

Verification of the C++-Operating System RODOS in
Context of a Small-Satellite

Evaluation of Software Robustness and Messaging Characteristics by Massive Stimulation

Rainer Gerlich, Ralf Gerlich

Dr. Rainer Gerlich BSSE System and
Software Engineering

88090 Immenstaad, Germany
{Rainer.Gerlich

Ralf.Gerlich}@bsse.biz

Karsten Gordon, Merlin Barschke
Institute for Aeronautics and

Astronautics,
Technische Universität Berlin

10587 Berlin, Germany
{Karsten.Gordon

Merlin. Barschke}@tu-berlin.de

Sergio Montenegro, Erik Dilger,
Frank Flederer

Aerospace Information Technology
University of Wuerzburg

97074 Wuerzburg, Germany
{Sergio.Montenegro Erik.Dilger

Frank.Flederer}@uni-wuerzburg.de

Abstract—Within the small satellite mission TechnoSat of

Technische Universität Berlin, a verification strategy based on
Dynamic Analysis has been applied to the C++-operating system
RODOS using automated massive stimulation of the software-
under-test. This approach is aiming at evaluating the robustness
of the software and to derive feedback on the implemented
messaging scheme of the on-board process chain. For fault
detection and recording of message exchange the code is
automatically instrumented with application-independent
indicators which shall flag anomalies. Manual fault analysis is
limited to the reported issues highlighting fault potential in
contrast to usual reviews on the full code. The suggested reviews
were extended to similar code, an approach which turned out as
being effective. For the verification of the messaging scheme
observed functional and performance properties were evaluated.
The verification strategy targets the reduction of costs of
verification and risks. Within this paper, the different
verification steps are described and examples for reported issues
are given.

Keywords—software, verification, random testing, massive
stimulation, fault identification, C++, small satellite

I. INTRODUCTION

A. General Overview
In the work described in this paper, massive stimulation is

applied to the RODOS operating system (Real-time On-board
Dependable Operating System) to analyze both its robustness
and the characteristics of the messages exchanged within the
processing chain. This analysis was started early in the
development process to get a chance to improve the coding
style due to the obtained feedback from already existing
software for such parts which were still under development.

RODOS is used as operating system on the TechnoSat
mission of Technische Universität Berlin [1]. It is a platform-
independent framework for real-time software with an
extension of message exchange based on the publisher-
subscriber pattern, implemented in C++.

In comparison to C, C++ provides features favoring
consistency and testability. However, it also requires
fundamental changes in the test approach.

Massive, automated stimulation based on random input
data is a method for dynamic analysis of a software system. In
comparison with manual testing, it is able to exercise a much
larger part of the input domain. Here, even very simple,
generic approaches allow for verification of specific system
properties in complex systems with a higher degree of
confidence than manual testing activities can provide, because
the high number of stimuli raises the activation probability of
sporadic faults. A special variant of massive stimulation is
fuzzing [2], where faults are identified by generic means such
as looking for runtime exception or memory leaks. When
combined with more specific checking means it can be used to
verify individual properties of software.

Fault detection in the context of massive stimulation
requires automatic measures for highlighting of faults or fault
potential. Therefore, the code is automatically instrumented
with indicators flagging anomalies like exceptions, and
providing information on message exchange for verification of
requirements. The instrumented code could be reused for
verification of properties of the implemented messaging
scheme. Cross-dependencies between independently observed
data on communication were used for verification of both, the
monitoring software and the software-under-test.

B. Definition of Terms
1) Coverage
The terms “block coverage” and “decision coverage” are

used as a measure for test coverage expressed as ratio of the
number of executed and total items (blocks, decisions).

A block consists of a sequence of one or more statements,
where execution of the first implies execution of all other
statements – provided that no exception occurs. A decision is a
logical expression which may take one of two values, true or
false, and both are considered for the coverage figure.

2) Fault, Error, Failure
A coding mistake (fault) may lead to an undesired internal

state (error), which may become externally visible (failure).
3) Fault Injection
Fault injection is a technique by which a piece of software,

e.g. a function, is exposed to invalid conditions in order to

check its behavior under such conditions, and more
specifically – if robustness against faults is required – to check
whether the injected fault does not manifest as a failure.

4) Fault Assessment
The definition of the terms “false positive”, “false

negative” and “true positive” are used in the context of fault
report evaluation, indicating a report for a non-existing fault, a
missed report for an existing fault, and an issued report for an
existing fault.

