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ABSTRACT: 
This paper describes an improved process for 
development of software for critical systems fully 
bridging the gap between a specification and an 
executable target version by an automaton. The 
process covers the broad class of distributed 
and/or fault-tolerant and/or real-time systems, and 
meets the needs of critical systems. It has its roots 
in the space domain. 

In the context of this process the role of simulation 
is different from how it is usually understood. 
Instead of establishing different model- and code-
bases for simulation and the final target version, 
the process supports a smooth transition from 
simulation to the target version, continuously 
evolving the simulation version to the final version, 
based on a single model 

The purpose of this paper is to discuss the 
process’ relevance to avionics systems in terms of 
efficiency and flexibility of development, and 
reliability, availability, safety and dependability 
issues. 

The automaton completely covers the 
transformation of a specification into executable 
code without any human intervention while putting 
emphasis on verification and validation. The short 
turn-around time allows an iterative and 

incremental approach starting with simulation and 
possibly emulation of hardware, then proceeding 
smoothly via refinement towards the final version 
executing on real hardware. 

The process has been applied successfully to large 
and complex applications, amongst which is an 
experiment in use on-board of ISS. 

As a result there is not only a significant impact on 
the efficiency in approaching the final version for 
the target, there are more benefits regarding fault 
identification and risk minimisation based on a 
number of means provided in the simulation 
environment which can be added or removed just 
by configuration switches. 

1 THE PRINCIPAL APPROACH 
The fully automated process (called ISG, 
“Instantaneous System and Software Generation”) 
is based on a modelling language allowing and 
forcing to express all properties of a distributed 
real-time system including fault tolerance and fault 
handling. All relevant functional and non-functional 
aspects are expressed in one notation. The 
executable is automatically stimulated with valid 
and invalid inputs. The degree of time jitter and 
probability of loss of messages and data can be 
specified.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  1-1: The ISG Process
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Due to stimulation the real-time, behavioural, 
performance and robustness properties can be 
continuously observed on the development or 
target platform, supporting a continuous transition 
between simulation and the target system version. 

The modelling approach supports the smooth 
transition from simulation to the final version. In 
this context a “simulation version” is considered as 
a version different from the final version. 
Consequently, there are many simulation versions 
– on host and target environment – and one final 
version. The code generator transforming the 
specification – the model – into an executable 
version plays an important role in this process. It 
does not only generate the code from the model, 
but adds all the means needed for stimulation, 
observation of properties , substitution of missing 
components by intelligent stubs and configuring 
the code for host or target. So it is just a matter of 
setting configuration options of the code generator 
to traverse the different aspects of verification and 
representative validation in the simulation 
environment, until the options for the final target 
version – a lean version – are set. 

1.1 Relevance to Avionics 
Two main aspects shall be addressed here: the 
support for validation of real-time operations, 
focusing on the synchronous approach frequently 
applied in avionics, and fault identification as an 
important aspect of verification and validation of a 
system’s properties. 

1.1.1 Synchronous Systems 
Currently, modelling and auto-coding in the context 
of avionics is focusing on critical control systems 
which are purely synchronous systems. However,  
in future systems the event-driven part may not be 
easily integrated into the synchronous concept, 
e.g. due to a large variation of execution times and 
required low latencies. In addition, distributed 
system architectures enforce acknowledgement of 
the asynchronous nature of real world. 

The GALS approach – Globally Asynchronous, 
Locally Synchronous, historically introduced in the 
context of “system-on-chip”  – raises the need for 
better support of integration for both types of real-
time operations, synchronous and asynchronous 
ones. 

GALS acknowledges the fact that a globally 
synchronous approach is impossible. Following 
this conclusion the verification of a synchronous 
implementation by pure synchronous means is 
questionable. The cost barrier impeding a more 

general approach in an asynchronous environment 
can be reduced considerably by full automation as 
supported by ISG. 

1.1.2 Fault Identification 
Fault identification in a simulation environment 
requires conditions which foster occurrence of 
faults and their detection.. 

As it is described in Chapter 2.3.2 the way a 
system is stimulated may compromise or prevent 
fault occurrence and identification. Through 
automated code and test generation a system can 
be stimulated in the context of its normal 
operations and under representative timing 
conditions. Similarly, the detection mechanisms 
can be built in without compromising fault 
activation and detection. 

