
 Automatic Test Data Generation and Model
Checking with CHR
Ralf Gerlich, BSSE

Presentation for the
Eleventh International Workshop on Constraint Handling Rules

CHR 2014

July 18th, 2014
Vienna, Austria

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 2

Contents

● Motivation

● Path Construction

● Constraint Solver Approach

● Example of Use

● Open Problems

● Outlook/Conclusions

● Motivation

● Path Construction

● Constraint Solver Approach

● Example of Use

● Open Problems

● Outlook/Conclusions

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 3

Motivation

F. P. Brooks: The Mythical Man-Month, 1995
Myers et al: The Art of Software Testing, 2004

Testing takes up about 50% of the total
effort for software development projects.
Testing takes up about 50% of the total

effort for software development projects.

(For safety-critical systems – e.g. in aerospace – up to 80%)

⇒ High potential for effort reduction from
automation of software test

⇒ High potential for effort reduction from
automation of software test

Software test begins with selection of test
inputs and expected outputs

=
Test cases

Software test begins with selection of test
inputs and expected outputs

=
Test cases

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 4

Contents

● Motivation

● Path Construction

● Constraint Solver Approach

● Example of Use

● Open Problems

● Outlook/Conclusions

● Motivation

● Path Construction

● Constraint Solver Approach

● Example of Use

● Open Problems

● Outlook/Conclusions

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 5

Test Input Selection

Given a sequence of portions of the Control-
Flow Graph (CFG) of a program, find an input

that, once given to the program, leads to
activation of these portions in the given order.

Given a sequence of portions of the Control-
Flow Graph (CFG) of a program, find an input

that, once given to the program, leads to
activation of these portions in the given order.

Example Test Goals:
●„Execute every node at least once“ (all-nodes)
●„Traverse every edge at least once“ (all-edges)
●„Traverse node u after node d

1
 without traversing d

2
,

d
3
, d

4
, d

5
 in between“ (all-defs)

Example Test Goals:
●„Execute every node at least once“ (all-nodes)
●„Traverse every edge at least once“ (all-edges)
●„Traverse node u after node d

1
 without traversing d

2
,

d
3
, d

4
, d

5
 in between“ (all-defs)

S. Rapps, E. J. Weyuker: Data flow analysis techniques
for test data selection, ICSE '82, 1982

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 6

Design Goals

Verifiability and Comprehensibility:
Easy to prove in theory and simple to

implement in practice

Verifiability and Comprehensibility:
Easy to prove in theory and simple to

implement in practice

Performance:
Test data must be found in „acceptable“

time (not necessarily polynomial)

Performance:
Test data must be found in „acceptable“

time (not necessarily polynomial)

Avoidance of Bias:
Method should not favour one set of

possible solutions over others

Avoidance of Bias:
Method should not favour one set of

possible solutions over others

Automation:
No manual intervention necessary in

solution process

Automation:
No manual intervention necessary in

solution process

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 7

Philosophy

In theory, problems are more generic.In theory, problems are more generic.

In practice, problems are more complex.In practice, problems are more complex.

Genericity may mean theoretical absence of
a solution (Halting Problem).

Genericity may mean theoretical absence of
a solution (Halting Problem).

The trick is to find a solution for the practical
problems without that realm being accurately

defined!
⇒“Practice in the loop”

The trick is to find a solution for the practical
problems without that realm being accurately

defined!
⇒“Practice in the loop”

Complexity may mean absence of an efficient
solution.

Complexity may mean absence of an efficient
solution.

