
Evaluation of
Auto-Test-Generation Strategies and Platforms

R.Gerlich(1), R.Gerlich(1)(2), Th.Boll(1), J.Mayer(2)

(1)BSSE (2)University of Ulm

DASIA’07

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 1

29.05. - 01-06.2007, Naples, Italy

Dr. Rainer Gerlich Tel. +49/7545/91.12.58
Auf dem Ruhbühl 181 Fax +49/7545/91.12.40
88090 Immenstaad Mobil +49/171/80.20.659
Germany email Rainer.Gerlich@bsse.biz

Overview

! Test Strategies

! Platform Dependencies

! Auto-Testing Results

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 2

! Conclusions

Dimensions of Auto-Testing

Languages

Java

Ada

Platforms

gcc Aonix

GNAT

Languages

C Ada Java

Tool DCRTT DARTT SmartG

Languages
Coverage

C Ada Java
Block + +

Exception + +
Decision +

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 3

C

Test Modes

Lattice

Random

Operational

VC++

Coverage

ExceptBlock
Statement

Decision Path
Class

Languages
Test Mode

C Ada Java
Random + + +
Lattice + +

Operational +

Path Set +

Coverage

" Block coverage
" record when a block is accessed
" 1 .. n samples in a “basket”
" n user-defined, usually 1 “sufficient”, but more needed
" figures presented are based on n=1

" Exception coverage
" record when an exception occurs
" take each exception type in any case

(exception code, location)
" Statement Coverage

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 4

" Statement Coverage
" identical with block coverage, if no exception occurs
" equivalent to combination of block + exception recording

" Decision Coverage
" record all items impacting branches (if, switch, for, while)
" short circuit code, MC/DC

" Path Set Coverage
" identify paths to a block
much more combinations than for block and statement coverage
but more reliable test coverage
" 1 .. n samples in a “basket” per path set

Path Set Coverage

Example # path
sets

Time
/ ms

Mean
Throughput / s

GCD 8 ~350 ~23
rectangle
intersection

96 ~3300 ~29

rect-in-rect 9 ~560 ~16
point-in-rect 9 ~55 ~164

" Path sets constructed by transformation of code
" equivalence transformation (e.g. loop-unrolling, unfolding, ...)

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 5

q (g p g g)
" insertion of constraints to enforce decisions (e.g. <loopcond>=true)

" constraint-based test data generation (starting point: Gotlieb et al, 2001)
" extended to path set coverage using transformed code (statement coverage)

" numbers lead to combined strategy
" first random/lattice: fast (~3000/s), but often incomplete coverage
" then constraint-based: slow, but complementary in coverage

" future optimisations
" optimise constraint solver for inconsistency detection (proof by refutation)
" path-look-ahead based on control-flow-graph properties

Test Modes (1/2)

" Lattice (black-box) (subprogram parameters)
" type range is divided into n intervals
" position of samples may be driven by a weight profile

more samples around a user-defined center
" full coverage from type’first .. type’last
good results for out-of-range-conditions at lower and upper limit
" coverage filter: lower values are preferred

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 6

g p

" Random (black-box) (subprogram parameters)
" (pseudo) random choice over type’first .. type’last
" currently no weights
" coverage filter: random distribution

" Extension: information from code analysis (white-box)
" additional test cases (lattice + random)
" constants found in source code

Test Modes (2/2)

" Operational Mode
" running a program in normal operation
" collection of coverage for all subprograms simultaneously
" case-to-case: input generation according to specification
" flex: applications-specific generator according to parsing rules
" test cases are complementary to lattice + random modes

" Future extensions: path set + global data + stack data

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 7

" outcome from path class coverage activities
" identify criteria to enter a branch
based on constraint-solving techniques
" “simple” conditions are covered by “normal” lattice- and random

based test generation
" “complex” conditions are identified by constraint-solving techniques

matter of CPU time consumption
" also consider global and stack data
auto-testing should come close to 100% coverage

Auto-Test Strategies

Operational
Data

Generator

RulesConstraint-
AnalysisType Range

Auto-Testing

Application-independent Application-dependent

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 8

cumulated

Coverage

Filtered Test Cases + Independent (Target) Test Driver

Lattice-based

1 .. n

low range

n=1

+

Operational-based

1 .. k

ops range

k≥1

+

1 .. m

full range

m≥1

Random-based

+

1 .. j

full range

j≥1

Path-set-
based

Systems-under-Test

" DCRTT Test Suite
" test cases for critical issues of auto-testing
" nature of code leads to high coverage
" demonstration of non-reachable code: total coverage < 100%
" demonstration of exception capture: significant part of exceptions