1.2 Main Features 

1.2.1 Openness 
The process covers asynchronous / event-driven 
and synchronous features. It supports auto-
integration of algorithms, e.g. control algorithms,  
into a distributed real-time infrastructure on the 
basis of source code (C, Ada) – possibly generated 
by other code generators such as Scade or 
Matlab/Simulink. 

1.2.2 Dependability Aspects 
Verification and validation are major aspects of 
dependability. The underlying meta-model of ISG 
allows checking of correctness of a specification. 
Due to its domain-specific nature, the structure of 
the specification strictly requires the definition of all 
relevant properties of the system required for full 
automation at all stages of the development and 
maintenance cycle.  

Most notably, the modelling environment requires 
an integrated view on timing and logical behaviour, 
, thereby providing a wholesale picture of the 
system to be built and constantly reminding the 
modeller of the interdependence of functional and 
non-functional aspects. 

So an ISG model unambiguously defines the 
behavioural und performance properties on 
modelling level. The real properties are recorded 
during execution for feedback. 

This way a modeller is guided towards a correct 
model. As the meta-model captures the rules of the 
application domain more strictly than generic 
approaches, the system generator can detect 
many more logical errors before entering the 
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generation phase than universal approaches, such 
as UML. 

Experience shows that already by such a feedback 
on modelling errors a modeller significantly can 
improve the envisaged approach, not only fixing 
the reported bugs, but being forced to reconsider 
the current approach, in general. The correctness 
of the generated code as an important issue is 
discussed in Chapter 1.2.4. 

Validation of the specification is supported by 
automated evaluation and visualisation of the 
recorded properties. Due to auto-stimulation the 
state space can be explored under practical 
conditions. 

Further, automated stimulation with a huge amount 
of stimuli significantly increases the chance for the 
detection of sporadic and non-anticipated faults. 

The extended verification and validation 
capabilities provided in the simulation environment 
are a significant contribution to improve the 
reliability, availability, safety and dependability 
properties of a system under development. 

1.2.3 Stimulation and Fault Injection 
Stimulation extended through fault injection is a 
typical part of simulation. Simulation opens the 
door for systematic and representative exploitation 
of the properties of a system. 

Stimulation of a system is derived from its 
specification. It is straight-forward to defive non-
nominal values from the nominal values as defined 
in the specification – provided the specification is 
expressed in a proper notation, e.g. the ISG 
modelling language. 

In a simulation environment more means are 
available to systematically exploit the properties of 
a system – provided representative conditions are 
guaranteed regarding behaviour, performance and 
resource properties. 

At the end, the model as used for simulation 
directly can be transformed into a target system 
version. 

1.2.4 Verification of the Code Generator 
Today, code generators undergo certification, 
which – although costly – is unsuited to exclude 
faults or to even inspire confidence in the absence 
of faults. 

However, the fully automated process of ISG 
allows automatic verification of every generated 
application by automatically and independently 

comparing the specification against the properties 
observed during automatic stimulation. 

Apart from this capability faults in the code 
generator are easier to detect due to reuse of its 
parts, because a certain feature of the code 
generator contributes to several parts of the 
generated application. For example, the features 
for generating the behaviour of  process or 
message exchange are needed for every process 
instance of an application. Through the higher 
number of occurrences in an application the 
chances to detect a fault increase accordingly. 

The maintenance of the code generator supports 
convergent removal of detected faults, while in 
manual case there are a lot chances of introducing 
faults. 

1.2.5 Practicality and Adaptability 
The ISG process as it is today evolved from the 
manual development of distributed real-time 
systems by continuously finding repeatedly 
executed tasks and automating them until the full 
development cycle was completely automated. 
Formal consolidation of required inputs led to the 
meta-model and tool landscape at BSSE as it is 
today. 

Automation in this manner avoids unnecessary 
complexity at model level and not only reduces the 
effort spent for design and development, but also 
provides representativity, repeatability and 
reproducibility of results. This is not possible when 
manual intervention is part of the generation 
process, and difficult when introducing automation 
in a top-down approach. 

It can therefore be said that the process originated 
from bottom-up experience and thus is proven in 
practice, not only in practicality and product quality, 
but also in process efficiency. 

Although the details of implementation – most 
notably the hardware, operating systems and 
communication infrastructure – may vary, the 
process is flexible enough to adapt to such 
different requirements. 

It is even possible to generate a heterogeneous 
system regarding the operating system and the 
processor type. An instance of a process type may 
run under VxWorks on an Intel architecture, while 
another instance runs under Linux on a Sparc in 
the same application. The generation process 
creates individual code for each of the platforms 
and takes care of the conversions necessary (e.g. 
endianness). 
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In addition, an automated process provides means 
for representative exploitation of a system’s 
properties through stimulation and fault injection, 
starting with simulation and ending with the final 
version. 

