

- 1 -
Cleared Direct to Target – Approaching the Target System at a Touch via Simulation

© Copyright Dr. Rainer Gerlich BSSE System and Software Engineering 2010. All Rights Reserved.

BSSE System and Software Engineering

Cleared Direct To Target –
Approaching the Target System at a Touch via Simulation

Dr. Rainer Gerlich, Dr. Ralf Gerlich

BSSE System and Software Engineering, Auf dem Ruhbuehl 181,
88090 Immenstaad, Germany, Phone +49/7545/91.12.58, Mobile +49/171/80.20.659, +49/178/76.06.129

Fax +49/7545/91.12.40, e-mail:Rainer.Gerlich@bsse.biz, Ralf.Gerlich@bsse.biz URL:http://www.bsse.biz

ABSTRACT:
This paper describes an improved process for
development of software for critical systems fully
bridging the gap between a specification and an
executable target version by an automaton. The
process covers the broad class of distributed
and/or fault-tolerant and/or real-time systems, and
meets the needs of critical systems. It has its roots
in the space domain.

In the context of this process the role of simulation
is different from how it is usually understood.
Instead of establishing different model- and code-
bases for simulation and the final target version,
the process supports a smooth transition from
simulation to the target version, continuously
evolving the simulation version to the final version,
based on a single model

The purpose of this paper is to discuss the
process’ relevance to avionics systems in terms of
efficiency and flexibility of development, and
reliability, availability, safety and dependability
issues.

The automaton completely covers the
transformation of a specification into executable
code without any human intervention while putting
emphasis on verification and validation. The short
turn-around time allows an iterative and

incremental approach starting with simulation and
possibly emulation of hardware, then proceeding
smoothly via refinement towards the final version
executing on real hardware.

The process has been applied successfully to large
and complex applications, amongst which is an
experiment in use on-board of ISS.

As a result there is not only a significant impact on
the efficiency in approaching the final version for
the target, there are more benefits regarding fault
identification and risk minimisation based on a
number of means provided in the simulation
environment which can be added or removed just
by configuration switches.

1 THE PRINCIPAL APPROACH
The fully automated process (called ISG,
“Instantaneous System and Software Generation”)
is based on a modelling language allowing and
forcing to express all properties of a distributed
real-time system including fault tolerance and fault
handling. All relevant functional and non-functional
aspects are expressed in one notation. The
executable is automatically stimulated with valid
and invalid inputs. The degree of time jitter and
probability of loss of messages and data can be
specified.

Fig. 1-1: The ISG Process

- 2 -
Cleared Direct to Target – Approaching the Target System at a Touch via Simulation

© Copyright Dr. Rainer Gerlich BSSE System and Software Engineering 2010. All Rights Reserved.

BSSE System and Software Engineering

Due to stimulation the real-time, behavioural,
performance and robustness properties can be
continuously observed on the development or
target platform, supporting a continuous transition
between simulation and the target system version.

The modelling approach supports the smooth
transition from simulation to the final version. In
this context a “simulation version” is considered as
a version different from the final version.
Consequently, there are many simulation versions
– on host and target environment – and one final
version. The code generator transforming the
specification – the model – into an executable
version plays an important role in this process. It
does not only generate the code from the model,
but adds all the means needed for stimulation,
observation of properties , substitution of missing
components by intelligent stubs and configuring
the code for host or target. So it is just a matter of
setting configuration options of the code generator
to traverse the different aspects of verification and
representative validation in the simulation
environment, until the options for the final target
version – a lean version – are set.

1.1 Relevance to Avionics
Two main aspects shall be addressed here: the
support for validation of real-time operations,
focusing on the synchronous approach frequently
applied in avionics, and fault identification as an
important aspect of verification and validation of a
system’s properties.

1.1.1 Synchronous Systems
Currently, modelling and auto-coding in the context
of avionics is focusing on critical control systems
which are purely synchronous systems. However,
in future systems the event-driven part may not be
easily integrated into the synchronous concept,
e.g. due to a large variation of execution times and
required low latencies. In addition, distributed
system architectures enforce acknowledgement of
the asynchronous nature of real world.

The GALS approach – Globally Asynchronous,
Locally Synchronous, historically introduced in the
context of “system-on-chip” – raises the need for
better support of integration for both types of real-
time operations, synchronous and asynchronous
ones.

GALS acknowledges the fact that a globally
synchronous approach is impossible. Following
this conclusion the verification of a synchronous
implementation by pure synchronous means is
questionable. The cost barrier impeding a more

general approach in an asynchronous environment
can be reduced considerably by full automation as
supported by ISG.

