
Generic and Extensible Automatic Test Data
Generation for Safety Critical Software with CHR

Ralf Gerlich

BSSE, Auf dem Ruhbuehl 181, D-88090 Immenstaad, Germany,
ralf.gerlich@bsse.biz

Abstract. We present a new method for automatic test data generation
(ATDG) applying to semantically annotated control-flow graphs (CFGs),
covering both ATDG based on source code and assembly or virtual machine
code. The method supports a generic set of test coverage criteria, including
all structural coverage criteria currently in use in industrial software test for
safety critical software.
Several known and new strategies are supported for avoiding infeasible paths,
that is paths in the CFG for which no input exists leading to their execution.
We describe the implementation of the method in CHR∨ [1] and discuss
difficulties and advantages of CHR in this context.

1 Introduction

Testing is one of the most important methods of analytical quality assurance of
software-based systems, but also one of the most expensive, causing 50% of the
effort for a typical software project [2] and nearly 80% for safety-critical software.

Software is categorised as safety-critical if its failure can lead to death or serious
injury of humans, damage or loss of equipment or environmental harm. This kind
of software is typically most complex as it has to handle and recover from many
different types of failure, leading to individual components of hundreds of thousands
or even millions lines of C or Ada code and thousands of interdependent functions.

Automatic Test-Data Generation (ATDG) aims to automate selection of test
inputs and — if possible — the expected outputs. However, ATDG requires formal
answers to two questions:

– Which criteria shall govern the selection of test data?
– How can we find samples that fulfill these criteria?

In practice the first question is typically answered by a list of well-known struc-
tural test criteria [3]. These criteria are defined based on the activation of specific
portions of the control-flow graph (CFG) of the function under test. For example,
the all-nodes criterion requires that for each node there is at least one test case by
which the node is executed. Using the edges of the CFG, all-edges can be similarly
defined.

Data-flow-based criteria are based on so-called definition-free paths. A path is
definition-free regarding some variable v if no node in the path contains an assign-
ment to v, except for the start and the end node. For example, the criterion all-defs
requires that for each definition d of a variable v there must be at least one test
case executing a definition-free path regarding v from d to a use u of v.

One approach to the second question is random testing [4], where inputs are
selected randomly and the fulfillment of the criterion is checked afterwards [5]. Here
statistical metrics on software quality can be derived. However, some portions of
the CFG can only be reached for a small set of inputs and are therefore difficult to
activate randomly.

Another approach is construction of some path in the CFG that fulfills the re-
spective criterion, symbolically executing it to derive a set of equations and inequa-
tions and solving for the inputs [6]. However, in most cases there is a considerable
set of so-called infeasible paths which cannot be activated by any input [7].

Gotlieb et al [8] propose a method for handling structured programs only con-
sisting of while- and if-else-constructs. Multiple parts of an execution sequence
can be processed in parallel, propagating information to be used for detecting and
avoiding infeasible paths. Although a CFG can be emulated by a while-if-program,
it is difficult to translate a CFG making proper use of the features of the method.
Further, coverage goals have to be described by reference to the structured con-
structs, which specifically makes enforcing data-flow-based criteria tedious.

Godefroid et al [9] propose to randomly select an input and monitor the exe-
cution path for this input. Either the path matches the goal or there is a point in
execution where a conflicting decision is made. The first conflicting decision is found
and the path leading up to it is executed symbolically to derive a set of constraints.
The constraints are then amended to enforce a decision matching the goal and the
process is repeated with the solution of the constraint system as new input, if any.
However it is possible that all paths with the selected prefix are either infeasible or
do not match the goal.

We present an approach that overcomes these limitations and allows to compare
different strategies, and discuss its implementation in CHR∨.

This paper is organised as follows: In Sect. 2 we briefly describe the relational
semantics of CFGs, which is used in Sect. 3 to formalise some structural test criteria
and to introduce solution rules and strategies. In Sect. 4 we discuss some of the
advantages and disadvantages of CHR which became visible during implementation.
Some results obtained from the prototype implementation are shown in Sect. 5,
followed by our conclusions in Sect. 6.

