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Motivation

F. P. Brooks: The Mythical Man-Month, 1995
Myers et al: The Art of Software Testing, 2004

Testing takes up about 50% of the total 
effort for software development projects.
Testing takes up about 50% of the total 

effort for software development projects.

(For safety-critical systems – e.g. in aerospace – up to 80%)

⇒ High potential for effort reduction from 
automation of software test

⇒ High potential for effort reduction from 
automation of software test

Software test begins with selection of test 
inputs and expected outputs

=
Test cases

Software test begins with selection of test 
inputs and expected outputs

=
Test cases
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Test Input Selection

Given a sequence of portions of the Control-
Flow Graph (CFG) of a program, find an input 

that, once given to the program, leads to 
activation of these portions in the given order.

Given a sequence of portions of the Control-
Flow Graph (CFG) of a program, find an input 

that, once given to the program, leads to 
activation of these portions in the given order.

Example Test Goals:
●„Execute every node at least once“ (all-nodes)
●„Traverse every edge at least once“ (all-edges)
●„Traverse node u after node d

1
 without traversing d
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Example Test Goals:
●„Execute every node at least once“ (all-nodes)
●„Traverse every edge at least once“ (all-edges)
●„Traverse node u after node d

1
 without traversing d

2
, 

d
3
, d

4
, d

5
 in between“  (all-defs)

S. Rapps, E. J. Weyuker: Data flow analysis techniques 
for test data selection, ICSE '82, 1982
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Design Goals

Verifiability and Comprehensibility:
Easy to prove in theory and simple to 

implement in practice

Verifiability and Comprehensibility:
Easy to prove in theory and simple to 

implement in practice

Performance:
Test data must be found in „acceptable“ 

time (not necessarily polynomial)

Performance:
Test data must be found in „acceptable“ 

time (not necessarily polynomial)

Avoidance of Bias:
Method should not favour one set of 

possible solutions over others

Avoidance of Bias:
Method should not favour one set of 

possible solutions over others

Automation:
No manual intervention necessary in 

solution process

Automation:
No manual intervention necessary in 

solution process
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Philosophy

In theory, problems are more generic.In theory, problems are more generic.

In practice, problems are more complex.In practice, problems are more complex.

Genericity may mean theoretical absence of 
a solution (Halting Problem).

Genericity may mean theoretical absence of 
a solution (Halting Problem).

The trick is to find a solution for the practical 
problems without that realm being accurately 

defined!
⇒“Practice in the loop”

The trick is to find a solution for the practical 
problems without that realm being accurately 

defined!
⇒“Practice in the loop”

Complexity may mean absence of an efficient 
solution.

Complexity may mean absence of an efficient 
solution.
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Augmented Control-Flow Graphs

● Nodes and Edges describe 
possible control flow

● Execution of nodes modifies 
program state

● Selection of edges by a set of 
predicates

● Boolean expressions are 
atomic (no conjunction, 
disjunction or negation, no 
side-effects)

● Nodes and Edges describe 
possible control flow

● Execution of nodes modifies 
program state

● Selection of edges by a set of 
predicates

● Boolean expressions are 
atomic (no conjunction, 
disjunction or negation, no 
side-effects)

1

2

6

5

43 a:=a-bb:=b-a

a≠b

a=b

a<b a≥b

B(3)
C(2,4)
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Path Constraints: Forward Construction

1

2

6

5

43 a:=a-bb:=b-a

a≠b

a=b

a<b a≥b

a1≠b1

a1<b1

b2=b1−a1

a1=b23

Solved Form:Solved Form: b1=2a1∧0<a1

Constructed Path: Path Constraint:
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Infeasible paths

Infeasible paths are not rare enough 
to be ignored in practice.

Infeasible paths are not rare enough 
to be ignored in practice.

void sort(int n, int[] a) {
for (int i=0;i<n;i++) {

int minElem=i;
for (int j=i+1;j<n;j++)

if (a[j]<a[minElem]) minElem=j;
swap(a[i], a[minElem]);

}
}

Inner loop depends on 
outer loop.
⇒Many paths in CFG 
have no associated input.
(infeasible paths)

Inner loop depends on 
outer loop.
⇒Many paths in CFG 
have no associated input.
(infeasible paths)

S.-D. Gouraud: AuGuSTe: a Tool for Statistical Testing – 
Experimental Results, Technical Report, LRI, Paris, 2005

⇒Interleave path construction and 
satisfiability checking to avoid infeasible 
paths.