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 8

Augmented Control-Flow Graphs

● Nodes and Edges describe
possible control flow

● Execution of nodes modifies
program state

● Selection of edges by a set of
predicates

● Boolean expressions are
atomic (no conjunction,
disjunction or negation, no
side-effects)

● Nodes and Edges describe
possible control flow

● Execution of nodes modifies
program state

● Selection of edges by a set of
predicates

● Boolean expressions are
atomic (no conjunction,
disjunction or negation, no
side-effects)

1

2

6

5

43 a:=a-bb:=b-a

a≠b

a=b

a<b a≥b

B(3)
C(2,4)

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 9

Path Constraints: Forward Construction

1

2

6

5

43 a:=a-bb:=b-a

a≠b

a=b

a<b a≥b

a1≠b1

a1<b1

b2=b1−a1

a1=b23

Solved Form:Solved Form: b1=2a1∧0<a1

Constructed Path: Path Constraint:

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 10

Infeasible paths

Infeasible paths are not rare enough
to be ignored in practice.

Infeasible paths are not rare enough
to be ignored in practice.

void sort(int n, int[] a) {
for (int i=0;i<n;i++) {

int minElem=i;
for (int j=i+1;j<n;j++)

if (a[j]<a[minElem]) minElem=j;
swap(a[i], a[minElem]);

}
}

Inner loop depends on
outer loop.
⇒Many paths in CFG
have no associated input.
(infeasible paths)

Inner loop depends on
outer loop.
⇒Many paths in CFG
have no associated input.
(infeasible paths)

S.-D. Gouraud: AuGuSTe: a Tool for Statistical Testing –
Experimental Results, Technical Report, LRI, Paris, 2005

⇒Interleave path construction and
satisfiability checking to avoid infeasible
paths.

⇒Interleave path construction and
satisfiability checking to avoid infeasible
paths.

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 11

Constraint Theories to Combine

● Arithmetics and Relations over
– Integers (Modulo-Arithmetics)
– Floats (IEEE 754, various precisions)

● Bitwise Operations (AND, OR, XOR, Shifts)
● Addressable Memory

– Integer Adresses
– Various Types and Word Sizes

● Conversions

● Arithmetics and Relations over
– Integers (Modulo-Arithmetics)
– Floats (IEEE 754, various precisions)

● Bitwise Operations (AND, OR, XOR, Shifts)
● Addressable Memory

– Integer Adresses
– Various Types and Word Sizes

● Conversions

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 12

Linear Constraints

● Presburger Arithmetic
– Symbolic Variables
– Multiplication by Constants
– Addition of Presburger Terms

● Relations: <, >, ≤,≥,≠,=

● Usual Approach:

– Equations: Gaussian Elimination
– Inequations (<, >, ≤,≥): Fourier-

Motzkin-Elimination
– Negated Equality (≠): Split up (<>).

● Presburger Arithmetic
– Symbolic Variables
– Multiplication by Constants
– Addition of Presburger Terms

● Relations: <, >, ≤,≥,≠,=

● Usual Approach:

– Equations: Gaussian Elimination
– Inequations (<, >, ≤,≥): Fourier-

Motzkin-Elimination
– Negated Equality (≠): Split up (<>).

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 13

Linear Integer Constraints

● Usual Approach does not work
– Gaussian Elimination: Integers not

closed under division (divisor≠0)
– Fourier-Motzkin Elimination: Integers

are not compact
● Different Approach: The Omega-Test

– Originally used for static aliasing
analysis (e.g. in compilers)

● Usual Approach does not work
– Gaussian Elimination: Integers not

closed under division (divisor≠0)
– Fourier-Motzkin Elimination: Integers

are not compact
● Different Approach: The Omega-Test

– Originally used for static aliasing
analysis (e.g. in compilers)

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 14

The Omega Test

W. Pugh: The Omega Test: a fast and practical integer
programming algorithm for dependence analysis, Comm.

of the ACM Vol. 8, pp. 102-114, 1992

Solution of Equations by Parameterisation:Solution of Equations by Parameterisation:

a=2α∧b=3α ,α∈ℤ3a−2b=0

Processing of Inequations by Over-ApproximationProcessing of Inequations by Over-Approximation

2b≤3a∧2a≤3b 2≤5b⇔1≤b

0≤5b<2⇔b=0

Any matching value of b will lead to a non-empty range of a, but

may lead to solutions as well (exhaustive search).

