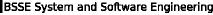


DASIA 2007 May 29th – June 1st 2007 Naples, Italy

Ralf Gerlich¹, Daniel Sigg², Rainer Gerlich³


¹<ralf.gerlich@bsse.biz> ²<daniel.sigg@bsse.biz> ³<rainer.gerlich@bsse.biz>

Dr. Rainer Gerlich System and Software Engineering

Auf dem Ruhbühl 181 88090 Immenstaad

http://www.bsse.biz/

• The Model

UML2 experiment+results

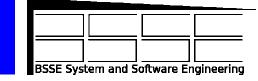
Outline

3ADL experiment+results

General Considerations

Conclusions

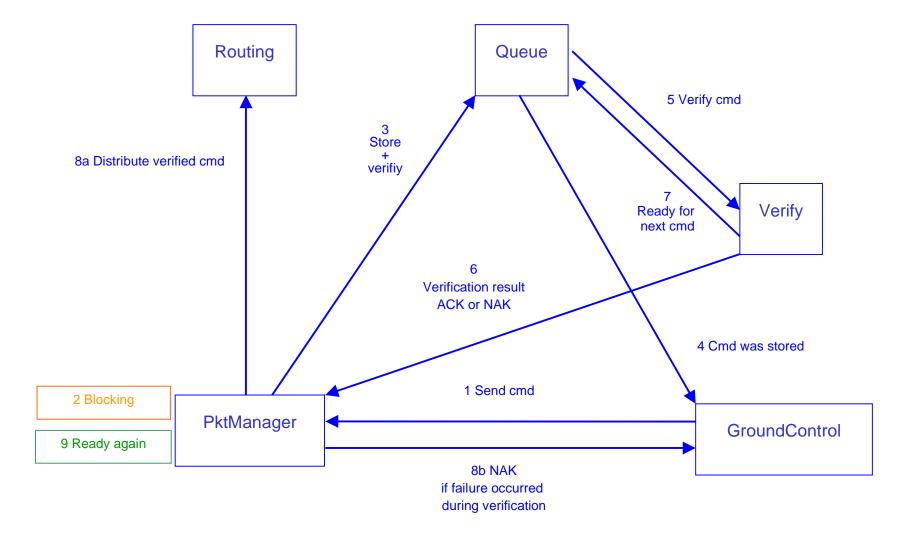
Project Reference


• ACG

- Automatic Code Generation
- ESTEC Contract 18056/04/NL/JA
- Astrium-ST (prime), SynSpace, SciSys

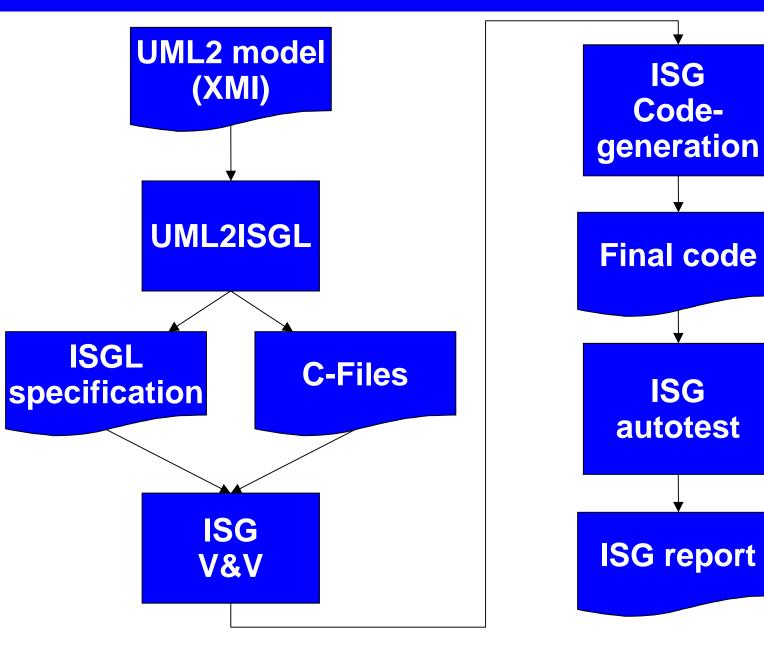
ASSERT

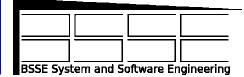
- Automated proof-based System and Software Engineering of Real-Time Systems
- EU project CL 004033, FP6
- headed by ESA