2 MAJOR RESULTS 
The process has been applied successfully to large 
and complex applications of which four examples 
are briefly described below. 

Due to the fast transition from an idea to the 
corresponding feedback from an executable a 
number of aspects are supported: 

•  Generation of a software product, e.g. the real-
time and communication infrastructure of a 
distributed embedded system, possibly 
extended through capabilities for 
telecommanding, telemetry handling and data 
processing and monitoring, and fault 
management. 

•  Verification and validation in the context of 
simulation by approaching the final version 
through incremental refinement, iterations and 
emulation of components. 

•  architecture evaluation – inherently covered by 
an iterative approach. 

•  risk analysis – a consequence of systematic 
verification and validation support together with 
full automation – either based on 
representative simulation or the final version, 
allowing to get an opinion on a specification 
from real feedback rather fast. 

2.1 From specification to target system at 
a touch 
For a complex material-science experiment on-
board ISS the complete distributed real-time 
infrastructure, the whole chain from (tele-) 
commanding to telemetry frame generation was 
automatically generated from a specification 
including data acquisition with firmware, calibration 
and limit monitoring and support to fault 
management. 

During hardware-software integration the hardware 
configuration frequently switched between 1 and 2 
processors. Due to the generation process  

•  adaptation to the different hardware 
configurations could be done without changing 
manually any source code. Changing the 
names of the available processors was 
sufficient. 

•  the 2-processor system could continue test 
and integration as a virtual 2-processor system  
on one physical processor only – in a 
representative manner. 

Characteristics: 2 processors (Sparc@14 MHz, 6 
MB), ~40 processes, 500 data end items, 500 
telecommands. 

2.2 Architecture Evaluation 
For a backup emergency power supply of a 
nuclear power plant the impact of spatial 
distribution on a synchronous system with high 
redundancy (up to 3) and voting was evaluated. 
The distributed architecture of the system was 
expressed as specification from which 
automatically executable code was generated. The 
algorithms deciding whether the power supply shall 
be started or not  were modelled in Scade, 
automatically translated into C code and 
automatically integrated by ISG.  

As a result of combining the results from both code 
generators, ISG and Scade, on C level a virtually 
distributed, but representative system was 
established at short hand and its properties were 
observed in practice. A high number of 
discrepancies at the final voter stage was detected 
(~15%) already at low time jitter of ~0.5%.  

This contradicted a previously conducted, thorough 
theoretical analysis suggesting robustness against 
time jitter. The results as observed in practice were 
supported by another theoretical analysis which – 
however – only concluded that a proof on 
robustness is impossible, without being able to 
explicitly conclude on  insufficient robustness. 
Therefore robustness was still trusted until the 
feedback from practice was available. 

Characteristics: 16 processes, 16 processors, 
simple FSMs 

2.3 Risk Analysis 
Due to the fast transition from a specification to the 
corresponding product the fully automated 
approach may be applied to generate a second 
version of an already existing system to benefit 
from verification and validation capabilities not 
available in the native system environment. 

Such an approach requires three steps: reverse 
engineering of the existing code to derive an input 
which can be fed into the automated generation 
chain, a bridge to the ISG modelling language 
ISGL, and the automated generation with ISG 
itself. 
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This approach was already successfully applied to 
the following applications from space area. 

2.3.1 Large Flight Application 
A large application of 400+ KLOC of Ada code was 
controlled by 38 Finite State Machines (FSM). The 
aim was to investigate the properties of the FSMs 
with ISG. As an extension of ISG, a bridge was 
added which extracted the relevant information 
from Ada and transformed it into a model 
specification, from which subsequently  executable 
code was automatically generated. Nominal and 
non-nominal stimuli were automatically derived 
from the specification of the FSMs. Due to auto-
stimulation the properties of the FSM could be 
observed and analysed, though the state space 
was rather large, even for one FSM (see Fig.  2-1).  

Just by looking for red colour in the graphics it was 
detected that the FSMs are consist of a number of 
subnets of states with no transition possible 
between different subnets  

There was an unchecked mechanism foreseen at 
lower level to command transitions from any state 
to any other state, but it was impossible to track 
the relevant information – neither manually nor 
automatically – due to type casting and a complex 
data flow in Ada in combination with roots in the 
database. The conclusion was that the reachability 
of states was still an open issue to be tackled. 