2 Semantics of Control-Flow Graphs

For a detailed description of the theoretical foundation please refer to [7].

A CFG is a directed graph consisting of a finite set of nodes N and edges
E ⊆ N × N , with two special nodes, the entry node s and the exit node e. The
entry node s has no incoming edges, while the exit node e has no outgoing edges.
Further, every node n is reachable from s and e is reachable from every node n. We
define E+ to be the transitive closure of E. See Fig. 1(a) for an example CFG.

We extend a CFG to a program-flow graph (PFG) defining the semantics of the
program. For this we first introduce the notion of memory state. A memory state
represents the contents of memory relevant to the program at any given time during
execution of a program. It can be represented, for example, as a tuple (v1, . . . , vn),
where vi represents the value of a variable Vi in that state. In the following, we will
use S to designate the set of memory states.

During execution, the program will proceed through its nodes, modifying the
memory state by the statements inside the nodes. After execution of a node, a
decision is required at which node the execution shall continue. A successor is eligible
if and only if the predicate attached to the edge leading to the successor is fulfilled
by the current memory state. Further, the modification of the memory state can
be described as a relation between the memory state as found on entry to the node
and the memory state as found on exit to the node.

In the following, the predicate attached to edge (u, v) is called C (u, v) and the
relation for node u is called B (u). We assume that the predicates and the relations
are decidable.

A graphical representation of a PFG is given in Fig. 1(b). Here we define S as the
set of binary tuples of natural numbers N2. In this example, the body of node 3 is to
be understood as the relation B (3) with (a1, b1) B3 (a2, b2)⇔ b2 = b1∧a2 = a1−b1.

1

2

3 4

5

6

(a) Control-flow graph

a:=a-b b:=b-a

a>b a<b

a=b

1

2

3 4

5

6

(b) Program-flow graph

Fig. 1. Control- and Program-flow graphs for Euclid’s algorithm

Given two nodes a and b we can define a relation S[a,b] ⊆ S × S. For any two
memory states x, y ∈ S, we have x S[a,b] y if and only if input x to node a can be
transformed to output y of node b along some execution path from a to b. We call
S[a,b] the specification of all paths from a to b.

Similarly, we can define a relation I[a,b] ⊆ S × S which relates the outputs of
a to the inputs of b. We call I[a,b] the inner specification of all paths from a to
b, namely because it represents the transformations described by S[a,b] minus the
application of the bodies of a and b at the beginning respectively the end of the
execution sequence.

The formalism can be used to model non-deterministic programs, but in practice
non-deterministic programs are the exception.

3 Test-Data Generation

Using the relations defined in Sect. 2 we can now formalise several structural cov-
erage criteria. For example, in order to cover some specific note n ∈ N \ {s, e}, we
have to find some input x ∈ S that will lead to execution of node n. This is only
the case if there is some y1 ∈ S so that x S[s,n] y1 holds. For deterministic PFGs,
this necessary condition is also sufficient.

If we not only want to ensure the execution of n but also the completion of the
program afterwards, we need y1, y2, y3 ∈ S so that x S[s,n] y1∧y1 I[n,e] y2∧y2 B (e) y3
hold.

Similarly, if we want to ensure execution of some edge (u, v), we need some y1 ∈ S
so that x S[s,u] y1∧y1 ∈ C (u, v) holds. Definition-free paths can be formalised using
appropriate extensions of I[a,b] and S[a,b] [7].

We can see that these conditions resemble the declarative content of a CHR∨

goal. A constructive proof for satisfiability of such a goal will also yield candidate
values for x and therefore the desired candidates for test inputs.