As a decision on true or false positives requires manual
analysis, the verification process may lead to effective false
negatives due to a high number of reports issued by a
verification tool, if not all reports can be processed manually
within the allotted time and budget. Therefore a challenging
goal of a verification tools is to minimize the number of false
positives.

Although above definitions look quite clear, some
ambiguity remains, namely in the definition of the actual
classifier.

One degree of freedom is found in the context to be
considered: Any component of a system can be considered on
its own – without context –, where any component of the
system may be exposed to the full input domain and
robustness is checked. Alternatively, the component could be
considered as part of a larger conglomerate of components –
with context –, and only those defects and faults that can be
activated within this larger structure should be reported.

Whether context should be considered or not during
verification is a function of the goals of the verification
process and the use of the system under verification.

In case of robustness testing the full range of inputs shall
be considered and every anomaly found in the code should be
considered as true positive. If anomalies are reported for
inputs which never can occur in the given verification context,
they may be considered as false positives, keeping in mind
that this may invalidate the results of verification should the
software ever be used within a different context.

For RODOS a mixed approach was applied. For
components which are only used inside RODOS the context
was considered leading to a constrained input domain with
mainly automatically derived constraints, in order to reduce
the number of false positives w.r.t. the context. The other
components were exposed to the full input domain.

C. Structure of the Paper
The following chapters will provide an overview over the
TechnoSat mission and its context (Chapter II), describe the
verification strategy (Chapter III) and the obtained results
(Chapter IV), discuss the lessons learnt (Chapter V), while
conclusions and an overview on future work are given at the
end of the paper in Chapter VI.

II. DESCRIPTION OF THE VERIFICATION CONTEXT

A. The TechnoSat-Mission
Technische Universität Berlin has a history of space

science missions of more than 25 years. Since the university’s
first satellite, TUBSAT-A, was launched in July 1991, a total

number of sixteen satellites were brought successfully into
orbit, while another five are under development.

The university’s latest research program is TUBiX. This
platform series is developed in two different scales to support
satellites with an approximate mass of 10 kg (TUBiX10) and
20 kg (TUBiX20), respectively [3].

The TUBiX20 nano-satellite platform’s design objective is
to meet different LEO mission requirements. To achieve a
high level of flexibility regarding diverging mission scenarios,
a generic, single-failure tolerant system architecture has been
developed. The key design considerations for this architecture
are modularity, reuse and dependability [4].

TechnoSat is a mission for in-orbit demonstration of novel
nano-satellite technology [5] and carries seven different
payloads. Table I gives an overview over the main parameters
of the TechnoSat mission. It is in successful operation now
over more than seven months.

TABLE I: TECHNOSAT MISSION DEATAILS

Orbit 600 km SSO
Launch date July 14th, 2017
Design lifetime 1 year
Spacecraft mass 20 kg
Spacecraft volume 465 x 465 x 305 mm

Attitude sensors IC magnetometers, Sun sensors
MEMS gyroscopes, Fiber optic rate sensors

Attitude actuators Torque rods

Payloads

• a fluid dynamic actuator (FDA)
• an S-band transmitter (HISPICO)
• fourteen laser ranging retro reflectors
• a particle detector (SOLID)
• a star tracker (STELLA)
• a reaction wheels system with four wheels
• a CMOS camera

B. RODOS
The software framework and operating system RODOS

enables the definition and usage of Building Blocks (BB). It
supports a variety of platforms. Before being used for
TechnoSat, RODOS was part of several successful aerospace
missions [6][7].

A BB is a collection of tasks that are implemented in
software or hardware and the application developer defines its
interface for data exchange. For this, RODOS provides a
communication middleware which implements the publish-
subscribe pattern. The data exchange is transparent, i.e. the
BBs do not have to know whether the data comes from or goes
to another node in a network. Thus, there is no need to modify
a BB if a communication partner moves to a different node.

Topics define communication channels by their ID and
data type. BBs can publish data to topics, which are received
by BBs that have subscribed to topics. If several BBs
subscribe to the same topic, every BB will receive the data in
parallel like a multicast transmission.

A hardware abstraction layer (HAL) encapsulates the high-
level concepts (e.g. communication middleware) from the
individual hardware aspects. RODOS provides an object-
oriented interface written in C++. Due to the dependability
requirements of aerospace only a subset of C++ is used. Use
of dynamic memory is discouraged, all memory has to be

allocated at startup. Exceptions are not used, instead an error
code is returned.