1.1.2 Fault Identification
Fault identification in a simulation environment
requires conditions which foster occurrence of
faults and their detection..

As it is described in Chapter 2.3.2 the way a
system is stimulated may compromise or prevent
fault occurrence and identification. Through
automated code and test generation a system can
be stimulated in the context of its normal
operations and under representative timing
conditions. Similarly, the detection mechanisms
can be built in without compromising fault
activation and detection.

1.2 Main Features

1.2.1 Openness
The process covers asynchronous / event-driven
and synchronous features. It supports auto-
integration of algorithms, e.g. control algorithms,
into a distributed real-time infrastructure on the
basis of source code (C, Ada) – possibly generated
by other code generators such as Scade or
Matlab/Simulink.

1.2.2 Dependability Aspects
Verification and validation are major aspects of
dependability. The underlying meta-model of ISG
allows checking of correctness of a specification.
Due to its domain-specific nature, the structure of
the specification strictly requires the definition of all
relevant properties of the system required for full
automation at all stages of the development and
maintenance cycle.

Most notably, the modelling environment requires
an integrated view on timing and logical behaviour,
, thereby providing a wholesale picture of the
system to be built and constantly reminding the
modeller of the interdependence of functional and
non-functional aspects.

So an ISG model unambiguously defines the
behavioural und performance properties on
modelling level. The real properties are recorded
during execution for feedback.

This way a modeller is guided towards a correct
model. As the meta-model captures the rules of the
application domain more strictly than generic
approaches, the system generator can detect
many more logical errors before entering the

- 3 -
Cleared Direct to Target – Approaching the Target System at a Touch via Simulation

© Copyright Dr. Rainer Gerlich BSSE System and Software Engineering 2010. All Rights Reserved.

BSSE System and Software Engineering

generation phase than universal approaches, such
as UML.

Experience shows that already by such a feedback
on modelling errors a modeller significantly can
improve the envisaged approach, not only fixing
the reported bugs, but being forced to reconsider
the current approach, in general. The correctness
of the generated code as an important issue is
discussed in Chapter 1.2.4.

Validation of the specification is supported by
automated evaluation and visualisation of the
recorded properties. Due to auto-stimulation the
state space can be explored under practical
conditions.

Further, automated stimulation with a huge amount
of stimuli significantly increases the chance for the
detection of sporadic and non-anticipated faults.

The extended verification and validation
capabilities provided in the simulation environment
are a significant contribution to improve the
reliability, availability, safety and dependability
properties of a system under development.

1.2.3 Stimulation and Fault Injection
Stimulation extended through fault injection is a
typical part of simulation. Simulation opens the
door for systematic and representative exploitation
of the properties of a system.

Stimulation of a system is derived from its
specification. It is straight-forward to defive non-
nominal values from the nominal values as defined
in the specification – provided the specification is
expressed in a proper notation, e.g. the ISG
modelling language.

In a simulation environment more means are
available to systematically exploit the properties of
a system – provided representative conditions are
guaranteed regarding behaviour, performance and
resource properties.

At the end, the model as used for simulation
directly can be transformed into a target system
version.

1.2.4 Verification of the Code Generator
Today, code generators undergo certification,
which – although costly – is unsuited to exclude
faults or to even inspire confidence in the absence
of faults.

However, the fully automated process of ISG
allows automatic verification of every generated
application by automatically and independently

comparing the specification against the properties
observed during automatic stimulation.

Apart from this capability faults in the code
generator are easier to detect due to reuse of its
parts, because a certain feature of the code
generator contributes to several parts of the
generated application. For example, the features
for generating the behaviour of process or
message exchange are needed for every process
instance of an application. Through the higher
number of occurrences in an application the
chances to detect a fault increase accordingly.

The maintenance of the code generator supports
convergent removal of detected faults, while in
manual case there are a lot chances of introducing
faults.

1.2.5 Practicality and Adaptability
The ISG process as it is today evolved from the
manual development of distributed real-time
systems by continuously finding repeatedly
executed tasks and automating them until the full
development cycle was completely automated.
Formal consolidation of required inputs led to the
meta-model and tool landscape at BSSE as it is
today.

Automation in this manner avoids unnecessary
complexity at model level and not only reduces the
effort spent for design and development, but also
provides representativity, repeatability and
reproducibility of results. This is not possible when
manual intervention is part of the generation
process, and difficult when introducing automation
in a top-down approach.