a , b∈ℤImplicit assumption:

Eliminate a

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 15

The Omega-Test: Accuracy

0≤3 x+2 y≤7

0≤2 x+ y≤5

−7≤x≤10 −13≤ y≤12

−15≤ y<−13

eliminate y first eliminate x first

Inaccurate!
Possible additional solutions:

● Efficiency depends on order of elimination
● Best possible order may change online

– Unification of Variables
– New Inequations, New Variables

● Efficiency depends on order of elimination
● Best possible order may change online

– Unification of Variables
– New Inequations, New Variables

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 16

Floating Point Constraints

● Discrete, finite set of values
● Representation: Sign, Mantissa, Exponent
● Even linear operations are non-linear!
● 4 rounding modes
● 6 operations have unique results (IEEE 754)

– Basic arithmetics (+,-,*,/)
– Remainder
– Square-Root

● Others are platform-dependent
● Current solvers not fast enough

● Discrete, finite set of values
● Representation: Sign, Mantissa, Exponent
● Even linear operations are non-linear!
● 4 rounding modes
● 6 operations have unique results (IEEE 754)

– Basic arithmetics (+,-,*,/)
– Remainder
– Square-Root

● Others are platform-dependent
● Current solvers not fast enough

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 17

CHR Experience

● Different aspects can be kept separate
– Declarative nature of CHR
– Compiler does the integration work

● Integration: mostly just another rule
● Global solution strategies require „hacks“

– e.g. for (re-)ordering in the Omega-
Test

– Breaking declarational-operational link

● Different aspects can be kept separate
– Declarative nature of CHR
– Compiler does the integration work

● Integration: mostly just another rule
● Global solution strategies require „hacks“

– e.g. for (re-)ordering in the Omega-
Test

– Breaking declarational-operational link

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 18

● Satellite S/W had already been tested
– Normal testing by S/W provider
– Indepentend Software Verification and

Validation (ISVV)
– Static Analyzers had been used

● Study on effectiveness of random testing

– Heuristic Oracles: crashes, timeouts,
…

– Instrumentation
– Massive Stimulation (~103 stimuli per

function)

● Satellite S/W had already been tested
– Normal testing by S/W provider
– Indepentend Software Verification and

Validation (ISVV)
– Static Analyzers had been used

● Study on effectiveness of random testing

– Heuristic Oracles: crashes, timeouts,
…

– Instrumentation
– Massive Stimulation (~103 stimuli per

function)

Example: Context

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 19

● Satellite receives S/W patch
– Stored into buffer
– Flash Update is scheduled

● At scheduled time:

– Data retrieved from buffer
– Stored in Flash

● New packets may arrive before buffer empty

● Satellite receives S/W patch
– Stored into buffer
– Flash Update is scheduled

● At scheduled time:

– Data retrieved from buffer
– Stored in Flash

● New packets may arrive before buffer empty

Example: The Idea

last_entry_start

buffer
last_entry_length

0 MAX_BUFFER_SIZE

space_available

Free Space Used Space

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 20

Example: The Code (simplified)

#define MAX_BUFFER_SIZE ...

char buffer[MAX_BUFFER_SIZE];

void store_into_buffer(char* data, unsigned int length) {
const unsigned int last_entry_start = ...;
const unsigned int last_entry_length = ...;
unsigned int next_entry_start, space_available;

next_entry_start = last_entry_start+last_entry_length;

if ((MAX_BUFFER_SIZE - (length-1u)) < next_entry_start)
next_entry_start = 0;

space_available =
(last_entry_start - next_entry_start) % MAX_BUFFER_SIZE;

if (space_available >= length)
memcpy(&buffer[next_entry_start],data,length);

...
}

Stimulation with random
data led to crash here!

Stimulation with random
data led to crash here!