Table II provides information about the size of the
analyzed software, consisting of the used parts of RODOS and
some part of the TechnoSat software required for evaluation of
the messaging scheme. Table III gives some figures on
telecommanding and on the number of topics and subscribers.

Table II: Overview of Software Size

 h cpp Total struct 129

Files 247 102 349 union 6
KLOC 33 15 48 classes 142
KLines 60 22 82 functions 658

Table III: Processing Figures

Topics 16
Subscriber 42
Telecommand-Destinations 21
Possible Combinations Destinations / Telecommands 109

C. DCRTT
DCRTT (Dynamic C Random Test Tool) [8] is used in the

context of verification activities based on its capabilities
related to massive stimulation and reporting of issues in the
code, and for analysis of the properties of the implemented
messaging scheme based on the communication middleware.

In its most basic form it can be considered a generic
fuzzing tool, which is applied on source-code level and
automatically stimulates the possibly thousands of individual
functions found within the source-code.

DCRTT completely automates the process between
delivering the source code and reading the generated reports
for thousands of functions under test, aiming to maximize
variation of inputs in order to expose the software to extreme
conditions which may occur only rarely under normal
conditions.

A number of means have been implemented to increase the
probability of fault activation and to detect an anomaly, to
reduce the number of false positives and to provide
comprehensive information. In addition, it generates test
drivers for test vectors for regression testing, which are
automatically selected according to coverage criteria or output
from oracles (automatically) derived from semi-formal
requirements.

False positives may only occur due to missing
consideration of the context in contrast to static analysis where
false positives may be a matter of the method, insufficient
computing resources (time, memory).

1) Random Testing
Stimuli may be auto-generated randomly or grid-based

from the valid or invalid input domain (black-box testing), or
based on code analysis (white-box testing).

Constraints on ranges are derived automatically from the
source code, as is information about the correlation of pointers
with their associated length, to the degree possible.

The application code is instrumented for coverage, data
range monitoring, rule-based checks and recording of runtime

anomalies.
The approach shall complement other verification

activities like functional testing / unit testing, static analysis
and review. A comparison between DCRTT and static
analyzers applied to middleware for space applications can be
found in [9] for C, and in [10] for C++ where the Linux-
version of RODOS was subject of evaluation. The results
presented there suggest that such verification tools are
complementary regarding their fault detection capabilities. In
case of C++ the static analyzers delivered weak results
regarding faults and potential faults compared to C. According
to tool vendors this might be a matter of the complexity of the
code.

DCRTT supports C according to ISO9899:2011 [11] and a
large subset of C++ code as per ISO14882:2011 standard [12].

Some language features of C++ require specific
consideration in the context of testing in general and
automated stimulation in particular: data hiding, type
polymorphism and templates.

2) Analysis of Messaging Characteristics
Utilizing the standardized interface provided by the

publisher-subscriber paradigm implemented in RODOS and
used by the application software, telecommands (TC) were
randomly generated and injected into the system. Using the
already existing instrumentation for coverage measurement
and recording of anomalies, the data flow was observed and
analyzed.

Information about the structure of the telecommands and
the types of their fields was defined in a formal manner and
used for code generation by the development team. That
information, stored in CSV files, was then also used to
establish automatically the TC generator.

Instrumentation of the methods involved in message
distribution allowed to trace and record the cascade of
messages generated upon reception of the TC and to monitor
the data transfer in the channels used by these messages. The
amount of transferred data in bytes was measured as well as
the amount of accepted and rejected topic messages at the
subscribers.

Based on this, utilization of transfer channels could be
estimated given a usage profile for the TCs. Several of the
recorded data items are connected by inter-dependencies,
which were used to verify the correctness of the obtained
information, thereby supporting a self-check of the
instrumentation itself.

The data was also used to check several hypotheses about
the correctness of the application code.

D. C++
C++ provides additional features which may increase

consistency and verifiability, e.g. due to stronger separation of
concerns, which in turn can facilitate more extensive use of
the principle of compositionality in verification. However,
some of these features require a very fundamental change in
the test approach relative to that used for imperative
languages, some others mainly induce additional complexity
for testing due to different use patterns.

Data hiding requires a shift from direct assignment of
values to parameters and structure elements – as is possible in
C – towards use of constructors and available methods for

covering the set of possible object states. Dynamic binding
introduces similar complexity for testing.

III. VERIFICATION STRATEGY
In general, the applied verification strategy does not

require specific knowledge about the application to a major
part. In case of robustness testing, the occurrence of anomalies
– detected by application- independent checks – highlights
weakness and fault potential, but may also – via further
analysis – allow identification of application-specific logical
faults specifically.