⇒Interleave path construction and 
satisfiability checking to avoid infeasible 
paths.
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Constraint Theories to Combine

● Arithmetics and Relations over
– Integers (Modulo-Arithmetics)
– Floats (IEEE 754, various precisions)

● Bitwise Operations (AND, OR, XOR, Shifts)
● Addressable Memory

– Integer Adresses
– Various Types and Word Sizes

● Conversions

● Arithmetics and Relations over
– Integers (Modulo-Arithmetics)
– Floats (IEEE 754, various precisions)

● Bitwise Operations (AND, OR, XOR, Shifts)
● Addressable Memory

– Integer Adresses
– Various Types and Word Sizes

● Conversions
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Linear Constraints

● Presburger Arithmetic
– Symbolic Variables
– Multiplication by Constants
– Addition of Presburger Terms

● Relations: <, >, ≤,≥,≠,=

● Usual Approach:

– Equations: Gaussian Elimination
– Inequations (<, >, ≤,≥): Fourier-

Motzkin-Elimination
– Negated Equality (≠): Split up (<>).

● Presburger Arithmetic
– Symbolic Variables
– Multiplication by Constants
– Addition of Presburger Terms

● Relations: <, >, ≤,≥,≠,=

● Usual Approach:

– Equations: Gaussian Elimination
– Inequations (<, >, ≤,≥): Fourier-

Motzkin-Elimination
– Negated Equality (≠): Split up (<>).
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Linear Integer Constraints

● Usual Approach does not work
– Gaussian Elimination: Integers not 

closed under division (divisor≠0)
– Fourier-Motzkin Elimination: Integers 

are not compact
● Different Approach: The Omega-Test

– Originally used for static aliasing 
analysis (e.g. in compilers)

● Usual Approach does not work
– Gaussian Elimination: Integers not 

closed under division (divisor≠0)
– Fourier-Motzkin Elimination: Integers 

are not compact
● Different Approach: The Omega-Test

– Originally used for static aliasing 
analysis (e.g. in compilers)
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The Omega Test

W. Pugh: The Omega Test: a fast and practical integer 
programming algorithm for dependence analysis, Comm. 

of the ACM Vol. 8, pp. 102-114, 1992

Solution of Equations by Parameterisation:Solution of Equations by Parameterisation:

a=2α∧b=3α ,α∈ℤ3a−2b=0

Processing of Inequations by Over-ApproximationProcessing of Inequations by Over-Approximation

2b≤3a∧2a≤3b 2≤5b⇔1≤b

0≤5b<2⇔b=0

Any matching value of b will lead to a non-empty range of a, but

may lead to solutions as well (exhaustive search).

a , b∈ℤImplicit assumption:

Eliminate a
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The Omega-Test: Accuracy

0≤3 x+2 y≤7

0≤2 x+ y≤5

−7≤x≤10 −13≤ y≤12

−15≤ y<−13

eliminate y first eliminate x first

Inaccurate!
Possible additional solutions:

● Efficiency depends on order of elimination
● Best possible order may change online

– Unification of Variables
– New Inequations, New Variables

● Efficiency depends on order of elimination
● Best possible order may change online

– Unification of Variables
– New Inequations, New Variables
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Floating Point Constraints

● Discrete, finite set of values
● Representation: Sign, Mantissa, Exponent
● Even linear operations are non-linear!
● 4 rounding modes
● 6 operations have unique results (IEEE 754)

– Basic arithmetics (+,-,*,/)
– Remainder
– Square-Root

● Others are platform-dependent
● Current solvers not fast enough

● Discrete, finite set of values
● Representation: Sign, Mantissa, Exponent
● Even linear operations are non-linear!
● 4 rounding modes
● 6 operations have unique results (IEEE 754)

– Basic arithmetics (+,-,*,/)
– Remainder
– Square-Root

● Others are platform-dependent
● Current solvers not fast enough
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CHR Experience

● Different aspects can be kept separate
– Declarative nature of CHR
– Compiler does the integration work