Store block at start of buffer when
not enough space at the end

Store block at start of buffer when
not enough space at the end

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 21

Example: Difficulties

● Reason for exception not obvious
– Two experts, two opinions

● Overflow in C is not a runtime failure
– Wraparound: Modulo-2n-Arithmetics
– Suspected to be the culprit here
– Manual analysis error-prone

● The code was not as simple as shown here

– Many paths to the target location
– Additional calculations
– Hindsight: None of them was relevant!

● Reason for exception not obvious
– Two experts, two opinions

● Overflow in C is not a runtime failure
– Wraparound: Modulo-2n-Arithmetics
– Suspected to be the culprit here
– Manual analysis error-prone

● The code was not as simple as shown here

– Many paths to the target location
– Additional calculations
– Hindsight: None of them was relevant!

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 22

Example: The Query
#define MAX_BUFFER_SIZE ...

char buffer[MAX_BUFFER_SIZE];

void store_into_buffer(char* data, unsigned int length) {
const unsigned int last_entry_start = ...;
const unsigned int last_entry_length = ...;
unsigned int next_entry_start, space_available;

next_entry_start = last_entry_start+last_entry_length;

if ((MAX_BUFFER_SIZE - (length-1u)) < next_entry_start)
next_entry_start = 0;

space_available =
(last_entry_start - next_entry_start) % MAX_BUFFER_SIZE;

if (space_available >= length)
memcpy(&buffer[next_entry_start],data,length);

...
}

a

b

Is there a path from a to b so that
next_entry_start+length>MAX_BUFFER_SIZE

at b?

Is there a path from a to b so that
next_entry_start+length>MAX_BUFFER_SIZE

at b?

Answer: YES!Answer: YES!

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 23

● Fault conditions from constraint store
– next_entry_start+length=MAX_BUFFER_SIZE
+1

– Verification of solver result
➔ Bug Report

➔ Data corruption
– Later: Code corruption in Flash
➔ Disruption of Service
– No permanent failure „Safe Mode“

● Fault conditions from constraint store
– next_entry_start+length=MAX_BUFFER_SIZE
+1

– Verification of solver result
➔ Bug Report

➔ Data corruption
– Later: Code corruption in Flash
➔ Disruption of Service
– No permanent failure „Safe Mode“

Example: The Bug
if ((MAX_BUFFER_SIZE - (length-1u)) < next_entry_start)

next_entry_start = 0;

One-off-mistake allows one-byte overflow!One-off-mistake allows one-byte overflow!

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 24

Example: The Aftermath

● Now: Systematic index checking in C
– By instrumentation during test runs
– Ada had this as a compiler option!

● More similar defects found
● Possibly problem from porting (Ada  C)

– Ada: Arbitrary start of array indices
– C: indices start at 0

● Did static analysers not find it?

– Unknown...

● Now: Systematic index checking in C
– By instrumentation during test runs
– Ada had this as a compiler option!

● More similar defects found
● Possibly problem from porting (Ada  C)

– Ada: Arbitrary start of array indices
– C: indices start at 0

● Did static analysers not find it?

– Unknown...

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 25

Open Problems

● Performance

– Problem is inherently complex
– Many constraints over few variables

(input parameters)
● Floating Point Arithmetics

– Current Approach: Domain Filtering
– Slow in reaching fix-point
– Platform Dependency (sin, cos, ...)

● Performance

– Problem is inherently complex
– Many constraints over few variables

(input parameters)
● Floating Point Arithmetics

– Current Approach: Domain Filtering
– Slow in reaching fix-point
– Platform Dependency (sin, cos, ...)