In this section we show a set of CHR∨ rules, which can be used to produce such a
constructive proof or to show non-satisfiability. We will use the built-in constraints
from Tab. 1. Note that ∃y : x S[s,e] y is satisfiable for some fixed x if and only if
the program terminates on x. Therefore our CHR∨-program cannot terminate on
all possible goals.

Table 1. Built-in constraints

Constraint Semantics

edge(U,V) (u, v) ∈ E
reachable(U,V) (u, v) ∈ E+

body(U,X,Y) x B (u) y
cond(U,V,X) x ∈ C (u, v)
deffree(U,W,V) all paths from u to w are definition-free regarding v
onallpaths(U,W,V) all paths from u to w proceed from u via v to w
value(X,Var,Val) Val is the value of variable Var in state X

First of all, we can construct x S[a,b] y using B and I, as already indicated in
Sect. 2: For any given x, y ∈ S, x S[a,b] y holds if and only if at least one of the
following cases applies:

– a = b ∧ x B (a) y.
– ∃y1, y2 ∈ S : x B (a) y1 ∧ y1 I[a,b] y2 ∧ y2 B (b) y.

This is implemented in Rule spec_to_ispec in Lst. 1, representing x S[a,b] y as
spec(A,B,X,Y) and x I[a,b] y as ispec(A,B,X,Y).

Now we can concentrate on solving x I[a,b] z, which holds if and only if at least
one of the following cases applies:

– There is an edge from a to b and x ∈ C (a, b) ∧ x = z holds.
– The node n is a sucessor of a so that b can be reached from n and ∃y ∈ S : x ∈
C (a, n) ∧ x B (n) y ∧ y I[n,b] z holds.

They are implemented in Rule step_fwd, providing a way of constructing a
solution by iteratively stepping through the program in a forward direction. Analo-
gously, Rule step_bwd implements iteratively stepping backwards through the pro-
gram.

However, in some cases there are nodes which are traversed on every path from
a to b. In the CFG shown in Fig. 1(a), for example, any path from node 3 to node
6 will traverse nodes 3, 5, 2 and 6. In case such a node n is known, we can split
paths from a to b into two sub-paths from a to n and from n to b.

This split is implemented in Rule split. Note that for any pair of a and b there
may be several different nodes n which are traversed on every path from a to b.
However it can be shown that the choice of n is not relevant for the solution and
a program consisting only of Rule split is confluent. In our prototype, we derive
candidate split nodes using an efficient algorithm by Lengauer and Tarjan [10, 7].

The two subpaths introduced by split are not independent as the output of
the first subpath is connected to the input of the second subpath via the body of n.
However, we can exploit monotony and preservation properties of I[a,b] to propagate
information across these subpaths. One interesting property is the preservation of
variable values. If we know that all paths from a to b are definition-free regarding
some variable v, then we know that the value of v cannot change along any execution
path from a to b. This notion is implemented in Rule prop_var.

Note that already a program consisting only of Rule spec_to_ispec and either
Rule step_fwd or Rule step_bwd would implement the whole theory of I and S. The
Rules prop_var and split are mainly required for improved search performance.

Therefore, in our actual implementation we allowed selectively disabling any of
the latter rules and chosing at least one of the stepping rules. Such a configuration
is called a strategy.

The body/3 and cond/3 built-in constraints are implemented as Prolog clauses,
in turn using a custom-built solver for finite domain constrains. The latter is imple-
mented in CHR as well, combining classic domain-filtering solution strategies with

spec_to_ispec @ spec(U,W,X,Z) <=>

(U=W, body(U,X,Z));

(body(U,X,Y1), ispec(Y1,U,W,Y2), body(W,Y2,Z)).

prop_var @ ispec(U,W,X,Y) ==> reachable(U,W), deffree(U,W,V) |

value(X,V,V1), value(Y,V,V2), V1=V2.

split @ ispec(X,U,W,Z) <=> reachable(U,W), onallpaths(U,W,V) |

ispec(X,U,V,Y), body(V,Y,Z), ispec(Y,V,W,Z).

step_fwd @ ispec(X,U,W,Z) <=>

(edge(U,W), X=Z, cond(U,W,X));

(edge(U,V), reachable(V,W),

cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

step_bwd @ ispec(X,U,W,Z) <=>

(edge(U,W), X=Z, cond(U,W,X));

(edge(V,W), reachable(U,V),

ispec(X,U,V,Z), body(V,Z,Y), cond(V,W,Z)).