" Open Source Packages
" open to everybody to re-run tests
" comparison of results from different tools (oSIP⇔DART)

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 9

p ()
" GNU oSIP

" open software for the Session Initiation Protocol (SIP)
" flex, Berkeley University

" parser, code generator

Functions LOC Blocks Decisions
DCRTT 142 3862 865 938

flex 189 12452 2397 2871
oSIP 655 19368 3402 5227

Overview on Coverage
Coverage vs. LOCs

40

60

80

100

120

[%]

C-Block coverage
Ada-Block coverage
C-Decision Coverage

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 10

0

20

40

1 10 100 1000 10000 100000 1000000LOCs

" The more defensive the programming style ⇒ the higher the coverage
" The more information on type ranges ⇒ the higher the coverage
" Ada better than C
" DCRTT test suite is a special case: adherent to defensive programming style

Overview on Locks and Aborts
Exceptions + Aborts vs. LOCs

30

40

50

60

70

[%]

C-Excptions per Test case
Ada-Exceptions per Test case
C-Functions with Exceptions
Ada-Functions with Exceptions
C-Aborts
Ada-Aborts

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 11

0

10

20

1 10 100 1000 10000 100000 1000000LOCs

" The more defensive the programming style ⇒ the less anomalies
" The more context information ⇒ the less anomalies
" Ada code: developed according to standards
" DCRTT test suite is a special case: intended generation of exceptions, locks, aborts

Test Case Filtering: Approach

" Filtering
" identify test inputs of interest
auto-testing produces a high number of test inputs

take coverage criterion to reduce this set to a “feasible” set
n samples for each block and decision item
each exception type

" reduced set can be evaluated manually (should be)

Specification
Source Code

“ Development
Environment “

Auto-Test
Environment

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 12

" Test driver generation
" auto-generate independent test driver
" auto-feed in recorded inputs
" auto-check output against previously observed outputs
" run test driver on target or another platform
" integrate test driver with another (test) tool to benefit

from complementary capabilities
integration with Cantata++

“ Target
Environment “

Filtered
Test Inputs

Auto-Test
Execution

Filter
Criteria

Independent Test Driver
Integration of Cantata++

Test Case Filtering: Results

" Platform aspects
" diversification brings more filtered test cases

VC++ gccTest Cases

DCRTT lattice random lattice random
Total Samples 552339 428318 552342 428318

Filtered 769 626 736 600

Non-compliances 3 3 0 0

VC++ gccTest Cases

flex lattice random lattice random
Total Samples 525660 492489 533070 487122

Filtered 359 328 365 313

Non-compliances 101 101 47 39

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 13

g
" a priori: unknown which one is the best ...

" Test re-execution
" execution of filtered test inputs by independent test driver
" re-evaluation by independent tool
" non-compliances indicate computational non-determinisms,

exception type and location
" varying test conditions:

memory, exception sensitivity, numerics

Platform Dependencies: Exceptions, Locks and Aborts

" Exceptions
" activation compiler-dependent
" numerics
" differences indicate

numerical weakness + instability

" Locks + Aborts
" identify dormant problems
" context / status dependency
" diff i di t k + i t bilit

DCRTT
Test Suite
142 functions

VC++ gcc

lattice random lattice random
Exceptions

expected
occurred

non-compl.

79
79
3

60
60
3

30
30
0

32
32
0

Functions with
Exceptions

27 27 17 17

Filtered Tests 769 626 736 600

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 14

" differences indicate weakness + instability

flex
189 functions

VC++ gcc

lattice random lattice random
Exceptions

expected
occurred

non-compl.

179
124
101

154
110
101

177
135
47

146
121
39

Functions with
Exceptions

101 191 91 93

Filtered Tests 359 328 365 313

Locks +
Aborts

VC++ gcc

lattice random lattice random
DCRTT

#
%

intended
(1)
-

intended
(1)
-

intended
(1)
-

intended
(1)
-

flex
#

%

28+10
38

20.12

17+12
29

15.35

14+14
28

14.81

12+16
28

14.81
oSIP

#
%

15+326
341

52.06

Platform Dependencies: Coverage

" General considerations
" the more information

about valid operation conditions,
the higher the coverage

" impact by exceptions
" gcc: higher coverage, less exceptions

" flex
" poor context information ⇒

Coverage / %DCRTT
Test Suite

142 functions Lattice Random
Coverage Type VC++ gcc VC++ gcc
Block 91.10 92.6 85.20 85.20
Decision 96.70 97.10 91.90 91.90

true 90.74 93.20 83.53 83.53
false 96.14 96.16 94.90 94.90

Coverage / %flex

189 functions Lattice Random

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 15

" poor context information ⇒
low coverage + high exception rate

" can be improved by adherence to
coding standards

" oSIP
" further evaluation dropped due to

high abort rate
" results may be corrupted due to

crashes FUT, re-run required, ~18 h

Coverage Type VC++ gcc VC++ gcc
Block 15.28 17.15 15.20 16.44
Decision 16.75 21.25 18.01 19.33

true 56.97 58.85 54.16 55.86
false 86.49 84.26 87.23 87.57

Coverage / %oSIP

655 functions Lattice Random

Coverage Type VC++ gcc VC++ gcc
Block 8.94 ??
Decision 4.36 ??

true 34.65 ??
false 76.75 ??