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 26

Possible Solutions

● Slicing, Lazy Evaluation
– Only consider constraints that

contribute to decisions
– Reduces number of floating-point

constraints in practice
– But: Aliasing problem

● Filtering Speed

– Stop filtering once domain reduction
less than defined bound

● Slicing, Lazy Evaluation
– Only consider constraints that

contribute to decisions
– Reduces number of floating-point

constraints in practice
– But: Aliasing problem

● Filtering Speed

– Stop filtering once domain reduction
less than defined bound

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 27

Conclusions

● CHR well-suited for implementation of
complex constraint solvers

– Applicable also to model checking
on source-code level

● Declarative Semantics aids verification
● Global strategies often break link between

declaration and operation
● Further research required for open

problems

● CHR well-suited for implementation of
complex constraint solvers

– Applicable also to model checking
on source-code level

● Declarative Semantics aids verification
● Global strategies often break link between

declaration and operation
● Further research required for open

problems

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 28

Outlook

● Industrial research on open issues ongoing
● One step at a time

– Ignore theoretical limitations if not
relevant in practice (Halting Problem)

– Small improvements better than big
theories

● Industrial research on open issues ongoing
● One step at a time

– Ignore theoretical limitations if not
relevant in practice (Halting Problem)

– Small improvements better than big
theories

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 29

Questions?

Ongoing industrial research at BSSE is supported by a grant
by the German federal government under grant number

50RA1339.

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 30

Backup

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 31

Generic Path Constraint Relations

1

2

6

5

43

y
x

u

v

There is a path from
node a to node b,
transforming input x
to output y.
(“Specification”)spec(A,B,X,Y)

There is a path from
node a to node b,
with u the output of
node a and v the
input of node b.
(“Inner Specification”)

ispec(U,A,B,V)

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 32

Built-In Constraints

Built-In Constraint Semantics

edge(U,V) There is an edge from U to V

reachable(U,V) V is reachable from V via one or more edges

body(U,X,Y) X B(U) Y

cond(U,V,X) X C(U,V) X

deffree(U,W,V) No path from U to W contains a definition of
variable V

onallpaths(U,W,V) All paths from U to V proceed via W

value(X,Var,Val) Val is the value of variable Var in memory state X

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 33

Eliminate Specification

1

2

6

5

43

u

v

(Read concatenation right-to-left)

x

y

The specification differs from the
inner specification by the
additional bodies of the endpoints.

The specification differs from the
inner specification by the
additional bodies of the endpoints.

But:But:

spec_to_ispec @ spec(U,W,X,Z) <=>
 (U=W, body(U,X,Z));
 (body(U,X,Y1), ispec(Y1,U,W,Y2), body(W,Y2,Z)).

spec_to_ispec @ spec(U,W,X,Z) <=>
 (U=W, body(U,X,Z));
 (body(U,X,Y1), ispec(Y1,U,W,Y2), body(W,Y2,Z)).

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 34

Forward Step

1

2

6

5

43

step_fwd @ ispec(X,U,W,Z) <=>
 (edge(U,W), X=Z, cond(U,W,X));
 (edge(U,V), reachable(V,W),
 cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

step_fwd @ ispec(X,U,W,Z) <=>
 (edge(U,W), X=Z, cond(U,W,X));
 (edge(U,V), reachable(V,W),
 cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

v

u

We can either traverse the edge
from 1 to 6 or continue from 1 via 2
to 6.

We can either traverse the edge
from 1 to 6 or continue from 1 via 2
to 6.

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 35

Backward Step

1

2

6

5

43

step_bwd @ ispec(X,U,W,Z) <=>
 (edge(U,W), X=Z, cond(U,W,X));
 (edge(V,W), reachable(U,V),
 ispec(X,U,V,Z), body(V,Z,Y), cond(V,W,Z)).

step_bwd @ ispec(X,U,W,Z) <=>
 (edge(U,W), X=Z, cond(U,W,X));
 (edge(V,W), reachable(U,V),
 ispec(X,U,V,Z), body(V,Z,Y), cond(V,W,Z)).

We can either traverse the edge
from 1 to 6 or continue from 1 via 1
to 6.

We can either traverse the edge
from 1 to 6 or continue from 1 via 1
to 6.

v

u

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 36

Control-Flow Prediction

1

2

6

5

43

All paths from 2 to 6
traverse these nodes

All paths from 2 to 6
traverse these nodes

Instead of „rediscovering“ facts in all search
branches, we try to „predict“ them and avoid

throwing them away on backtracking.