Listing 1: CHR∨-Implementation

axiomatic rules. This way inconsistencies such as a < b, b < a can be detected more
efficiently using the transitivity and irreflexivity of < than by pure domain filtering.

For testing deterministic selection of test inputs is not desirable. Therefore we
implemented a probabilistic version of the program, in which in every step first the
Rules spec_to_ispec, split and prop_var are applied exhaustively, if enabled.
After that, stepping forward or backward is selected with probability p and com-
pletion of a subpath by direct edge traversal is selected with probability 1 − p, if
applicable. If both step_fwd and step_bwd are enabled — called a mixed config-
uration — they are applied with the same probability. The construction of a path
now becomes a Bernoulli experiment, favouring shorter paths, but this bias can be
at least partially compensated by varying p.

If stepping through a further node is selected, one of the alternative successors
is selected according to a slightly skewed uniform distribution. Here nodes inside a
loop are favoured over nodes by which the loop is exited in order to avoid constant
and minimal mean iteration counts for inner loops [7].

4 Implementation Issues

Although the theoretical construction theorems are quite similar to the declarative
semantics of CHR rules, it was not possible to transform them directly.

For example, the desired probabilistic behaviour as described in Sect. 3 can be
modelled with Probabilistic CHR (PCHR) [11], but only by splitting up alternatives
of Rules step_fwd and step_bwd into individual rules and thereby giving up the
connection to the declarative semantics of CHR∨. Additionally, the second alterna-
tive of these rules has to be boxed into another constraint to delay the selection of
the successor respectively predecessor node. Otherwise, each of the possible inter-
mediate nodes would weigh in as an alternative to closing a subpath, making the
probability of stepping dependent on the number of available intermediate nodes.

From a first look it seems that CHRiSM [12] provides a better integration of
PCHR with CHR∨. Unfortunately, it was not available during implementation of
the prototype.

Also, the first alternatives of Rules step_fwd and step_bwd are actually only
present in the first of two cases of the stepping theorem, namely the case (u,w) ∈ E.
So in these rules, edge(U,W) actually is a guard, but as CHR∨ does not allow
individual guards for alternatives, the constraint had to be moved into the body

of the first alternative. Operationally, this does not make a difference as the first
alternative does fail if there is no edge from u to v, just as if it had not been activated
due to the guard.

Further, the second alternatives of Rule step_fwd and step_bwd actually corre-
spond to a comprehensive union over all cases of (u, v) ∈ E, (v, w) ∈ E+. As edge/2
is a built-in constraint, search over its solutions is not supported by the declarative
semantics of CHR∨. The program again is only operationally correct and only be-
cause the underlying host, SWI Prolog, allows search on edge/2, respectively our
search extension for PCHR considers all applicable instances of a rule.

Still, these constraint solvers would be hardly manageable without CHR at all.
At 26 constraints in 126 rules for the built-in solver and 45 constraints — many
of them part of the probabilistic selection implementation or used for debugging
purposes — in 74 rules for the path construction solver, a manual implementation
is not feasible.

A CHR rule expresses interdependencies of many constraints. These interdepen-
dencies are difficult to handle with the classical “separation-of-concerns” approach
to limiting complexity. Therefore a CHR compiler taking the burden of keeping an
implementation of that size consistent is a huge relief for the developer.

5 Evaluation

We have applied the program to several example programs and determined the
strategies performing best and worst as shown in Tab. 2. During the experiments, the
length of the constructed path and the time required for construction were recorded.
The best strategy was determined based on a fit of a second-order polynomial to
the data as well as the observed scatter. The best overall strategy is marked with a
†-symbol.