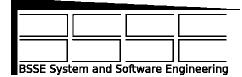


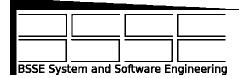
Considered languages

- ACG: UML2
 - pure S/W architecture (via class diagrams)
 - behaviour specified via StateCharts
 - only the subset used in the model
- ASSERT: 3ADL (AADL-based UML-profile)
 - architectural specification (components, subcomponents)
 - behaviour via StateCharts (not part of 3ADL)
- ISGL
 - behaviour via Finite Statemachines
 - architecture+communication via own concepts

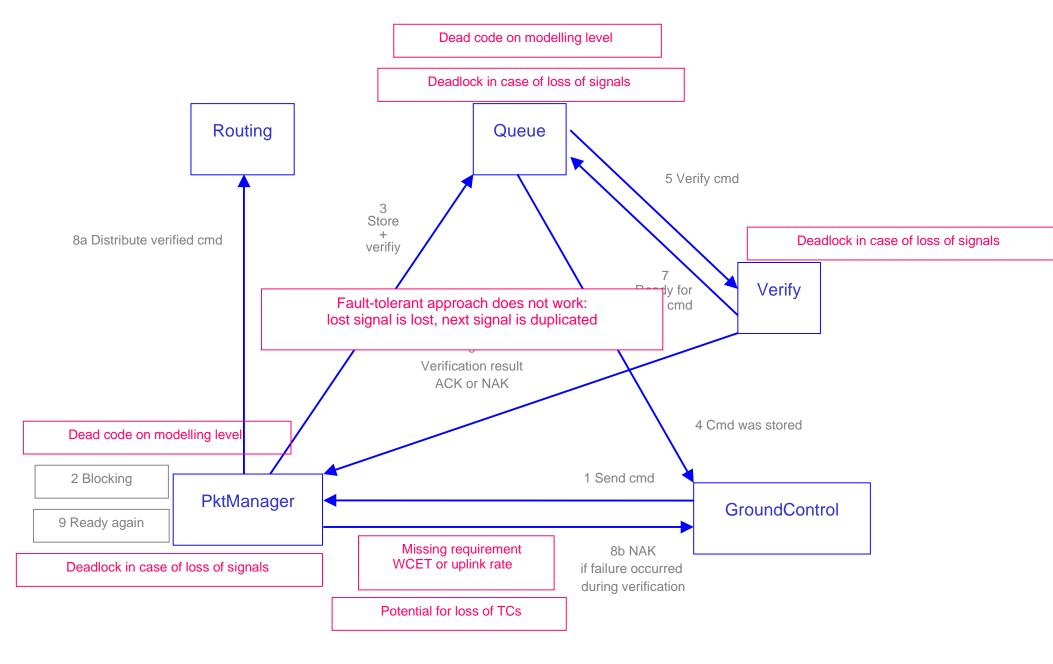

TMTC Manager


BSSE System and Software Engineering



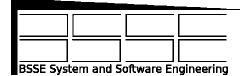


- ISG automatically stimulates system
 - on target or in simulation environment
 - optional fault injection (loss of signal, invalid signal)
- records observed behaviour
 - state and transition coverage
 - timing diagrams
 - message-sequence diagrams


- Original model based on TAU
 - no conforming XMI-export (files invalid, unreadable)
- re-modelling using Eclipse UML2
- transformation to ISGL
 - active classes with StateMachines become ISGL processes
 - Use Cases and MSCs not considered (too informal)
 - direct mapping of communication
 - conditions, opaque actions become C-functions
 - H/W architecture (CPU-mapping, channels) hardcoded (not available from model)