In case of the evaluation of the properties of the messaging
scheme, checks are applied which are fully application-
independent and could thus be reused for other systems based
on RODOS. In addition, application-specific checks were
added which require some knowledge of the system
configuration.

The strategy is based on massive stimulation – implying
extended fault detection means – as a complement for other
verification means – targeting a guided review of code for
which issues have been highlighted.

A description of the applied verification approach follows
in Sections III.A and III.B.

A. Development Guidelines and Verification Status of
RODOS
1) Guidelines
To make source code less complex, the guidelines for

software development for RODOS encourage to use
Embedded C++ (EC++), a pure subset of the ISO/IEC 14882-
1998C++ standard [13].

2) Verification Status
RODOS already has been developed before the software

development for TechnoSat began. It has been used within
several aerospace projects before, which have been verified as
whole systems. For the use on TechnoSat, RODOS was
slightly modified in various aspects.

B. Implementation of the Verification Strategy
Verification of the selected software puts the focus on
• identification of fault potential capable of

compromising operations, especially in view of
sporadic faults,

• confirmation of correct and complete handling of the
commanding chain triggered by telecommands and
expanded internally by the messaging scheme based on
the “publish-subscribe” pattern, and

• identification of potential overhead due to this
(broadcasting) approach.

1) Random Testing
Robustness testing was applied to all functions by

generating data of the full input domain as spawned by the
parameter types of a function, except for functions for which a
limited context could either be extracted automatically or – in
some cases – manually, thereby limiting stimulation to the
valid domain, while still being able to trigger fault handling.

Most of the context constraints were identified
automatically by DCRTT from the source code. Some

constraints were added manually when a limited context was
identified during analysis, which was still missing.

Identification of (potential) faults is performed by rule
checking and monitoring of anomalies. Rule checking is a
deterministic approach (in the sense that every violation will
be detected and reported) based on already known fault types
like out-of-range conditions.

It is complemented by monitoring of anomalies like
exceptions, but also by more sophisticated means which the
DCRTT test environment does provide. Such monitoring does
not guarantee that every violation will be detected and
reported. But the optimization of such means in the past yields
a reasonable probability to detect and report fault types even
not known yet.

In contrast to usual code reviews, the review of the code
was limited to such parts which were highlighted by issued
reports. The reports were analyzed manually, pre-classified
according to their fault potential and discussed with the
developers.

In a two-step approach, a preliminary and a final version of
the application software was analyzed:

• the analysis of the early first step gave hints on
potential improvements for those parts which were
under development or to be developed,

• the analysis of the second step should conclude on the
remaining fault potential of the final version.

As could be expected, the number of relevant true
positives was lower for the second step.
2) Evaluation of the Messaging Scheme
Due to the publish-subscribe pattern the messaging scheme

is dynamically defined at start-up time by registration of the
subscribers at the topic manager. Topics are issued from
ground as telecommands on top-level, internally as timer
signals on every level and by subscribers, as every subscriber
can again issue topics. Actually, a subscriber does not know
which other subscribers will receive the messages it did issue
as publisher, as it does not know about registration.

A subscriber may check the contents of a received topic
message and decide whether it is of interest (accepted
message) or not (rejected message).

This dynamic behavior raised the interest to analyze in
more detail the message exchange and a possible performance
overhead due to received, but non-processed / rejected
messages.

The coverage instrumentation of DCRTT was extended to
track the message flow inside the application. Most
specifically, coverage recording was used to determine
whether a message was accepted or rejected and to record the
related amount of data transmitted and received.

The approach supports fault injection to provoke rejected
messages by invalid combinations of a telecommand-topic and
a subscriber, a wrong number of telecommand parameters, or
modification (activation / deactivation) of the distribution of a
topic via an external channel.

The topic manager was (manually) instrumented to record
the amount of data and the addressed subscribers.

The messages were classified according to criteria such as:

• accepted / rejected
• forwarded via an internal (shared memory) or external

(e.g. bus) channel.
Cross-dependencies between observed data were identified

like “the number of accepted and rejected messages must be
identical to the number of issued messages”. Similarly the
ratio publish / put for a topic should be identical with the
number of subscribers for a topic – plus 1 for transfer to a
gateway if activated. If not, deeper investigation is required.