Table 2. Comparison of Strategies

Program Goal best worst
without split with split

Fibonacci feasible path step_bwd† step_bwd mixed+split

Selection Sort feasible path step_fwd† n/a step_fwd+split

strcmp without break result = 0 step_bwd† n/a mixed+split

strcmp with break result = 0 mixed step_bwd† mixed+split

Insert into array cover node mixed step_bwd† step_fwd+split

Several of the strategies showed a notable scatter in runtime due to backtracking.
In some cases, the runtime impact of backtracking is so high that only very short
paths can be constructed in an acceptable time, as shown in Fig. 2(b).

6 Conclusions and Outlook

We have presented a novel approach to ATDG and its implementation in CHR∨.
The approach supports several combinable path construction strategies, none of
which is optimal, and a generic set of structural coverage criteria, including all
industrial criteria for safety-critical software.

Unfortunately, none of the currently available CHR compilers is formally quali-
fied according to industry standards. Such a qualification is necessary for acceptance
of development tools in the context of safety-critical applications. In contrast, the

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140

ti
m

e
 /
 s

length of path

step_fwd
step_bwd

mixed

(a) without split

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140

ti
m

e
 /
 s

length of path

step_fwd
step_bwd

mixed

(b) with split

Fig. 2. Performance measurements for Selection Sort

argument in favour of CHR-based tools is strongly supported by the close connection
of theory and practice in CHR and most of its variants.

Further research will focus on the possible application of CHRiSM as well as on
integration with results from static program analysis such as abstract interpretation.
Also, several projects for application on real-life safety-critical software are already
defined and a toolchain for the language C based on the method is currently under
development.

References

1. Frühwirth, T., Abdennadher, S.: Essentials of Constraint Programming. Springer
Verlag (2003)

2. Frederick P. Brooks, J.: The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley (1995)

3. Rapps, S., Weyuker, E.J.: Data flow analysis techniques for test data selection. In:
ICSE ’82: Proceedings of the 6th international conference on Software engineering,
IEEE Computer Society Press (1982) 272–278

4. Hamlet, R.: Random testing. In Marciniak, J., ed.: Encyclopedia of Software Engi-
neering. Wiley (1994) 970–978

5. Gerlich, R., Gerlich, R., Boll, T.: Random testing: From the classical approach to a
global view and full test automation. In: RT ’07: Proceedings of the 2nd international
workshop on Random testing, ACM (2007) 30–37

6. Denise, A., Gaudel, M.C., Gouraud, S.D.: A generic method for statistical testing.
In: Proceedings of the 15th IEEE International Symposium on Software Reliability
Engineering (ISSRE), IEEE (2004) 25–34

7. Gerlich, R.: Verallgemeinertes Rahmenwerk zur constraintbasierten Testdatenerzeu-
gung aus Programmflussgraphen. PhD thesis, Faculty of Engineering and Computer
Science, University of Ulm, Germany (2009)

8. Gotlieb, A., Botella, B., Rueher, M.: Automatic test data generation using constraint
solving techniques. SIGSOFT Softw. Eng. Notes 23(2) (1998) 53–62

9. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, ACM (2005) 213–223

10. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph.
ACM Trans. Program. Lang. Syst. 1(1) (1979) 121–141

11. Frühwirth, T., Pierro, A.D., Wiklicky, H.: Probabilistic Constraint Handling Rules. In:
WFLP 2002, 11th International Workshop on Functional and (Constraint) Logic Pro-
gramming. Volume 76 of Electronic Notes in Theoretical Computer Science., Elsevier
(November 2002) 1–16

12. Sneyers, J., Meert, W., Vennekens, J.: CHRiSM: CHance Rules induce Statistical
Models. In: Proceedings of the Sixth International Workshop on Constraint Handling
Rules (CHR’09). (July 2009) 62–76