Instead of „rediscovering“ facts in all search
branches, we try to „predict“ them and avoid

throwing them away on backtracking.

split @ ispec(X,U,W,Z) <=> reachable(U,W), onallpaths(U,W,V) |
 ispec(X,U,V,Y), body(V,Y,Z), ispec(Y,V,W,Z).

split @ ispec(X,U,W,Z) <=> reachable(U,W), onallpaths(U,W,V) |
 ispec(X,U,V,Y), body(V,Y,Z), ispec(Y,V,W,Z).

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 37

Data-Flow Prediction

1

2

6

5

43 a:=a-bb:=b-a

a≠b

a=b

a<b a≥b

Variable typically keep
their value through large
parts of execution.

Variable typically keep
their value through large
parts of execution.

We can use data-flow information to
propagate information about the memory

state across sub-path borders.

We can use data-flow information to
propagate information about the memory

state across sub-path borders.

prop_var @ ispec(U,W,X,Y) ==> reachable(U,W), deffree(U,W,V) |
 value(X,V,V1), value(Y,V,V2), V1=V2.

prop_var @ ispec(U,W,X,Y) ==> reachable(U,W), deffree(U,W,V) |
 value(X,V,V1), value(Y,V,V2), V1=V2.

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 38

Complete CHR∨ Implementation
spec_to_ispec @ spec(U,W,X,Z) <=>
 (U=W, body(U,X,Z));
 (body(U,X,Y1), ispec(Y1,U,W,Y2), body(W,Y2,Z)).
prop_var @ ispec(U,W,X,Y) ==> reachable(U,W), deffree(U,W,V) |
 value(X,V,V1), value(Y,V,V2), V1=V2.
split @ ispec(X,U,W,Z) <=> reachable(U,W), onallpaths(U,W,V) |
 ispec(X,U,V,Y), body(V,Y,Z), ispec(Y,V,W,Z).
step_fwd @ ispec(X,U,W,Z) <=>
 (edge(U,W), X=Z, cond(U,W,X));
 (edge(U,V), reachable(V,W),
 cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).
step_bwd @ ispec(X,U,W,Z) <=>
 (edge(U,W), X=Z, cond(U,W,X));
 (edge(V,W), reachable(U,V),
 ispec(X,U,V,Z), body(V,Z,Y), cond(V,W,Z)).

spec_to_ispec @ spec(U,W,X,Z) <=>
 (U=W, body(U,X,Z));
 (body(U,X,Y1), ispec(Y1,U,W,Y2), body(W,Y2,Z)).
prop_var @ ispec(U,W,X,Y) ==> reachable(U,W), deffree(U,W,V) |
 value(X,V,V1), value(Y,V,V2), V1=V2.
split @ ispec(X,U,W,Z) <=> reachable(U,W), onallpaths(U,W,V) |
 ispec(X,U,V,Y), body(V,Y,Z), ispec(Y,V,W,Z).
step_fwd @ ispec(X,U,W,Z) <=>
 (edge(U,W), X=Z, cond(U,W,X));
 (edge(U,V), reachable(V,W),
 cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).
step_bwd @ ispec(X,U,W,Z) <=>
 (edge(U,W), X=Z, cond(U,W,X));
 (edge(V,W), reachable(U,V),
 ispec(X,U,V,Z), body(V,Z,Y), cond(V,W,Z)).

Complete? Not so fast!Complete? Not so fast!

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 39

Issue 1: Implicit Search

step_fwd @ ispec(X,U,W,Z) <=>
 (edge(U,W), X=Z, cond(U,W,X));
 (edge(U,V), reachable(V,W),
 cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

step_fwd @ ispec(X,U,W,Z) <=>
 (edge(U,W), X=Z, cond(U,W,X));
 (edge(U,V), reachable(V,W),
 cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

The rule is existentially-quantified over V and solutions are not equivalent.
⇒Implicit Search; not supported by CHR∨

The rule is existentially-quantified over V and solutions are not equivalent.
⇒Implicit Search; not supported by CHR∨

Operationally correct only if host language supports search
over built-in constraints (e.g. Prolog) or if edge/2 becomes a
user-defined constraint, enumerating all alternatives.