Other application-independent verification criteria are
(non-exhaustive list)

• all topics / messages which are issued internally by a
subscriber are accepted at least once,

• every valid TC is always accepted,
• no exception was observed during processing of the

injected (valid or invalid) TC.
In addition, performance properties were recorded, such as
• mean and variance of message lengths and related

channel load,
• maximum length of a message,
• the ratio between externally injected messages and

internally triggered messages,
• ratio between internal and external communication

(shared memory vs. communication medium/channel),
• the number of possible communication paths related to

a TC,
• the maximum length of such a path,
• the number of path elements.
Further, the net of observed paths was visualized to
support detection of deviations by manual inspection from
what is expected.

IV. RESULTS

A. Robustness Evaluation
A block and decision coverage of about 80% was achieved

for about 660 functions under test based on massive auto-
stimulation. These coverage figures are the basis of the
analyses of the issued reports. General considerations on the
applied analysis approach are given in Sect. A.1). Typical
examples of reported anomalies are provided in Sect. A.2).

1) Issue-driven Analysis
Analysis was driven by the issued reports. The related

code was reviewed to understand why the report was issued.
This required to identify an extended code fragment around
the affected location. It happened often that more issues were
identified this way – related to application-specific faults.

Compared to reviews not guided by observed anomalies
the motivation is quite different: the source of the reported
issue must be found and understood, while in unguided
reviews critical issues may not be detected due to code
complexity, and the – possibly huge – amount of code to be
inspected. The faults provided in the following examples
might have been detected in the course of unguided reviews,
too. The essential question is, however, whether they would
actually have been found. The same is true for static analyses,
especially in view of the remarks in Sect. II.C.1).

According to obtained experience (in this and other
exercises) the presence of an application-independent fault
seems to suggest that application-dependent faults may be
present, too, in the addressed code.

The time required to come to a conclusion on an issued
report (true positive, false positive) may vary largely, from a
few minutes to several hours, depending on the complexity of
the context. The majority of reports required up to 15 minutes,
30 minutes and more were required sporadically. The higher
duration is a matter of required deeper investigation, with re-
runs and more sophisticated instrumentation. C++ code tends
to require more time e.g. in case of polymorphism.

In some cases the pattern causing the anomaly occurred at
different locations, so that results of previous analysis could
be reused. It should be mentioned that these cases are different
from the ones for which reports are repeated for the same
location in the code, but reached by different paths. DCRTT
filters such repeated reports to reduce analysis time. However,
all reports are still available, if access is required.

Before an analysis result is derived, no information on the
fault potential is available. Therefore no report can be
excluded a priori. It was beneficial to extend analysis to code
which was actually not subject of testing.

Considering, for example, the following faulty index check
var<upper_bound

while the correct coding should be
var!upper_bound

It occurred because upper_bound was already decreased by 1
immediately after the related value on the maximum number
of elements was assigned – in contrast to usual conventions.
Therefore it could be assumed that there might be more of
such wrong comparisons and the code was checked for other
such faulty occurrences irrespectively whether the related code
in the RODOS library was actually subject of testing and more
locations were found.

Another example is faulty code in equivalent functions in
subclasses, e.g. one function is in a class for Platform A, and
the other is in a class for Platform B, but both are called by the
same – platform-independent – caller, evaluating the return
code. In case an issue related to the return code (mix
signed/unsigned, see Sect. IV.A.2)c)) was detected, all similar
callees were checked, even if only A is under test, but not B.

In one case -2 was returned, in the other case 0. This
resulted in different behavior: in one case a loop with 232-2
iterations (0xfffffffe for -2) would have been executed, in the
other case the loop would be not executed – which is the
desired behavior.

2) Typical Examples
The essential point regarding the given examples is not the

fault type, but the fact that issues were reported and the fault
potential could be assessed.

a) Invalid Access
Typical examples are index-out-of-range and invalid

pointer.
Out-of-range may have several sources (non-exhaustive

list):

• -1 is returned as error indicator, but propagation of this
value is not prevented due to missing error handling,
and could be interpreted as unsigned. Faults of this
kind were detected by fault injection.

• A pointer to a shorter structure is expected as
parameter and is casted to a pointer of a longer
structure inside the function. The cast hides the conflict
and prevents the compiler flagging of the type / length
incompatibility. Passing a structure which complies
with the prototype size resulted in an invalid access
detected by the checking facility of DCRTT. In the
TechnoSat context a structure of sufficient length is
always passed. Therefore, no fault was observed so far.

b) Volatile Data
When compared to functions, macros have the advantage

that a dedicated consideration of types is not required like in
case of min/max:

#define MY_MIN(x,y) (x<y?x:y)

It does it for any type.
However, in case of volatile data, the values may change,

and the code is not safe from a rigorous point of view
(although this might occur very sporadically, only).