 

 

 

 

Fig.  2-1: Unexpected Unreachable Subnets of 
States 

Characteristics: 38 processes, 1 processor, 380 
states, 1500 transitions, 10000 actions in the 
transitions, overall state space ~1034. 

2.3.2 Fault-tolerant Processing 
For demonstration of capabilities of model-based 
software engineering (MBSE) a model of a 
command processing was established which 
should tolerate loss of commands during command 
verification, queuing and execution. 

The model was established in UML2 and was 
subject of verification based on the supported 
means of the chosen tool. The verification result as 
obtained in the UML2 environment was: perfect. 

To get a second opinion on verification the UML2 
model was automatically transformed to ISGL. The 
obtained report on system properties showed 
some red colour for coverage of states and state 
transitions (see Fig.  2-2). 

 

 

 

 

 

 

Fig.  2-2: Red Colour as Marker for a Non-
anticipated Fault 

A brief analysis yielded that the missing coverage 
occurred in a fault handling branch, only entered 
when a command is lost. Therefore the fault 
injection capability for loss of signals was 
activated, expecting now full coverage. 

However, the situation became worse: more states 
were not covered instead. A further analysis 
showed that the fault-tolerant algorithm was faulty 
and caused a deadlock.  

This could not detected before, because the UML2 
tool did not support automated loss of commands. 
Verification could only be achieved by stepping 
manually through the model. This may have 
suppressed a condition– unintentionally –  which 
otherwise would have enforced entering the fault-
handling branch. Therefore the real consequences 
of a loss never were observed before. 

Also, it was very difficult to detect the deadlock by 
manual inspection, because the involved logic was 
spread over two processes.  

In the automated case the loss was induced 
automatically in the real system context, not having 
any chance of modifying the execution sequence 
in a way compromising the verification result. 

This fault would have been immediately detected in 
practice when a loss of a command would have 
been occurred, because the deadlock would have 
stopped execution. This is the good point. 
However, the big question is, whether the loss 
would have been initiated on the real system 
before putting it into operation, or whether 
engineers would have completely relied on the 
results of verification as obtained in the modelling 
environment. 

Characteristics: 4 processes, 1 processor, states, 
state transitions, actions. 
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3 BEYOND SYNCHRONOUS 
PROCESSING 
The synchronous paradigm eases verification of a 
system’s timing properties by considering periodic 
and fix-phased processing. Essential safety 
properties can be easier proven when supposing 
synchronicity. 

However, the world is dominated by 
asynchronicity, and synchronous approaches 
attempt to artificially consider asynchronicity in a 
synchronous context.  

While the lower hierarchy levels of a system – 
which are close to the physical environment – are 
of synchronous nature, the asynchronous 
properties are more dominant, the higher the level 
in the system hierarchy is. E.g. at higher levels 
command execution, exception handling or 
reconfiguration has to be done, which is heavily 
event-driven and nearly can be harmonised with a 
synchronous approach. 

Clock synchronisation is difficult to achieve in a 
perfect manner within a distributed system. This 
led to the GALS architecture, originally introduced 
for “System-on-Chip”: Globally Asynchronous, 
Locally Synchronous. 

As outlined in Chapter 2.2 the results of safety 
analyses based on the synchronous paradigm may 
not always be true, because hidden facts 
compromise the basic assumptions of a proof. 

From this point of view it must be doubted whether 
the result of  a single analysis can be considered 
as the definitive answer on safety properties. This 
question is even more essential for critical 
systems, and also addresses non-anticipated faults 
e.g. in the proofer algorithms or their 
implementation. 

Therefore, a second opinion may be very valuable 
to confirm an analysis result in an environment 
representative for the real world, i.e. an 
environment supporting asynchronicity. Fault 
injection, e.g. time jitter, causes asynchronicity 
regarding the synchronous paradigm and focuses 
on the robustness in real world context. 

An automated transition to an executable version – 
as described in Chapter 2.2 – providing sufficient 
capabilities for observation of properties is a cost-
efficient approach when needing a second branch 
on verification under representative conditions of 
real world. 

4 IMPACT ON FAULT IDENTIFICATION 
Through execution of a number of exercises three 
major improvements for fault identification were 
recognised:  

•  the enhanced support for identification of 
sporadic and non-anticipated faults by raising 
the activation probabilities,  

•  the identification of faults though not knowing 
the desired properties, and  

•  raising fault identification probability through 
diversification, i.e. through an independent 
opinion. 