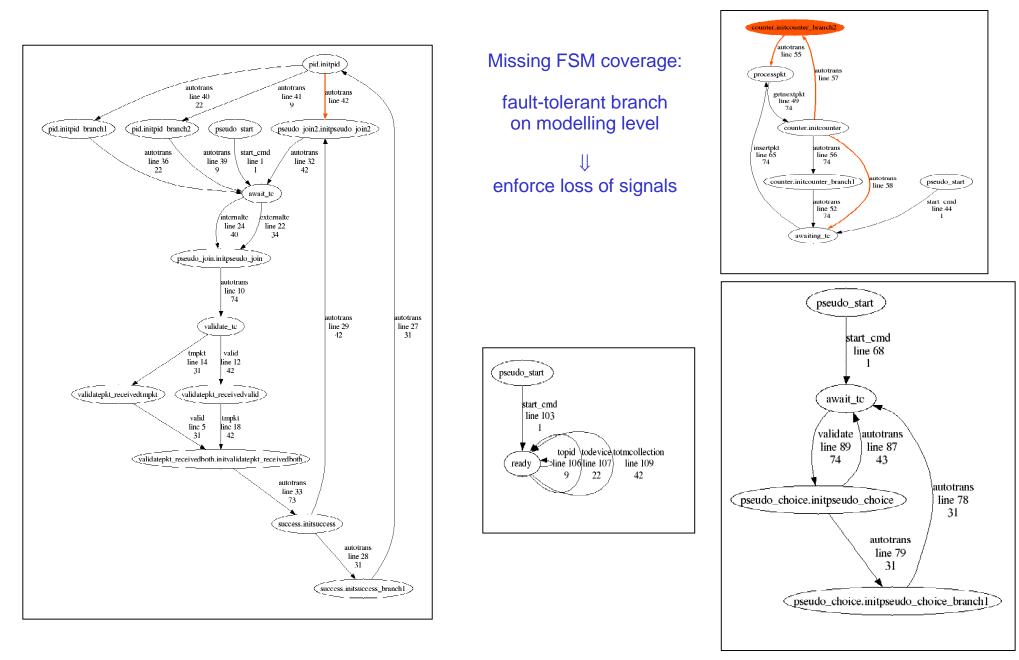
- Model was formally incomplete
 - interaction with ground, but ground not modelled
- Performance bottleneck
 - on reception of TC receiving process blocks
 - until TC was completely processed
 - no requirement on maximum burst rate known
- Missing coverage
 - System was stimulated without failure
 - Missing coverage indicated fault tolerance handling
 - enforced random loss of signals produced deadlock
- Not detected with other tools!

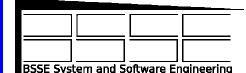
Faults found

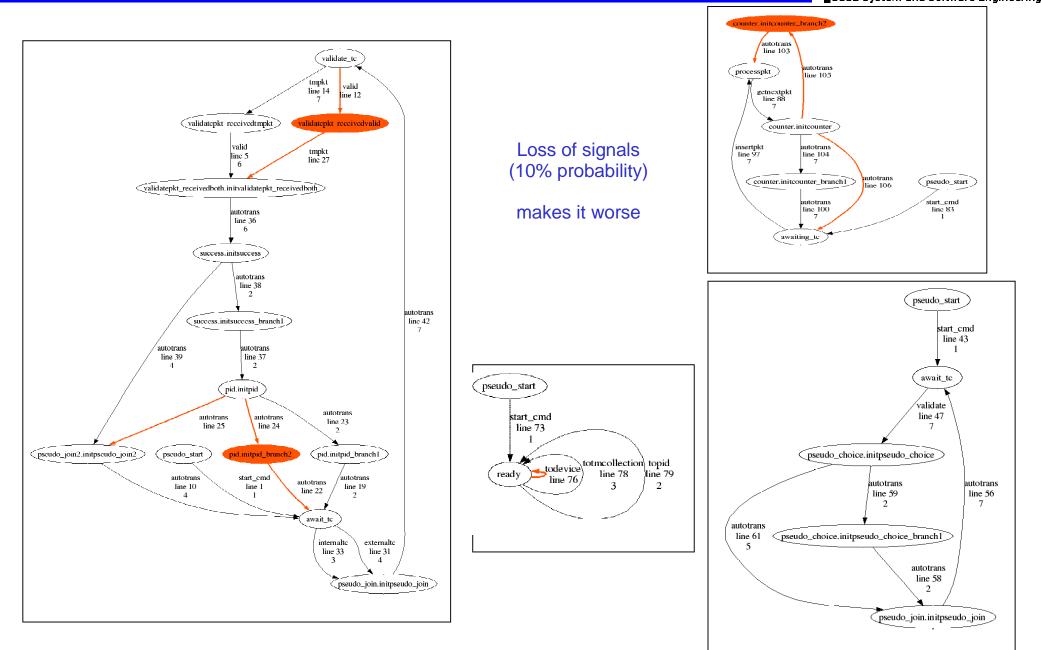


- behavioural specification kept
- new architectural specification
 - AADL hierarchical decomposition, ports
 - based on 3ADL architectural stereotypes
- transformation to ISGL
 - channels, CPUs now specified in model
 - flattening of hierarchical decomposition
 - thread types contain behaviour ? processes
- results as for the UML2 experiment
 - as expected!