This impact was detected by using the macro with random
data on every occurrence of the arguments x and y.

c) Mix signed / unsigned
A mix of signed and unsigned types in expressions was

frequently observed, implying either explicit or implicit
conversions. The potential impact of faults in such
conversions is high, although not every such fault may directly
manifest as a failure in the given context.

Typically, such faults were observed in context of negative
return as error code. Due to stimulation the error handling
code was executed, while not under normal operation.

unsigned int len=
 MIN((int)maxLen,getLenDest(index));

len=MIN(len, getLenSrc(source));

memcpy(dest[index],src,len);

maxLen is of type unsigned and provides the maximum
length of source, getLenDest returns the maximum length of
the destination as int, getLenSrc returns the actual length of
the source as unsigned, MIN is the macro mentioned in b)
above.

In case of an invalid index getLenDest returns -1, which
means the result of MIN is -1 as the comparison is done on
signed int. So len gets the value -1 as unsigned int due to
implicit conversion, which is 0xffffffff or 232-1. In the second
step the comparison is done on unsigned int, and len gets the
return value from getLenSrc. This means, not the wrong value
0xffffffff propagates but the current length of the source is
taken for the following operation. As long as

len < length(dest)

holds, the intended portion will be copied: the operation
will complete as desired – although a completely wrong result
occurred intermediately.

However, the goal to consider the minimum of len, too,
was not achieved. As the size of the source exceeded the size

of the destination due to random stimulation, an anomaly was
reported by DCRTT.

It seems that so far getLenDest never returned -1, or if it
returned -1, the memcpy never caused an undesired state, as
the constraint on len was fulfilled.

d) Identificaton of Potential Inconsistencies
Stimulation following the – unbiased – information

obtained from the prototype can identify potential
inconsistencies due to inherent dependencies / assumptions
which are not reflected in the code. E.g., the function
void myFunc(int *arr) { int i; for (i=0;i<10;i++)

arr[i]=0;}

hides the dependency on the size of arr: exactly or at least 10
elements are expected. If the context is changed, e.g. in the
course of maintenance, the potential fault could be activated.
Stimulation with randomly chosen size did raise an issue.

e) Edge Cases
Due to stimulation over the full input domain, faults at

edge cases were activated.
An example is the loss of a bit in function setField which

shall set a bit field in a char* stream for which the bit position
in the stream and the field width in bits are the parameters.
The algorithm was only correct for

bitPosition mod 16 != 0

and
0 ≤((bitPosition mod 16) + fieldLength) ≤ 15

This case was detected due to random stimulation using
the full range of the inputs. Further, the analysis yielded that a
negative argument for a shift operation could occur, which is
an undefined operation according to the C standard, but
yielded the correct result for the actual context.

A check of the RODOS code for calls of this function (and
the associated getField function with similar issues) yielded
that the critical values were not used.

f) Imperfect Fault Handling
In a number of cases either a fault in a fault handling part

or incomplete fault handling was observed due to injection of
invalid data.

An example for first case was already given in Sect. 1)
above for the check on upper_bound.

Due to the check on a wrong upper bound one erroneous
cases cannot be detected.

In other cases fault handling was incomplete because
either checks were not implemented and fault propagation
could occur, or were implemented but e.g. a fault is masked by
replacing an invalid by a valid value, but the occurrence of the
fault is not flagged. In this case the chosen valid value may not
prevent fault propagation, as the assigned value may still be
wrong, too, and further, the source of the fault cannot be
identified and fixed.

B. Analysis of Messaging Characteristics
Like for robustness testing, also for this verification step

two iterations were performed for an early and a late version.
As the software related to this part of verification was

mainly developed in addition to the existing software for

robustness testing, initially, faults were found in this new and
additional code due to the cross-checks as described in Section
III.B.2), supporting fault detection not only in the software-
under-test, but also in the verification support software

The stability of the observed results with statistical
variations was checked. A number of runs were performed at
an increasing number of stimuli, and their convergence and
compliance of the deviations with the theoretical statistical
limits was confirmed.

• The results for the messaging scheme obtained during
the second iteration were compliant with the rules of
Sect. III.B.2), except e.g. when a wrong number of
telecommand (TC) parameters was identified.
It turned out, that correct contents is expected and must
be guaranteed by ground and uplink.

• All messages sent internally are accepted.
The “Anomaly Reporting” facility did not process
messages with lower criticality, and rejected / dropped
them.