4.1 Increased Identification Probability 
Through automation much more stimuli can be 
injected without disturbing the timing conditions for 
fault activation and identification. In addition, fault 
injection can be seamlessly integrated with 
nominal stimulation. The same is true for 
instrumentation of the code to record the 
observations. 

This allows to achieve a significantly increased 
coverage of system states up to full coverage and 
visualisation of recorded properties in different 
shapes of detail and from different points of view, 
needed to fully understand the observed 
properties. 

4.2 Capturing of Non-Anticipated Faults 

4.2.1 Identification by Symptoms 
Fault identification based on symptoms is not really 
new. However, it was recognised that it may 
systematically be extended once the mechanisms 
were understood as very valuable for identification 
of faults, especially of non-anticipated ones. 

A program abort is a classical mechanism for 
detecting a fault without knowing in detail what a 
system ought to do. Observation of such a 
symptom is the starting point for identification of 
the source of the fault. In fact, a symptom like an 
abort is also a property of a system – but an 
undesired one, which is covered by rather generic 
requirements like “A system should never abort” – 
if such a requirement is given at all.  

However, from such a requirement there is no 
direct way to symptoms flagging a fault. Moreover, 
several ways usually exist leading to the same or 
different faults. It is likely that a symptom may help 
to detect a number fault types manifesting in a 
fault.  



 
 

- 7 - 
Cleared Direct to Target – Approaching the Target System at a Touch via Simulation 

© Copyright Dr. Rainer Gerlich BSSE System and Software Engineering 2010. All Rights Reserved. 

BSSE System and Software Engineering

 

Having identified the capabilities of symptom-
based fault identification it is straight-forward to 
extend the known scheme. 

E.g. coverage of states, state transitions or code 
(on model or source code level) is a valuable 
concept for identification of non-anticipated faults 
based on a requirement like “Full coverage shall be 
reached”. However, it is evident that  symptoms 
may be observed without the need for an explicit 
requirement when providing adequate reporting 
capabilities. Automated code generation perfectly 
supports such means for recording and 
visualisation of symptoms. 

Sufficient visualisation is very important. This does 
not only mean just to print or draw something, it is 
essential to present the information 
comprehensively, e.g. by filtering of information, 
because usually there is a huge amount of 
information in which some small, but important 
pieces could be hidden. 

The red colour in Fig.  2-1 and Fig.  2-2 is a simple 
measure to mark a fault symptom in a way easily 
understood. 

Finally, it should be mentioned, that symptom-
based fault identification is much more expensive 
than rule-based identification (violation of a rule). 
So an optimum strategy must try rule-based 
identification to the largest extend possible to be 
efficient. However, symptom-based identification is 
the only way for identification of non-anticipated 
faults, and should be applied later. 

4.2.2 Diversification 
The usual cost-driven approach suggests to test as 
close as possible to the target system. This is 
reasonable when the nominal properties shall be 
demonstrated, because a deviation on a non-
representative environment does not mean 
anything. This understanding is extrapolated to 
fault identification, thereby restricting conditions to 
the ones occurring on the target system. 

However, experience gained in the context of 
automated generation – just by turning a switch of 
the code generator into another position – suggest 
that it could be more efficient to take a non-
representative platform for fault identification. Of 
course, then rule-based identification is out of 
scope. Symptom-based identification is the only 
goal. Especially, dormant faults can be identified 
easily this way. 

4.2.2.1 Platform Diversification 
A dormant fault may be hidden on the native 
platform, but may immediately raise an activation 

condition and flag a symptom on another platform. 
An example is detection of access of NULL 
pointers which may dynamically occur and 
therefore cannot be detected by analysis. On the 
target platform such an access may be tolerated, 
e.g. under VxWorks on an Intel x86, on another 
platform not, e.g. under VxWorks on a Sparc. 

In this context a platform is understood as the 
triplet of operating system, compiler and processor 
type / architecture. There are multiple reasons for 
that: an OS cannot support a symptom’s 
identification feature because it is not supported by 
hardware, or it is not implemented in the OS or the 
compiler, be it intentionally or unintentionally. 

Another example is based on differences in 
processor architecture, e.g. RISC and CISC. It was 
recognised that an overflow in byte operations was 
masked by the RISC 32-bit architecture, while on 
Intel x86 with byte-instructions it was detected. 
Though on Sparc this is a dormant fault – as the 
result was correct, at least in this case – its (future) 
impact remains unpredictable in general, because 
the behaviour is undefined and depends on the 
actual capabilities of processor hardware and 
compiler. 