● Integration: mostly just another rule
● Global solution strategies require „hacks“

– e.g. for (re-)ordering in the Omega-
Test

– Breaking declarational-operational link

● Different aspects can be kept separate
– Declarative nature of CHR
– Compiler does the integration work

● Integration: mostly just another rule
● Global solution strategies require „hacks“

– e.g. for (re-)ordering in the Omega-
Test

– Breaking declarational-operational link
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● Satellite S/W had already been tested
– Normal testing by S/W provider
– Indepentend Software Verification and 

Validation (ISVV)
– Static Analyzers had been used

● Study on effectiveness of random testing

– Heuristic Oracles: crashes, timeouts, 
…

– Instrumentation
– Massive Stimulation (~103 stimuli per 

function)

● Satellite S/W had already been tested
– Normal testing by S/W provider
– Indepentend Software Verification and 

Validation (ISVV)
– Static Analyzers had been used

● Study on effectiveness of random testing

– Heuristic Oracles: crashes, timeouts, 
…

– Instrumentation
– Massive Stimulation (~103 stimuli per 

function)

Example: Context
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● Satellite receives S/W patch
– Stored into buffer
– Flash Update is scheduled

● At scheduled time:

– Data retrieved from buffer
– Stored in Flash

● New packets may arrive before buffer empty

● Satellite receives S/W patch
– Stored into buffer
– Flash Update is scheduled

● At scheduled time:

– Data retrieved from buffer
– Stored in Flash

● New packets may arrive before buffer empty

Example: The Idea

last_entry_start

buffer
last_entry_length

0 MAX_BUFFER_SIZE

space_available

Free Space Used Space
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Example: The Code (simplified)

#define MAX_BUFFER_SIZE ...

char buffer[MAX_BUFFER_SIZE];

void store_into_buffer(char* data, unsigned int length) {
const unsigned int last_entry_start = ...;
const unsigned int last_entry_length = ...;
unsigned int next_entry_start, space_available;

next_entry_start = last_entry_start+last_entry_length;

if ((MAX_BUFFER_SIZE - (length-1u)) < next_entry_start)
next_entry_start = 0;

space_available =
(last_entry_start - next_entry_start) % MAX_BUFFER_SIZE;

if (space_available >= length)
memcpy(&buffer[next_entry_start],data,length);

...
}

Stimulation with random 
data led to crash here!

Stimulation with random 
data led to crash here!

Store block at start of buffer when 
not enough space at the end

Store block at start of buffer when 
not enough space at the end
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Example: Difficulties

● Reason for exception not obvious
– Two experts, two opinions

● Overflow in C is not a runtime failure
– Wraparound: Modulo-2n-Arithmetics
– Suspected to be the culprit here
– Manual analysis error-prone

● The code was not as simple as shown here

– Many paths to the target location
– Additional calculations
– Hindsight: None of them was relevant!

● Reason for exception not obvious
– Two experts, two opinions

● Overflow in C is not a runtime failure
– Wraparound: Modulo-2n-Arithmetics
– Suspected to be the culprit here
– Manual analysis error-prone

● The code was not as simple as shown here

– Many paths to the target location
– Additional calculations
– Hindsight: None of them was relevant!
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Example: The Query
#define MAX_BUFFER_SIZE ...

char buffer[MAX_BUFFER_SIZE];

void store_into_buffer(char* data, unsigned int length) {
const unsigned int last_entry_start = ...;
const unsigned int last_entry_length = ...;
unsigned int next_entry_start, space_available;

next_entry_start = last_entry_start+last_entry_length;

if ((MAX_BUFFER_SIZE - (length-1u)) < next_entry_start)
next_entry_start = 0;

space_available =
(last_entry_start - next_entry_start) % MAX_BUFFER_SIZE;

if (space_available >= length)
memcpy(&buffer[next_entry_start],data,length);

...
}

a

b

Is there a path from a to b so that 
next_entry_start+length>MAX_BUFFER_SIZE

at b?

Is there a path from a to b so that 
next_entry_start+length>MAX_BUFFER_SIZE

at b?

Answer: YES!Answer: YES!



Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 23

● Fault conditions from constraint store
– next_entry_start+length=MAX_BUFFER_SIZE
+1

– Verification of solver result
➔ Bug Report

➔ Data corruption
– Later: Code corruption in Flash
➔ Disruption of Service
– No permanent failure „Safe Mode“ 

● Fault conditions from constraint store
– next_entry_start+length=MAX_BUFFER_SIZE
+1

– Verification of solver result
➔ Bug Report

➔ Data corruption
– Later: Code corruption in Flash
➔ Disruption of Service
– No permanent failure „Safe Mode“ 

Example: The Bug
if ((MAX_BUFFER_SIZE - (length-1u)) < next_entry_start)

next_entry_start = 0;

One-off-mistake allows one-byte overflow!One-off-mistake allows one-byte overflow!
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Example: The Aftermath

● Now: Systematic index checking in C
– By instrumentation during test runs
– Ada had this as a compiler option!

● More similar defects found
● Possibly problem from porting (Ada  C)

– Ada: Arbitrary start of array indices
– C: indices start at 0

● Did static analysers not find it?

– Unknown...

● Now: Systematic index checking in C
– By instrumentation during test runs
– Ada had this as a compiler option!

● More similar defects found
● Possibly problem from porting (Ada  C)

– Ada: Arbitrary start of array indices
– C: indices start at 0

● Did static analysers not find it?

– Unknown...
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Open Problems

● Performance

– Problem is inherently complex
– Many constraints over few variables 

(input parameters)
● Floating Point Arithmetics

– Current Approach: Domain Filtering
– Slow in reaching fix-point
– Platform Dependency (sin, cos, ...)

● Performance

– Problem is inherently complex
– Many constraints over few variables 

(input parameters)
● Floating Point Arithmetics

– Current Approach: Domain Filtering
– Slow in reaching fix-point
– Platform Dependency (sin, cos, ...)
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Possible Solutions

● Slicing, Lazy Evaluation
– Only consider constraints that 

contribute to decisions
– Reduces number of floating-point 

constraints in practice
– But: Aliasing problem

● Filtering Speed

– Stop filtering once domain reduction 
less than defined bound

● Slicing, Lazy Evaluation
– Only consider constraints that 

contribute to decisions
– Reduces number of floating-point 

constraints in practice
– But: Aliasing problem

● Filtering Speed

– Stop filtering once domain reduction 
less than defined bound
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Conclusions

● CHR well-suited for implementation of 
complex constraint solvers

– Applicable also to model checking 
on source-code level

● Declarative Semantics aids verification
● Global strategies often break link between 

declaration and operation
● Further research required for open 

problems

● CHR well-suited for implementation of 
complex constraint solvers

– Applicable also to model checking 
on source-code level

● Declarative Semantics aids verification
● Global strategies often break link between 

declaration and operation
● Further research required for open 

problems
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Outlook

● Industrial research on open issues ongoing
● One step at a time

– Ignore theoretical limitations if not 
relevant in practice (Halting Problem)

– Small improvements better than big 
theories

● Industrial research on open issues ongoing
● One step at a time

– Ignore theoretical limitations if not 
relevant in practice (Halting Problem)

– Small improvements better than big 
theories
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Questions?

Ongoing industrial research at BSSE is supported by a grant 
by the German federal government under grant number 

50RA1339.
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Backup
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Generic Path Constraint Relations

1

2

6

5

43

y
x

u

v

There is a path from 
node a to node b, 
transforming input x 
to output y.
(“Specification”)spec(A,B,X,Y)

There is a path from 
node a to node b, 
with u the output of 
node a and v the 
input of node b.
(“Inner Specification”)

ispec(U,A,B,V)
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Built-In Constraints

Built-In Constraint Semantics

edge(U,V) There is an edge from U to V

reachable(U,V) V is reachable from V via one or more edges

body(U,X,Y) X B(U) Y

cond(U,V,X) X C(U,V) X

deffree(U,W,V) No path from U to W contains a definition of 
variable V

onallpaths(U,W,V) All paths from U to V proceed via W

value(X,Var,Val) Val is the value of variable Var in memory state X
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Eliminate Specification

1

2

6

5

43

u

v

(Read concatenation right-to-left)

x

y

The specification differs from the 
inner specification by the 
additional bodies of the endpoints.