It can therefore be said that the process originated
from bottom-up experience and thus is proven in
practice, not only in practicality and product quality,
but also in process efficiency.

Although the details of implementation – most
notably the hardware, operating systems and
communication infrastructure – may vary, the
process is flexible enough to adapt to such
different requirements.

It is even possible to generate a heterogeneous
system regarding the operating system and the
processor type. An instance of a process type may
run under VxWorks on an Intel architecture, while
another instance runs under Linux on a Sparc in
the same application. The generation process
creates individual code for each of the platforms
and takes care of the conversions necessary (e.g.
endianness).

- 4 -
Cleared Direct to Target – Approaching the Target System at a Touch via Simulation

© Copyright Dr. Rainer Gerlich BSSE System and Software Engineering 2010. All Rights Reserved.

BSSE System and Software Engineering

In addition, an automated process provides means
for representative exploitation of a system’s
properties through stimulation and fault injection,
starting with simulation and ending with the final
version.

2 MAJOR RESULTS
The process has been applied successfully to large
and complex applications of which four examples
are briefly described below.

Due to the fast transition from an idea to the
corresponding feedback from an executable a
number of aspects are supported:

• Generation of a software product, e.g. the real-
time and communication infrastructure of a
distributed embedded system, possibly
extended through capabilities for
telecommanding, telemetry handling and data
processing and monitoring, and fault
management.

• Verification and validation in the context of
simulation by approaching the final version
through incremental refinement, iterations and
emulation of components.

• architecture evaluation – inherently covered by
an iterative approach.

• risk analysis – a consequence of systematic
verification and validation support together with
full automation – either based on
representative simulation or the final version,
allowing to get an opinion on a specification
from real feedback rather fast.

2.1 From specification to target system at
a touch
For a complex material-science experiment on-
board ISS the complete distributed real-time
infrastructure, the whole chain from (tele-)
commanding to telemetry frame generation was
automatically generated from a specification
including data acquisition with firmware, calibration
and limit monitoring and support to fault
management.

During hardware-software integration the hardware
configuration frequently switched between 1 and 2
processors. Due to the generation process

• adaptation to the different hardware
configurations could be done without changing
manually any source code. Changing the
names of the available processors was
sufficient.

• the 2-processor system could continue test
and integration as a virtual 2-processor system
on one physical processor only – in a
representative manner.

Characteristics: 2 processors (Sparc@14 MHz, 6
MB), ~40 processes, 500 data end items, 500
telecommands.

2.2 Architecture Evaluation
For a backup emergency power supply of a
nuclear power plant the impact of spatial
distribution on a synchronous system with high
redundancy (up to 3) and voting was evaluated.
The distributed architecture of the system was
expressed as specification from which
automatically executable code was generated. The
algorithms deciding whether the power supply shall
be started or not were modelled in Scade,
automatically translated into C code and
automatically integrated by ISG.

As a result of combining the results from both code
generators, ISG and Scade, on C level a virtually
distributed, but representative system was
established at short hand and its properties were
observed in practice. A high number of
discrepancies at the final voter stage was detected
(~15%) already at low time jitter of ~0.5%.

This contradicted a previously conducted, thorough
theoretical analysis suggesting robustness against
time jitter. The results as observed in practice were
supported by another theoretical analysis which –
however – only concluded that a proof on
robustness is impossible, without being able to
explicitly conclude on insufficient robustness.
Therefore robustness was still trusted until the
feedback from practice was available.

Characteristics: 16 processes, 16 processors,
simple FSMs

2.3 Risk Analysis
Due to the fast transition from a specification to the
corresponding product the fully automated
approach may be applied to generate a second
version of an already existing system to benefit
from verification and validation capabilities not
available in the native system environment.

Such an approach requires three steps: reverse
engineering of the existing code to derive an input
which can be fed into the automated generation
chain, a bridge to the ISG modelling language
ISGL, and the automated generation with ISG
itself.

- 5 -
Cleared Direct to Target – Approaching the Target System at a Touch via Simulation

© Copyright Dr. Rainer Gerlich BSSE System and Software Engineering 2010. All Rights Reserved.

BSSE System and Software Engineering

This approach was already successfully applied to
the following applications from space area.

2.3.1 Large Flight Application
A large application of 400+ KLOC of Ada code was
controlled by 38 Finite State Machines (FSM). The
aim was to investigate the properties of the FSMs
with ISG. As an extension of ISG, a bridge was
added which extracted the relevant information
from Ada and transformed it into a model
specification, from which subsequently executable
code was automatically generated. Nominal and
non-nominal stimuli were automatically derived
from the specification of the FSMs. Due to auto-
stimulation the properties of the FSM could be
observed and analysed, though the state space
was rather large, even for one FSM (see Fig. 2-1).