Remark: From a rigorous point of view it is 
reasonable to spend a considerable amount of 
effort to detect dormant faults even if they do not 
compromise a result in the tested cases. However, 
a valid conclusion “result not compromised” can 
only be done in general when a dormant fault has 
been detected and classified. As such an analysis 
is required after every change in the software – as 
long as the dormant fault is left in the software, the 
more efficient way is to fix it. 

4.2.2.2 Method and Tool Diversification 
Apart from platform diversification another option 
was recognised for diversification as already 
mentioned in Chapter 2.2: complementing analysis 
by testing. Of course, the other way around is also 
valuable. 

It has been observed that certain methods do not 
support detection of certain fault types from a 
principal point of view. Similarly, the related tools 
may not support it – either intentionally or 
unintentionally, though the method does it. In 
consequence, it is not sufficient, just to apply one 
tool or method, when a system is considered as 
critical.  

Exact knowledge on method and tool capabilities is 
required to have a chance to maximise coverage of 
fault types. Extended, non-expensive stimulation 
based on automation is a valuable approach for 
complementing analyses or legacy simulation 
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environments raising the fault identification 
probability by independent verification means. 

4.2.2.3 Summary on Diversification 
Automation – which does not require any manual 
intervention to reach the intended goal – 
significantly increases the chances of detecting a 
fault, either by opening the door towards different 
platforms at low costs, or by complementing the 
primary methods and tools by extended and 
independent fault identification capabilities. 

5 PRESENT AND FUTURE WORK 
The ISG tool for automated generation of 
distributed real-time systems from a specification 
without any manual intervention was the first in a 
series of generators followed later, e.g. for test 
generation from source code, interface adaptation, 
integration of source code, generation of SQL and 
the related GUIs, extension of legacy code through 
additional functionality, code and model 
transformation. 

Another interesting task is the automated porting of 
legacy code to a modern platform when the 
previous one disappears. 

Currently, timing analysis is based on stimulation 
with fault injection and observations in context of 
ISG, i.e. on test and dynamic analysis. In future, 
capabilities for static analysis of timing properties 
shall be made available through a bridge to a 
sophisticated analysis tool, considering more 
representative conditions like a task’s inner states 
and margins instead of exact performance values. 
This will enhance the validity of the overall result 
due to diversification considering test and analysis. 

6 CONCLUSIONS 
The automated approach for generation of 
executables from a specification implies the 
following major benefits:  

Firstly, a fast transition to the currently specified 
version of a system through iterations and 
refinements is supported, which provides higher 
flexibility at low costs to obtain a high quality 
product. Automated generation  requires excellent 
verification capabilities, otherwise garbage fed in at 
top will cause much more garbage in the form of 
generated code. 

Secondly, the verification and validation 
capabilities significantly increase the chances of 
fault identification, either by stimulation (incl. fault 
injection) at high stimuli rates, which never can be 
achieved manually, or by stimulation at realistic 
conditions not implying a risk to compromise fault 
activation or fault identification. 

Finally, due to the availability of a second version 
at low costs diversification can be applied easily, 
thereby raising the probability of fault identification. 

Regarding risk reduction the direct consequence of 
experience gained in the past is to focus on a 
systematic fault identification strategy based on 
diversification where the alternate versions can be 
obtained immediately – more or less – and at low 
costs. 

This leads to a “software bus” based on automated 
transformation of representations opening the door 
for complementary or identical verification 
capabilities. If complementary, more properties can 
be exploited, verified and validated, if identical, 
results can be cross-checked. 

Moreover, automatic test – though not perfect – 
turned out as a powerful means to capture faults, 
especially regarding non-anticipated faults, which 
cannot be identified by analysis from a principal 
point of view. 

However, whenever a non-anticipated fault is 
identified through testing, automatic analysis 
should be extended by adding a rule making the 
fault an anticipated fault. 

Another remarkable finding is that it is possible to 
identify faults based on certain symptoms without 
requiring any detailed knowledge about an 
application. This is not really new as we know from 
crashes flagging a non-anticipated fault. What is 
new, however, is to enforce this identification 
capability in a systematic manner and to extend it 
from run-time anomalies to more sophisticated 
anomalies where automation makes it feasible in 
practice. 

The means described above significantly enhance 
the quality of a product through simulation 
capabilities while reducing the costs for 
development and maintenance. 

 

 