The specification differs from the 
inner specification by the 
additional bodies of the endpoints.

But:But:

spec_to_ispec @ spec(U,W,X,Z) <=>
    (U=W, body(U,X,Z));
    (body(U,X,Y1), ispec(Y1,U,W,Y2), body(W,Y2,Z)).

spec_to_ispec @ spec(U,W,X,Z) <=>
    (U=W, body(U,X,Z));
    (body(U,X,Y1), ispec(Y1,U,W,Y2), body(W,Y2,Z)).
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Forward Step

1

2

6

5

43

step_fwd @ ispec(X,U,W,Z) <=>
    (edge(U,W), X=Z, cond(U,W,X));
    (edge(U,V), reachable(V,W),
     cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

step_fwd @ ispec(X,U,W,Z) <=>
    (edge(U,W), X=Z, cond(U,W,X));
    (edge(U,V), reachable(V,W),
     cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

v

u

We can either traverse the edge 
from 1 to 6 or continue from 1 via 2 
to 6.

We can either traverse the edge 
from 1 to 6 or continue from 1 via 2 
to 6.
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Backward Step

1

2

6

5

43

step_bwd @ ispec(X,U,W,Z) <=>
    (edge(U,W), X=Z, cond(U,W,X));
    (edge(V,W), reachable(U,V),
     ispec(X,U,V,Z), body(V,Z,Y), cond(V,W,Z)).

step_bwd @ ispec(X,U,W,Z) <=>
    (edge(U,W), X=Z, cond(U,W,X));
    (edge(V,W), reachable(U,V),
     ispec(X,U,V,Z), body(V,Z,Y), cond(V,W,Z)).

We can either traverse the edge 
from 1 to 6 or continue from 1 via 1 
to 6.

We can either traverse the edge 
from 1 to 6 or continue from 1 via 1 
to 6.

v

u
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Control-Flow Prediction

1

2

6

5

43

All paths from 2 to 6 
traverse these nodes

All paths from 2 to 6 
traverse these nodes

Instead of „rediscovering“ facts in all search 
branches, we try to „predict“ them and avoid 

throwing them away on backtracking.

Instead of „rediscovering“ facts in all search 
branches, we try to „predict“ them and avoid 

throwing them away on backtracking.

split @ ispec(X,U,W,Z) <=> reachable(U,W), onallpaths(U,W,V) |
    ispec(X,U,V,Y), body(V,Y,Z), ispec(Y,V,W,Z).

split @ ispec(X,U,W,Z) <=> reachable(U,W), onallpaths(U,W,V) |
    ispec(X,U,V,Y), body(V,Y,Z), ispec(Y,V,W,Z).



Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 37

Data-Flow Prediction

1

2

6

5

43 a:=a-bb:=b-a

a≠b

a=b

a<b a≥b

Variable typically keep 
their value through large 
parts of execution.

Variable typically keep 
their value through large 
parts of execution.

We can use data-flow information to 
propagate information about the memory 

state across sub-path borders.

We can use data-flow information to 
propagate information about the memory 

state across sub-path borders.

prop_var @ ispec(U,W,X,Y) ==> reachable(U,W), deffree(U,W,V) |
    value(X,V,V1), value(Y,V,V2), V1=V2.

prop_var @ ispec(U,W,X,Y) ==> reachable(U,W), deffree(U,W,V) |
    value(X,V,V1), value(Y,V,V2), V1=V2.
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Complete CHR∨ Implementation
spec_to_ispec @ spec(U,W,X,Z) <=>
    (U=W, body(U,X,Z));
    (body(U,X,Y1), ispec(Y1,U,W,Y2), body(W,Y2,Z)).
prop_var @ ispec(U,W,X,Y) ==> reachable(U,W), deffree(U,W,V) |
    value(X,V,V1), value(Y,V,V2), V1=V2.
split @ ispec(X,U,W,Z) <=> reachable(U,W), onallpaths(U,W,V) |
    ispec(X,U,V,Y), body(V,Y,Z), ispec(Y,V,W,Z).
step_fwd @ ispec(X,U,W,Z) <=>
    (edge(U,W), X=Z, cond(U,W,X));
    (edge(U,V), reachable(V,W),
     cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).
step_bwd @ ispec(X,U,W,Z) <=>
    (edge(U,W), X=Z, cond(U,W,X));
    (edge(V,W), reachable(U,V),
     ispec(X,U,V,Z), body(V,Z,Y), cond(V,W,Z)).