• All valid TCs are always accepted.
Due to the publisher-subscriber broadcasting of
messages, TCs were received at subscribers which
were not really intended as receivers. Such messages
could be considered as an overhead due to the publish-
subscribe pattern.

In two cases the ratio publish / put was not an integer
number, neither identical with the number of subscribers or
subscribers + 1 (for the gateway). The analysis yielded that not
all subscribers issuing the put for the considered topic had
activated a transfer via the gateway. In another case it was
detected that the pair (topic, subscriber) was not unique –
unintendedly so.

The performance analysis yielded that the overhead due to
broadcasting and rejected messages is sufficiently low.

The observed paths of communication were checked on
the base of the graphical figures and their correctness was
confirmed.

In the following cases deviations from the expected figures
were observed:

• Subpaths were missing due to object files which were
unintentionally not linked into the executable.

• Some topics were missing because the stimulation
weight was unintentionally set to 0.

• The ratio of issued topics to received topics was not as
expected, as parallel sending via an external channel
was disabled due to a specific test condition,
unintentionally left in the code.

Cases 1 and 2 were a matter of conditioning of the test
environment, while Case 3 was related to the code to be
verified.

These observations confirm that deviations from the
expected behavior in the messaging scheme can be identified
with the implemented checks and visualization means, and can
detect faults in the code to be verified, and in the verification
environment itself, too.

V. LESSONS LEARNED
Issues were raised regarding language, application and

verification.

A. Language Issues
1) C and C++
The issues listed here apply to C and C++.

a) Mix signed / unsigned
In Section IV.A.2) c) the fault potential of a mix of signed

and unsigned types was discussed. In case of the abs-library
function such a mix is enforced by its return type being a
signed integer:

int abs(int)

This raised an anomaly for the edge case INT_MIN,
because a following check on a positive limit failed assuming
that the return value would always be positive.

According to both the C- and the C++-standard [11][12]
the behavior is undefined if the result cannot be represented as
int, which is usually the case for INT_MIN, as –INT_MIN is
typically larger than INT_MAX. It is quite plausible to expect
the abs function to return an unsigned integer, thus leading to
a conflict between intuitive and correct use of the function.

Although this edge case might occur very rarely only, it is
a principal issue from a safety point of view.

b) Arrays as Pointers
For arrays which are passed as parameter to a function, the

information on the number of elements is lost for the left-most
dimension, even if all dimensions are explicitly provided in
the prototype:

void myFunc(int arr[10]);

is interpreted as
void myFunc(int *arr);

In consequence, no information on the array size is
available inside the function at compile-time or at run-time.

2) C++
In C++, declaration of a variable with object type always

implies the invocation of an associated constructor. For global
variables these invocations happen at program startup, before
invocation of the main function [12]. The order in which the
objects are initialized is only partially specified: The objects
within a single compilation unit – i.e. a single source code file
– are initialized in the order of declaration. However, the order
of initialization between different compilation units is not
defined by the standard.

For embedded applications the order of initialization may
be of utmost importance. For example, objects representing
hardware drivers need to be initialized before the objects using
them.

Therefore, initialization in RODOS happens within special
methods which are invoked from the main function of the
application. This deviates from best practices in that the
objects are not actually in a useable state immediately after
construction.

This also impacts automatic testing, as standard
mechanisms of construction are not sufficient for test data
generation, and proper solutions had to be added.

B. Application
1) Resource Management
In embedded applications, dynamic memory management

usually is not applied. Instead, all resources are allocated at

startup and never freed. De facto this makes definition of
destructors unnecessary, and thus many if not most classes in
RODOS and the application do not have destructors.

This, however, poses a problem to automatic testing, as
objects are not destroyed after test execution, causing
consumption of more and more resources that cannot be freed.
The only alternative would be to restart the test executable for
every test case to have a clean plate every time.

2) Casts
Casts compromise the checking capabilities of a compiler.

Resulting faults can only be detected at run-time if the
required means are provided like tracking of object lengths of
heap, stack and memory allocated with malloc, as DCRTT
does.

C. Verification
The fault types described above usually are occurring

(very) rarely, because the probability of fault activation is very
low, e.g. for fault handling code, or they cannot occur in the
current context, but could when the context is changed.
Massive stimulation over the valid and/or invalid input
domain can activate such faults

Several cases were found showing that (intermediate)
results may be wrong from a logical point of view (see c) and
e) in Ch. IV), but this may not necessarily cause a failure.
Whether a fault will manifest depends on the context. To
know about such fault potential is essential regarding risk
reduction and fault avoidance. Getting such information early
avoids their duplication during development. This reduces the
analysis effort and the costs of verification.