Test Strategy vs. Coverage

" Block coverage

flex
gcc

Rule coverage max. = 92.31%
Coverage / %

Test Mode Block Decision
Lattice 17.2 21.3
Random 16.5 19.3
Lattice + Rnd 18.6 22.8
Operational Mode (OM) max. 29.58 42.95
Latt + OM max. 37.46 49.43
Rnd + OM max. 37.55 49.32
Latt + Rnd + OM max. 38.42 49.57
OM cumulated 38.82 49.84
Latt + OM cumulated 45.64 55.59
Rnd + OM cumulated 45.72 55.77

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 16

" Block coverage
" lattice, random + OM test cases: complementary, significant part
" lattice and random: coverage figure nearly equivalent,

but structurally different
" Decision coverage

" lattice, random + OM test cases: complementary, small part
" lattice and random: nearly equivalent

" flex
" poor context information
" lattice and random: robustness testing, fault injection
" the higher the lattice, random or operational coverage,

the more overlap in coverage

Latt + Rnd + OM cumulated 46.43 55.73

Rule-based + Lattice + Random Testing: Block Coverage

Cumulated Block-Coverage vs. Rule-Coverage

25

30

35

40

45

50

Coverage [%]

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 17

" flex rules
" 76 rules to simplify expressions
" 29 rule files generated, for 7 flex did not terminate
" up to 2000 rules per file, up to 3000 bytes per rule (line)

0

5

10

15

20

55 60 65 70 75 80 85 90 95Rules [%]

Module Testing Lattice
Module Testing Random
Module Testing Lattice+Random
OM only cumulated
OM + Module Testing Lattice cumulated
OM + Module Testing Random cumulated
OM + Module Testing Lattice+Random cumulated

Rule-based + Lattice + Random Testing: Decision Coverage

Cumulated Decision-Coverage vs. Rule-Coverage

30

40

50

60

Coverage [%]

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 18

" flex (not adherent to defensive programming style)
" the lower the coverage, the more disjoined are lattice, random, operational
" ideal case: all figures would be identical
" 6 rules not yet covered

0

10

20

55 60 65 70 75 80 85 90 95Rules [%]

Module Testing Lattice
Module Testing Random
Module Testing Lattice+Random
OM only cumulated
OM + Module Testing Lattice cumulated
OM + Module Testing Random cumulated
OM + Module Testing Lattice+Random cumulated

Modified Test Evaluation for (Full) Auto-Testing

Coding

Result Compliance

Test
Execution

Test
EvaluationSpecification

Manual Test Case
Identification

Test
Preparation

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 19

Specification Coding

Result ComplianceHarmonisation
Results - Specification

Auto-Testing +
Operational Testing +

Auto-Filtering

General Conclusions (1/3)

" Coverage

" good programming style ⇒ high coverage

" poor information about valid conditions ⇒ low coverage

" the more defensive the programming style, the higher the coverage

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 20

" auto-testing cannot compensate poor context information

auto-testing strongly supports well-formed code

low coverage indicates weakness in code and potential problems

the more information on type ranges, the higher the coverage

⇒ Ada better than C

General Conclusions (2/3)

" Efficiency

" the better the programming style, the more efficient is auto-testing

" the better the programming style, the higher the cost savings by auto-testing

the lower the coverage, the higher is the manual effort for
testing, verification, validation

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 21

the lower the coverage, the less context information is provided
⇒ recurring effort during maintenance

" Result production flex
" ~ 7 hours for all test modes + combinations + cumulation

immediate feedback on code status

" one script only needs to be started

" most time needed for result presentation in Excel

" script can be easily adapted to other programs

General Conclusions (3/3)

" Platform Diversification
" potential to identify more filtered test cases

" potential to identify more exceptions

" potential to identify more weakness

" Test Strategies

" l i i

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 22

" complementary in test generation

" significant non-overlapping part for “flex-type” code

" “rule-based” test generation complements “type-range” approach

" deeper analysis needed on non-covered parts

" indication for dead code (hypothesis to be checked):

(too) low code coverage at high coverage of input domain

in case all test modes are combined

