percentage of reuse increases,
because by standardization and
formalization, similarities can be readily
identified early. Moreover, needed
properties of new components can be
harmonized with ready existing ones.

Fig. 7 shows in more detail what is performed during
each of successive development steps.

For each such step "Specification Modelling" and
"Design Modelling" are performed. Specifcation
Modelling consists of four and Design Modelling of six
sub-steps. Fig. 8 identifies the actionees for the sub-
steps and relates them to example tools. It is divided into
two parts: specification and design. The six sub-steps
are:

(1) A brainstorming sub-step for
"Requirements Capture" and
"Architecture Capture" during which
methods like HOORA and  OMT for
specification and (HRT-)HOOD and
performance analysis tools for design may
be applied.
Such an activity may be needed especially
for the top-level to get unstructured
textual requirements in a form which
allows formalisation by models.
Schedulability and performance
constraints may be identified in case of
design.

(2) The following "modelling" activity is the
cornerstone of the approach. It combines
specification and design with
formalisation and modelling. Hence
executable code is produced which allows
animation and an immediate transition to
the target system or SVF in case of leaf
nodes of the hierarchy.
Specification models represent the
functional and behavioural view. Design
models take the interface of specification
models and refine their internals with an
architecture and additional (internal)
models which specifiy the requirements
for the next level.
In many cases one will find that the
structuring of textual requirements (sub-
step 1) is actually part of sub-step 2 by
directly applying the modelling tool.
It is also possible to generate code from
specification models for target or SVF, if
desired.

(3) The produced code represents also a
formal description of functionality,
behaviour and performance. This allows
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tools to verify properties like consistent
interfaces, correctness of behaviour and
state transitons, schedulability.
Most languages and tools can check
consistency of data interfaces and types.
Only a few tools are on the market which
check behaviour, state transitions and
schedulability.

(4) By execution of the models under nominal
and non-nominal conditions the actual
design and code is validated for
functionality and behaviour against user
requirements. In case of design modelling
validation of performance is done in
addition. Hence, at the end of each
decomposition step possible non-
compliances are identified and not at the
end of system development.

(5) The fifth sub-step is not really an activity,
because it is done automatically by tools:
code for target or SVF may be generated
automatically from the validated models,
if tools support it.

(6) Finally, the sixth step deals with execution
of the already applied nominal and non-
nominal (if possible on the target or SVF)
scenarios on the target or SVF and shall
confirm the previous results of simulation.
This sub-step may not necessarily be
performed at the end of a decomposition
step. It depends on the criticality of a
designed component and the availabilty of
target and SVF whether it can be earlier.

Fig. 8 has identified different tools each supporting the
sub-steps of the presented alternative lifecycle. These

tools could serve as building blocks for an
implementation of a toolset for this lifecycle.

For instance, by integration of GEODE, SES/workbench
[19]  and additional software the resulting tool
environment EaSySim [20] covers most of the steps of
the alternative lifecycle. Other alternatives can be
retrieved from the example list of Fig. 8.

5. CONCLUSIONS

The presented lifecycle recommends

- incremental development,

- a coherent transition between
specification and design,

- modelling as a combination of
specification/design and coding,

- early validation against user requirements
by execution of models,

- higher tool support for verification by
increasing degree of formalisation.

Due to risk reduction, automation and combination of
specification/design with coding a reasonable potential
for cost saving is identified. The tool environment
EaSySim is available which covers most of the activities
of the alternative lifecycle.

This software lifecycle can easily be extended towards a
system lifecycle for embedded systems. Then a unique
approach for hardware-software co-design becomes
possible which allows a late hardware-software trade-off
together with early validation of system properties.
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