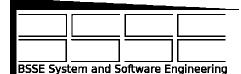
3SSE System and Software Engineering


Benefits of Model Exchange

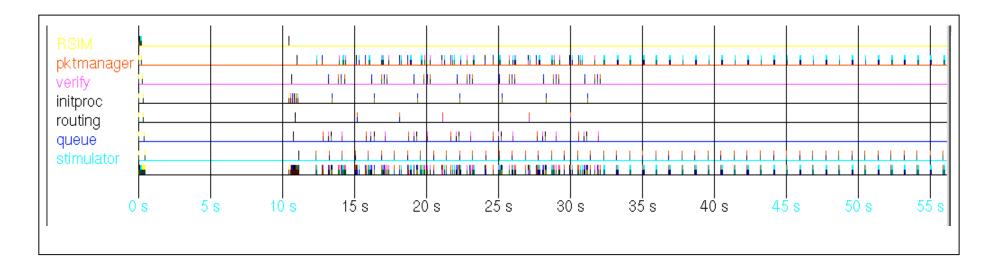

- Different tools provide different focus
 - e.g. schedulability vs. behaviour
- Comparison of results for same-focus tools
 - e.g. results from different code generators in test
- Better view on overall system properties
 - combine information on different aspects
 - identify faults not identified by a single tool
- Languages are compared
 - 3ADL: better architectural modelling
 - UML2: more additional capabilities (e.g. behaviour)
- benefits of n-version code generation
 - "truly independent development teams"

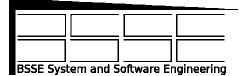

Complementary Capabilities: Coverage

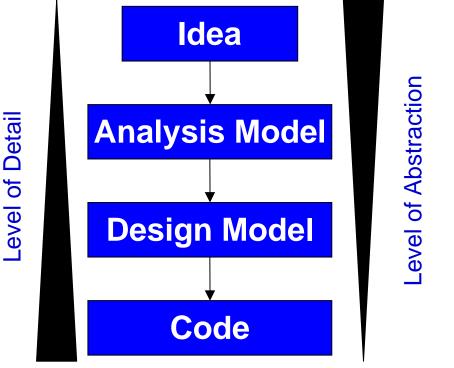
BSSE System and Software Engineering



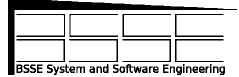
Complementary Capabilities: Coverage

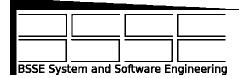



Complementary Capabilities: Timing

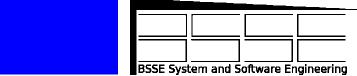


RSIM pktmanager queue verify initproc routing stimulator			1													
			1								II III					
	i			111 1	111	111	1 11 1 11		111 1	111 1	LII I	11 1 11			111 1	<u>i li i i li</u>
	i			111	111			ш	111	1 111	1 111	1 111		111	1.111	
	i													1		
	1						1 1					1				
	i					1 1 1			1111					1 11	111	
	•			11814					N 1101 111 11							NA DEL CALLAND
0	s 5	s 10	s	15	5 S	20)s 25	 5s	30	s	35	is 40	 Ds	45 s	50	s t
			-		-					-		-				


Expressiveness of Models


- Model is abstract, details are ignored
- Implementation is concrete
 - acquire details
 - from language semantics
 - from platform (e.g. OS API, H/W architecture)

Language Semantics



- Information on the System is either
 - in the Model, or
 - in the Language Semantics, or
 - in the Implementer (programmer, code generator)
- Semantics:
 - What is allowed?
 - What does it mean?
- Semantics means Information
 - for verification
 - for disambiguation
 - for optimisation


Semantics in UML2

- Multiple Triggers on one Transition
 - runtime behaviour not defined (deliberately, SVP)
 - order relevant?
 - both required to trigger or one sufficient?
- Accessing Signal Contents
 - not formally defined in abstract syntax
 - only by opaque expression
 - modeller's (language) choice ? tool's problem
- Missing Targets for Signals
 - UML2 allows specification via ports
 - but does not insist on specification

- **Semantics in 3ADL (Profile)**
- Architecture mainly empty shells
 - only modelling tool for decomposition
- Port connections and buses
 - Two ports connected via many levels of hierarchy
 - Partial connections can be bound to different buses
- No concept of behaviour
 - Not original focus of 3ADL Profile
 - Reuse of concept from UML2 lead to similar problems as for UML2 experiment

- 3ADL more suitable
 - constructive approach: Define allowed elements
 - therefore more suitable for tool-based analysis
- Assumptions needed to allow transformation
 - might not be applicable for other applications
- More faults detected in tested model
 - observed on level of generated code
 - analysis found them in model as well
 - not visible by pure review or stepping
- More rules, more value!
 - more strict modelling concepts required