Just by looking for red colour in the graphics it was
detected that the FSMs are consist of a number of
subnets of states with no transition possible
between different subnets

There was an unchecked mechanism foreseen at
lower level to command transitions from any state
to any other state, but it was impossible to track
the relevant information – neither manually nor
automatically – due to type casting and a complex
data flow in Ada in combination with roots in the
database. The conclusion was that the reachability
of states was still an open issue to be tackled.

Fig. 2-1: Unexpected Unreachable Subnets of
States

Characteristics: 38 processes, 1 processor, 380
states, 1500 transitions, 10000 actions in the
transitions, overall state space ~1034.

2.3.2 Fault-tolerant Processing
For demonstration of capabilities of model-based
software engineering (MBSE) a model of a
command processing was established which
should tolerate loss of commands during command
verification, queuing and execution.

The model was established in UML2 and was
subject of verification based on the supported
means of the chosen tool. The verification result as
obtained in the UML2 environment was: perfect.

To get a second opinion on verification the UML2
model was automatically transformed to ISGL. The
obtained report on system properties showed
some red colour for coverage of states and state
transitions (see Fig. 2-2).

Fig. 2-2: Red Colour as Marker for a Non-
anticipated Fault

A brief analysis yielded that the missing coverage
occurred in a fault handling branch, only entered
when a command is lost. Therefore the fault
injection capability for loss of signals was
activated, expecting now full coverage.

However, the situation became worse: more states
were not covered instead. A further analysis
showed that the fault-tolerant algorithm was faulty
and caused a deadlock.

This could not detected before, because the UML2
tool did not support automated loss of commands.
Verification could only be achieved by stepping
manually through the model. This may have
suppressed a condition– unintentionally – which
otherwise would have enforced entering the fault-
handling branch. Therefore the real consequences
of a loss never were observed before.

Also, it was very difficult to detect the deadlock by
manual inspection, because the involved logic was
spread over two processes.

In the automated case the loss was induced
automatically in the real system context, not having
any chance of modifying the execution sequence
in a way compromising the verification result.

This fault would have been immediately detected in
practice when a loss of a command would have
been occurred, because the deadlock would have
stopped execution. This is the good point.
However, the big question is, whether the loss
would have been initiated on the real system
before putting it into operation, or whether
engineers would have completely relied on the
results of verification as obtained in the modelling
environment.

Characteristics: 4 processes, 1 processor, states,
state transitions, actions.

- 6 -
Cleared Direct to Target – Approaching the Target System at a Touch via Simulation

© Copyright Dr. Rainer Gerlich BSSE System and Software Engineering 2010. All Rights Reserved.

BSSE System and Software Engineering

3 BEYOND SYNCHRONOUS
PROCESSING
The synchronous paradigm eases verification of a
system’s timing properties by considering periodic
and fix-phased processing. Essential safety
properties can be easier proven when supposing
synchronicity.

However, the world is dominated by
asynchronicity, and synchronous approaches
attempt to artificially consider asynchronicity in a
synchronous context.

While the lower hierarchy levels of a system –
which are close to the physical environment – are
of synchronous nature, the asynchronous
properties are more dominant, the higher the level
in the system hierarchy is. E.g. at higher levels
command execution, exception handling or
reconfiguration has to be done, which is heavily
event-driven and nearly can be harmonised with a
synchronous approach.

Clock synchronisation is difficult to achieve in a
perfect manner within a distributed system. This
led to the GALS architecture, originally introduced
for “System-on-Chip”: Globally Asynchronous,
Locally Synchronous.

As outlined in Chapter 2.2 the results of safety
analyses based on the synchronous paradigm may
not always be true, because hidden facts
compromise the basic assumptions of a proof.

From this point of view it must be doubted whether
the result of a single analysis can be considered
as the definitive answer on safety properties. This
question is even more essential for critical
systems, and also addresses non-anticipated faults
e.g. in the proofer algorithms or their
implementation.

Therefore, a second opinion may be very valuable
to confirm an analysis result in an environment
representative for the real world, i.e. an
environment supporting asynchronicity. Fault
injection, e.g. time jitter, causes asynchronicity
regarding the synchronous paradigm and focuses
on the robustness in real world context.