Operationally correct only if host language supports search
over built-in constraints (e.g. Prolog) or if edge/2 becomes a
user-defined constraint, enumerating all alternatives.

Workaround: Use Prolog as host languageWorkaround: Use Prolog as host language

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 40

Issue 2: Deterministic Derivation

step_fwd @ ispec(X,U,W,Z) <=>
 (edge(U,W), X=Z, cond(U,W,X));
 (edge(U,V), reachable(V,W),
 cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

step_fwd @ ispec(X,U,W,Z) <=>
 (edge(U,W), X=Z, cond(U,W,X));
 (edge(U,V), reachable(V,W),
 cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

De-Facto Semantics of CHR∨: First alternatives first.
⇒Alternatives enumerate paths by length in ascending order

De-Facto Semantics of CHR∨: First alternatives first.
⇒Alternatives enumerate paths by length in ascending order

Software Test requires some
randomness in test case selection to

avoid bias away from faults.

Software Test requires some
randomness in test case selection to

avoid bias away from faults.

Swapping of alternatives could lead to infinite recursion.Swapping of alternatives could lead to infinite recursion.

Solution: “Probabilistic CHR∨”, CHRiSMSolution: “Probabilistic CHR∨”, CHRiSM CHRiSM was
not yet

available.

CHRiSM was
not yet

available.

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 41

Digression: Handling loops probabilistically

1

26

54

3

Exiting or continuing inner
loops often is the choice

between two successor nodes.

Exiting or continuing inner
loops often is the choice

between two successor nodes.

The mean number of iterations of
such an inner loop is 2 if the
probabilities of continuation and
termination is the same (0.5)

The mean number of iterations of
such an inner loop is 2 if the
probabilities of continuation and
termination is the same (0.5)

Consequence: Different probabilities for different values
of V, depending on U and W.

Consequence: Different probabilities for different values
of V, depending on U and W.

step_fwd @ ispec(X,U,W,Z) <=>
 (edge(U,W), X=Z, cond(U,W,X));
 (edge(U,V), reachable(V,W),
 cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

step_fwd @ ispec(X,U,W,Z) <=>
 (edge(U,W), X=Z, cond(U,W,X));
 (edge(U,V), reachable(V,W),
 cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

Neither PCHR nor CHRiSM
support this

Neither PCHR nor CHRiSM
support this

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 42

Issue 3: Probabilistic Search

step_fwd @ ispec(X,U,W,Z) <=>
 (edge(U,W), X=Z, cond(U,W,X));
 (edge(U,V), reachable(V,W),
 cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

step_fwd @ ispec(X,U,W,Z) <=>
 (edge(U,W), X=Z, cond(U,W,X));
 (edge(U,V), reachable(V,W),
 cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

If both alternatives are selected with p=0.5, the mean path length is 2.
Similarly, if all values of V have same probability, inner loops degenerate.

If both alternatives are selected with p=0.5, the mean path length is 2.
Similarly, if all values of V have same probability, inner loops degenerate.

PCHR requires splitting this up into two rules to allow
different probabilities for them.

PCHR requires splitting this up into two rules to allow
different probabilities for them.

Solution: CHRiSMSolution: CHRiSM

By splitting up we are leaving the
realm of declarative correctness.

By splitting up we are leaving the
realm of declarative correctness.

Yes, we'll
try that!

Yes, we'll
try that!

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 43

Issue 4: Statistical Model

step_fwd @ ispec(X,U,W,Z) <=>
 (edge(U,W), X=Z, cond(U,W,X));
 (edge(U,V), reachable(V,W),
 cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

step_fwd @ ispec(X,U,W,Z) <=>
 (edge(U,W), X=Z, cond(U,W,X));
 (edge(U,V), reachable(V,W),
 cond(U,V,X), body(V,X,Y), ispec(V,W,Y,Z)).