spec_to_ispec @ spec(U,W,X,Z) <=>
    (U=W, body(U,X,Z));
    (body(U,X,Y1), ispec(Y1,U,W,Y2), body(W,Y2,Z)).
prop_var @ ispec(U,W,X,Y) ==> reachable(U,W), deffree(U,W,V) |
    value(X,V,V1), value(Y,V,V2), V1=V2.
split @ ispec(X,U,W,Z) <=> reachable(U,W), onallpaths(U,W,V) |
    ispec(X,U,V,Y), body(V,Y,Z), ispec(Y,V,W,Z).
step_fwd @ ispec(X,U,W,Z) <=>
    (edge(U,W), X=Z, cond(U,W,X));
    (edge(U,V), reachable(V,W),
     cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).
step_bwd @ ispec(X,U,W,Z) <=>
    (edge(U,W), X=Z, cond(U,W,X));
    (edge(V,W), reachable(U,V),
     ispec(X,U,V,Z), body(V,Z,Y), cond(V,W,Z)).

Complete? Not so fast!Complete? Not so fast!
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Issue 1: Implicit Search

step_fwd @ ispec(X,U,W,Z) <=>
    (edge(U,W), X=Z, cond(U,W,X));
    (edge(U,V), reachable(V,W),
     cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

step_fwd @ ispec(X,U,W,Z) <=>
    (edge(U,W), X=Z, cond(U,W,X));
    (edge(U,V), reachable(V,W),
     cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

The rule is existentially-quantified over V and solutions are not equivalent.
⇒Implicit Search; not supported by CHR∨

The rule is existentially-quantified over V and solutions are not equivalent.
⇒Implicit Search; not supported by CHR∨

Operationally correct only if host language supports search 
over built-in constraints (e.g. Prolog) or if edge/2 becomes a 
user-defined constraint, enumerating all alternatives.

Operationally correct only if host language supports search 
over built-in constraints (e.g. Prolog) or if edge/2 becomes a 
user-defined constraint, enumerating all alternatives.

Workaround: Use Prolog as host languageWorkaround: Use Prolog as host language
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Issue 2: Deterministic Derivation

step_fwd @ ispec(X,U,W,Z) <=>
    (edge(U,W), X=Z, cond(U,W,X));
    (edge(U,V), reachable(V,W),
     cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

step_fwd @ ispec(X,U,W,Z) <=>
    (edge(U,W), X=Z, cond(U,W,X));
    (edge(U,V), reachable(V,W),
     cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

De-Facto Semantics of CHR∨: First alternatives first.
⇒Alternatives enumerate paths by length in ascending order

De-Facto Semantics of CHR∨: First alternatives first.
⇒Alternatives enumerate paths by length in ascending order

Software Test requires some 
randomness in test case selection to 

avoid bias away from faults.

Software Test requires some 
randomness in test case selection to 

avoid bias away from faults.

Swapping of alternatives could lead to infinite recursion.Swapping of alternatives could lead to infinite recursion.

Solution: “Probabilistic CHR∨”, CHRiSMSolution: “Probabilistic CHR∨”, CHRiSM CHRiSM was 
not yet 

available.

CHRiSM was 
not yet 

available.
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Digression: Handling loops probabilistically

1

26

54

3

Exiting or continuing inner 
loops often is the choice 

between two successor nodes.

Exiting or continuing inner 
loops often is the choice 

between two successor nodes.

The mean number of iterations of 
such an inner loop is 2 if the 
probabilities of continuation and 
termination is the same (0.5)

The mean number of iterations of 
such an inner loop is 2 if the 
probabilities of continuation and 
termination is the same (0.5)

Consequence: Different probabilities for different values 
of V, depending on U and W.