VI. CONCLUSIONS AND FUTURE WORK
Due to automated generation of the environment for

testing, massive stimulation could be applied to about 660
C++ functions without manual intervention during test setup
and execution. It raised several issues in the code and gave
answers on a unit’s behavior under stress conditions and on
the characteristics of the actually implemented messaging
scheme for several operational profiles. The obtained
knowledge was either considered for improvement of code or
confirmation of expected functionality.

Our verification strategy applied code reviews guided by
the issued reports. The knowledge about existence of an issue
increases the probability of fault detection in a limited piece of
code compared to unguided reviews, e.g. on the whole code.

The experience with two iterations confirms that it is
beneficial to start early with verification of code – as soon as
code is available. This is strongly recommended to reduce the
total verification effort by avoiding duplication of critical
issues.

Robustness testing of functions highlights valuable issues,
but may also point to issues not relevant for the current
operational context. Their relevance can only be shown after
manual analysis of a raised issue. Taking the view of the
operational context, the effort for irrelevant issues seems to be

an overhead. From a rigorous safety point of view it is
acceptable, and the identification of potential weakness is
desired. However, a benefit is the future avoidance of the
potentially irrelevant issues in the course of further
development.

Functional faults were detected in algorithms due to issues
raised by application-independent checks on edge cases.
Issues related to C and C++ language were identified in
context of the reported anomalies.

Future work shall extend the automated approach towards
application-driven stimulation and checking, e.g. to derive
oracles from (semi-formal) requirements.

Acknowledgment
The TechnoSat mission is funded by the Federal Ministry

for Economic Affairs and Energy (BMWi) through the
German Aerospace Center (DLR) on the basis of a decision of
the German Bundestag (Grant No. 50 RM 1219).

References
[1] M.F. Barschke, K. Gordon, M. Lehmann and K. Brieß, “The TechnoSat

mission for on-orbit technology demonstration”, presented at the 65th
German Aerospace Congress, Braunschweig, Germany, 2016.

[2] Miller, B. P.; Fredriksen, L. & So, B., “An Empirical Study of the
Reliability of UNIX Utilities”, Communications of the ACM, Vol. 33,
No. 12, pp. 32-44, 1990.

[3] M.F. Barschke, Z. Yoon and K. Brieß, “TUBiX – The TU Berlin
innovative next generation nanosatellite bus”, presented at the 64th
International Astronautical Congress, Beijing, China, 2013.

[4] M.F. Barschke and K. Gordon, “A generic systems architecture for a
single failure tolerant nanosatellite platform”, presented at the 65th
International Astronautical Congress, Toronto, Canada, 2014.

[5] M.F. Barschke, K. Großekatthöfer and S. Montenegro, “Implementation
of a nanosatellite on-board software based on building-blocks”,
presented at the Small Satellites Systems and Services Symposium,
Majorca, Spain, 2014.

[6] S. Montenegro, “RODOS operating system for Network Centric Core
Avionics”, Conference on Advances in Satellite and Space
Communications 2009

[7] Thomas Walter, Alexander Hilgarth, Tobias Mikschl, Sergio
Montenegro, “VIDANA: A fault tolerant approach for a distributed data
management system in nano-satellites”, 10th Symposium on Small
Satellites for Earth Observation 2013

[8] R. Gerlich, R. Gerlich, M. Prochazka, K. Kvinnesland, B. Johansen, “A
Case Study on Automated Source-Code-Based Testing Methods”,
Eurospace Symposium DASIA’2013 “DAta Systems in Aerospace”,
May 14th-16th, 2013, Porto, Portugal

[9] R. Gerlich, R. Gerlich, A. Fischer, M. Pinto, C. Prause. Early results
from characterizing verification tools through coding error candidates
reported in space flight software. DASIA, 2016.

[10] R. Gerlich, R. Gerlich, S. Montenegro, F. Flederer, J. Gerlach, J.
Burghardt, C. Prause. Evaluation of verification tools continued: More
tools, more software, more aspects. DASIA, 2017.

[11] International Standard ISO 9899:2011: Information Technology –
Programming Languages – C, 2011.

[12] International Standard ISO 14882:2011: Information Technology –
Programming Languages – C++, Third Edition, 2011.

[13] The Embedded C++ specification,
http://www.caravan.net/ec2plus/spec.html