PCHR considers rule instances instead of rules when selecting randomly.PCHR considers rule instances instead of rules when selecting randomly.

There are almost always more instances of the “step”
alternative than of the “edge” alternative.

The statistical model for that is difficult to manage.

There are almost always more instances of the “step”
alternative than of the “edge” alternative.

The statistical model for that is difficult to manage.

Solution: CHRiSMSolution: CHRiSM

PCHR: uncontrollable path growthPCHR: uncontrollable path growth

Yes, we'll
try that!

Yes, we'll
try that!

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 44

Evaluating the Statistical Model

1

2

6

5

43 M
ea

n
pa

th
 le

ng
th

Step Probability
P

ro
ba

bi
lit

y
of

 T
er

m
in

at
io

n

Step Probability

Main Discoveries:
●Bias for shorter paths
●Countermeasure: vary p
●Probabilistic Termination
●“modulo” Haltingproblem

Main Discoveries:
●Bias for shorter paths
●Countermeasure: vary p
●Probabilistic Termination
●“modulo” Haltingproblem

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 45

Runtime Complexity on Selection Sort

Timeouts for
backward and
mixed stepping

directions

Timeouts for
backward and
mixed stepping

directions

No PredictionNo Prediction

With PredictionWith Prediction

Length of array to sort is
completely defined after
first iteration of outside
loop.

Length of array to sort is
completely defined after
first iteration of outside
loop.

Quadratic increase due to
inefficient memory model.

Quadratic increase due to
inefficient memory model.

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 46

Comparison of Strategies
Example Best Strategy (asympt. savings) Worst Strategy

No Prediction With Prediction

Fibonacci Backward (ca. 49%) Backward (ca. 46%) Mixed w/ prediction

Selection Sort Forward (0%) n/a Forward w/ prediction

strcmp w/o break Backward (n/a) n/a Mixed w/ prediction

strcmp w/ break Mixed (ca. 10%) Backward (ca. 28%) Mixed w/ prediction

Array insertion Mixed (ca. 7%) Backward (ca. 68%) Mixed w/ prediction

Conclusion
●No optimal strategy
●No universally applicable strategy

Conclusion
●No optimal strategy
●No universally applicable strategy

Copyright © 2010-2014, Ralf Gerlich. All rights reserved. 47

Actual CHR program sizes

Path Solver: 45 constraints, 76 rules
(Many constraints for debugging or
customised PCHR)

Path Solver: 45 constraints, 76 rules
(Many constraints for debugging or
customised PCHR)

Built-in FD Solver: 26 constraints, 126 rules
Optimised for detection of inconsistencies and
domain filtering.

Built-in FD Solver: 26 constraints, 126 rules
Optimised for detection of inconsistencies and
domain filtering.

Both would not be handleable without CHR!Both would not be handleable without CHR!

	Title
	Contents
	Motivation
	Contents
	Test Input Selection
	Design Goals
	Folie 7
	Augmented Control-Flow Graphs
	Path Constraints: Forward Construction
	Infeasible Paths
	Constraint Theories to Combine
	Linear Constraints
	Linear Integer Constraints
	The Omega Test
	The Omega-Test: Accuracy
	Folie 16
	CHR Experience
	Example: Context
	Example: The Idea
	Example: The Code (simplified)
	Example: Difficulties
	Example: The Query
	Example: The Bug
	Example: The Aftermath
	Folie 25
	Folie 26
	Conclusions
	Outlook
	Questions
	Backup
	Generic Path Constraint Relations
	Built-In Constraints
	Eliminate Specification
	Forward Step
	Backward Step
	Control-Flow Prediction
	Data-Flow Prediction
	Complete CHR Implementation
	Implicit Search
	Deterministic Derivation
	Handling loops probabilistically
	Probabilistic Search
	Statistical Model
	Evaluating the Statistical Model
	Runtime Complexity on Selection Sort
	Comparison of Strategies
	Actual CHR program sizes