An automated transition to an executable version –
as described in Chapter 2.2 – providing sufficient
capabilities for observation of properties is a cost-
efficient approach when needing a second branch
on verification under representative conditions of
real world.

4 IMPACT ON FAULT IDENTIFICATION
Through execution of a number of exercises three
major improvements for fault identification were
recognised:

• the enhanced support for identification of
sporadic and non-anticipated faults by raising
the activation probabilities,

• the identification of faults though not knowing
the desired properties, and

• raising fault identification probability through
diversification, i.e. through an independent
opinion.

4.1 Increased Identification Probability
Through automation much more stimuli can be
injected without disturbing the timing conditions for
fault activation and identification. In addition, fault
injection can be seamlessly integrated with
nominal stimulation. The same is true for
instrumentation of the code to record the
observations.

This allows to achieve a significantly increased
coverage of system states up to full coverage and
visualisation of recorded properties in different
shapes of detail and from different points of view,
needed to fully understand the observed
properties.

4.2 Capturing of Non-Anticipated Faults

4.2.1 Identification by Symptoms
Fault identification based on symptoms is not really
new. However, it was recognised that it may
systematically be extended once the mechanisms
were understood as very valuable for identification
of faults, especially of non-anticipated ones.

A program abort is a classical mechanism for
detecting a fault without knowing in detail what a
system ought to do. Observation of such a
symptom is the starting point for identification of
the source of the fault. In fact, a symptom like an
abort is also a property of a system – but an
undesired one, which is covered by rather generic
requirements like “A system should never abort” –
if such a requirement is given at all.

However, from such a requirement there is no
direct way to symptoms flagging a fault. Moreover,
several ways usually exist leading to the same or
different faults. It is likely that a symptom may help
to detect a number fault types manifesting in a
fault.

- 7 -
Cleared Direct to Target – Approaching the Target System at a Touch via Simulation

© Copyright Dr. Rainer Gerlich BSSE System and Software Engineering 2010. All Rights Reserved.

BSSE System and Software Engineering

Having identified the capabilities of symptom-
based fault identification it is straight-forward to
extend the known scheme.

E.g. coverage of states, state transitions or code
(on model or source code level) is a valuable
concept for identification of non-anticipated faults
based on a requirement like “Full coverage shall be
reached”. However, it is evident that symptoms
may be observed without the need for an explicit
requirement when providing adequate reporting
capabilities. Automated code generation perfectly
supports such means for recording and
visualisation of symptoms.

Sufficient visualisation is very important. This does
not only mean just to print or draw something, it is
essential to present the information
comprehensively, e.g. by filtering of information,
because usually there is a huge amount of
information in which some small, but important
pieces could be hidden.

The red colour in Fig. 2-1 and Fig. 2-2 is a simple
measure to mark a fault symptom in a way easily
understood.

Finally, it should be mentioned, that symptom-
based fault identification is much more expensive
than rule-based identification (violation of a rule).
So an optimum strategy must try rule-based
identification to the largest extend possible to be
efficient. However, symptom-based identification is
the only way for identification of non-anticipated
faults, and should be applied later.

4.2.2 Diversification
The usual cost-driven approach suggests to test as
close as possible to the target system. This is
reasonable when the nominal properties shall be
demonstrated, because a deviation on a non-
representative environment does not mean
anything. This understanding is extrapolated to
fault identification, thereby restricting conditions to
the ones occurring on the target system.

However, experience gained in the context of
automated generation – just by turning a switch of
the code generator into another position – suggest
that it could be more efficient to take a non-
representative platform for fault identification. Of
course, then rule-based identification is out of
scope. Symptom-based identification is the only
goal. Especially, dormant faults can be identified
easily this way.

4.2.2.1 Platform Diversification
A dormant fault may be hidden on the native
platform, but may immediately raise an activation

condition and flag a symptom on another platform.
An example is detection of access of NULL
pointers which may dynamically occur and
therefore cannot be detected by analysis. On the
target platform such an access may be tolerated,
e.g. under VxWorks on an Intel x86, on another
platform not, e.g. under VxWorks on a Sparc.

In this context a platform is understood as the
triplet of operating system, compiler and processor
type / architecture. There are multiple reasons for
that: an OS cannot support a symptom’s
identification feature because it is not supported by
hardware, or it is not implemented in the OS or the
compiler, be it intentionally or unintentionally.