Consequence: Different probabilities for different values 
of V, depending on U and W.

step_fwd @ ispec(X,U,W,Z) <=>
    (edge(U,W), X=Z, cond(U,W,X));
    (edge(U,V), reachable(V,W),
     cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

step_fwd @ ispec(X,U,W,Z) <=>
    (edge(U,W), X=Z, cond(U,W,X));
    (edge(U,V), reachable(V,W),
     cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

Neither PCHR nor CHRiSM 
support this

Neither PCHR nor CHRiSM 
support this
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Issue 3: Probabilistic Search

step_fwd @ ispec(X,U,W,Z) <=>
    (edge(U,W), X=Z, cond(U,W,X));
    (edge(U,V), reachable(V,W),
     cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

step_fwd @ ispec(X,U,W,Z) <=>
    (edge(U,W), X=Z, cond(U,W,X));
    (edge(U,V), reachable(V,W),
     cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

If both alternatives are selected with p=0.5, the mean path length is 2.
Similarly, if all values of V have same probability, inner loops degenerate.

If both alternatives are selected with p=0.5, the mean path length is 2.
Similarly, if all values of V have same probability, inner loops degenerate.

PCHR requires splitting this up into two rules to allow 
different probabilities for them.

PCHR requires splitting this up into two rules to allow 
different probabilities for them.

Solution: CHRiSMSolution: CHRiSM

By splitting up we are leaving the 
realm of declarative correctness.

By splitting up we are leaving the 
realm of declarative correctness.

Yes, we'll 
try that!

Yes, we'll 
try that!
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Issue 4: Statistical Model

step_fwd @ ispec(X,U,W,Z) <=>
    (edge(U,W), X=Z, cond(U,W,X));
    (edge(U,V), reachable(V,W),
     cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

step_fwd @ ispec(X,U,W,Z) <=>
    (edge(U,W), X=Z, cond(U,W,X));
    (edge(U,V), reachable(V,W),
     cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

PCHR considers rule instances instead of rules when selecting randomly.PCHR considers rule instances instead of rules when selecting randomly.

There are almost always more instances of the “step” 
alternative than of the “edge” alternative.

The statistical model for that is difficult to manage.

There are almost always more instances of the “step” 
alternative than of the “edge” alternative.

The statistical model for that is difficult to manage.

Solution: CHRiSMSolution: CHRiSM

PCHR: uncontrollable path growthPCHR: uncontrollable path growth

Yes, we'll 
try that!

Yes, we'll 
try that!
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Evaluating the Statistical Model

1
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Main Discoveries:
●Bias for shorter paths
●Countermeasure: vary p
●Probabilistic Termination
●“modulo” Haltingproblem

Main Discoveries:
●Bias for shorter paths
●Countermeasure: vary p
●Probabilistic Termination
●“modulo” Haltingproblem
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Runtime Complexity on Selection Sort

Timeouts for 
backward and 
mixed stepping 

directions

Timeouts for 
backward and 
mixed stepping 

directions

No PredictionNo Prediction

With PredictionWith Prediction

Length of array to sort is 
completely defined after 
first iteration of outside 
loop.

Length of array to sort is 
completely defined after 
first iteration of outside 
loop.

Quadratic increase due to 
inefficient memory model.

Quadratic increase due to 
inefficient memory model.
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Comparison of Strategies
Example Best Strategy (asympt. savings) Worst Strategy

No Prediction With Prediction

Fibonacci Backward (ca. 49%) Backward (ca. 46%) Mixed w/ prediction

Selection Sort Forward (0%) n/a Forward w/ prediction

strcmp w/o break Backward (n/a) n/a Mixed w/ prediction

strcmp w/ break Mixed (ca. 10%) Backward (ca. 28%) Mixed w/ prediction

Array insertion Mixed (ca. 7%) Backward (ca. 68%) Mixed w/ prediction

Conclusion
●No optimal strategy
●No universally applicable strategy

Conclusion
●No optimal strategy
●No universally applicable strategy
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Actual CHR program sizes

Path Solver: 45 constraints, 76 rules
(Many constraints for debugging or 
customised PCHR)

Path Solver: 45 constraints, 76 rules
(Many constraints for debugging or 
customised PCHR)

Built-in FD Solver: 26 constraints, 126 rules
Optimised for detection of inconsistencies and 
domain filtering.

Built-in FD Solver: 26 constraints, 126 rules
Optimised for detection of inconsistencies and 
domain filtering.

Both would not be handleable without CHR!Both would not be handleable without CHR!
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