Another example is based on differences in
processor architecture, e.g. RISC and CISC. It was
recognised that an overflow in byte operations was
masked by the RISC 32-bit architecture, while on
Intel x86 with byte-instructions it was detected.
Though on Sparc this is a dormant fault – as the
result was correct, at least in this case – its (future)
impact remains unpredictable in general, because
the behaviour is undefined and depends on the
actual capabilities of processor hardware and
compiler.

Remark: From a rigorous point of view it is
reasonable to spend a considerable amount of
effort to detect dormant faults even if they do not
compromise a result in the tested cases. However,
a valid conclusion “result not compromised” can
only be done in general when a dormant fault has
been detected and classified. As such an analysis
is required after every change in the software – as
long as the dormant fault is left in the software, the
more efficient way is to fix it.

4.2.2.2 Method and Tool Diversification
Apart from platform diversification another option
was recognised for diversification as already
mentioned in Chapter 2.2: complementing analysis
by testing. Of course, the other way around is also
valuable.

It has been observed that certain methods do not
support detection of certain fault types from a
principal point of view. Similarly, the related tools
may not support it – either intentionally or
unintentionally, though the method does it. In
consequence, it is not sufficient, just to apply one
tool or method, when a system is considered as
critical.

Exact knowledge on method and tool capabilities is
required to have a chance to maximise coverage of
fault types. Extended, non-expensive stimulation
based on automation is a valuable approach for
complementing analyses or legacy simulation

- 8 -
Cleared Direct to Target – Approaching the Target System at a Touch via Simulation

© Copyright Dr. Rainer Gerlich BSSE System and Software Engineering 2010. All Rights Reserved.

BSSE System and Software Engineering

environments raising the fault identification
probability by independent verification means.

4.2.2.3 Summary on Diversification
Automation – which does not require any manual
intervention to reach the intended goal –
significantly increases the chances of detecting a
fault, either by opening the door towards different
platforms at low costs, or by complementing the
primary methods and tools by extended and
independent fault identification capabilities.

5 PRESENT AND FUTURE WORK
The ISG tool for automated generation of
distributed real-time systems from a specification
without any manual intervention was the first in a
series of generators followed later, e.g. for test
generation from source code, interface adaptation,
integration of source code, generation of SQL and
the related GUIs, extension of legacy code through
additional functionality, code and model
transformation.

Another interesting task is the automated porting of
legacy code to a modern platform when the
previous one disappears.

Currently, timing analysis is based on stimulation
with fault injection and observations in context of
ISG, i.e. on test and dynamic analysis. In future,
capabilities for static analysis of timing properties
shall be made available through a bridge to a
sophisticated analysis tool, considering more
representative conditions like a task’s inner states
and margins instead of exact performance values.
This will enhance the validity of the overall result
due to diversification considering test and analysis.

6 CONCLUSIONS
The automated approach for generation of
executables from a specification implies the
following major benefits:

Firstly, a fast transition to the currently specified
version of a system through iterations and
refinements is supported, which provides higher
flexibility at low costs to obtain a high quality
product. Automated generation requires excellent
verification capabilities, otherwise garbage fed in at
top will cause much more garbage in the form of
generated code.

Secondly, the verification and validation
capabilities significantly increase the chances of
fault identification, either by stimulation (incl. fault
injection) at high stimuli rates, which never can be
achieved manually, or by stimulation at realistic
conditions not implying a risk to compromise fault
activation or fault identification.

Finally, due to the availability of a second version
at low costs diversification can be applied easily,
thereby raising the probability of fault identification.

Regarding risk reduction the direct consequence of
experience gained in the past is to focus on a
systematic fault identification strategy based on
diversification where the alternate versions can be
obtained immediately – more or less – and at low
costs.

This leads to a “software bus” based on automated
transformation of representations opening the door
for complementary or identical verification
capabilities. If complementary, more properties can
be exploited, verified and validated, if identical,
results can be cross-checked.

Moreover, automatic test – though not perfect –
turned out as a powerful means to capture faults,
especially regarding non-anticipated faults, which
cannot be identified by analysis from a principal
point of view.

However, whenever a non-anticipated fault is
identified through testing, automatic analysis
should be extended by adding a rule making the
fault an anticipated fault.

Another remarkable finding is that it is possible to
identify faults based on certain symptoms without
requiring any detailed knowledge about an
application. This is not really new as we know from
crashes flagging a non-anticipated fault. What is
new, however, is to enforce this identification
capability in a systematic manner and to extend it
from run-time anomalies to more sophisticated
anomalies where automation makes it feasible in
practice.

The means described above significantly enhance
the quality of a product through simulation
capabilities while reducing the costs for
development and maintenance.

