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Coverage

" Block coverage
" record when a block is accessed
" 1 .. n samples in a “basket”
" n user-defined, usually 1 “sufficient”, but more needed
" figures presented are based on n=1

" Exception coverage
" record when an exception occurs
" take each exception type in any case

(exception code, location)
" Statement Coverage
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" Statement Coverage
" identical with block coverage, if no exception occurs
" equivalent to combination of block + exception recording

" Decision Coverage
" record all items impacting branches (if, switch, for, while)
" short circuit code, MC/DC

" Path Set Coverage
" identify paths to a block
# much more combinations than for block and statement coverage
# but more reliable test coverage
" 1 .. n samples in a “basket” per path set



Path Set Coverage

Example # path
sets

Time
/ ms

Mean
Throughput / s

GCD 8 ~350 ~23
rectangle
intersection

96 ~3300 ~29

rect-in-rect 9 ~560 ~16
point-in-rect 9 ~55 ~164

" Path sets constructed by transformation of code
" equivalence transformation (e.g. loop-unrolling, unfolding, ...)
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q ( g p g g )
" insertion of constraints to enforce decisions (e.g. <loopcond>=true)

" constraint-based test data generation (starting point: Gotlieb et al, 2001)
" extended to path set coverage using transformed code (statement coverage)

" numbers lead to combined strategy
" first random/lattice: fast (~3000/s), but often incomplete coverage
" then constraint-based: slow, but complementary in coverage

" future optimisations
" optimise constraint solver for inconsistency detection (proof by refutation)
" path-look-ahead based on control-flow-graph properties



Test Modes (1/2)

" Lattice (black-box) (subprogram parameters)
" type range is divided into n intervals
" position of samples may be driven by a weight profile

more samples around a user-defined center
" full coverage from type’first .. type’last
# good results for out-of-range-conditions at lower and upper limit
" coverage filter: lower values are preferred
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g p

" Random (black-box) (subprogram parameters)
" (pseudo) random choice over type’first .. type’last
" currently no weights
" coverage filter: random distribution

" Extension: information from code analysis (white-box)
" additional test cases (lattice + random)
" constants found in source code



Test Modes (2/2)

" Operational Mode
" running a program in normal operation
" collection of coverage for all subprograms simultaneously
" case-to-case: input generation according to specification
" flex: applications-specific generator according to parsing rules
" test cases are complementary to lattice + random modes

" Future extensions: path set + global data + stack data
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" outcome from path class coverage activities
" identify criteria to enter a branch
# based on constraint-solving techniques
" “simple” conditions are covered by “normal” lattice- and random 

based test generation
" “complex” conditions are identified by constraint-solving techniques

matter of CPU time consumption
" also consider global and stack data
# auto-testing should come close to 100% coverage



Auto-Test Strategies
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Systems-under-Test

" DCRTT Test Suite
" test cases for critical issues of auto-testing
" nature of code leads to high coverage
" demonstration of non-reachable code: total coverage < 100%
" demonstration of exception capture: significant part of exceptions

" Open Source Packages
" open to everybody to re-run tests
" comparison of results from different tools (oSIP⇔DART)
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p ( )
" GNU oSIP

" open software for the Session Initiation Protocol  (SIP)
" flex, Berkeley University

" parser, code generator

Functions LOC Blocks Decisions
DCRTT 142 3862 865 938

flex 189 12452 2397 2871
oSIP 655 19368 3402 5227



Overview on Coverage
Coverage vs. LOCs
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" The more defensive the programming style ⇒ the higher the coverage
" The more information on type ranges          ⇒ the higher the coverage
" Ada better than C
" DCRTT test suite is a special case: adherent to defensive programming style



Overview on Locks and Aborts
Exceptions + Aborts vs. LOCs
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" The more defensive the programming style ⇒ the less anomalies
" The more context information                      ⇒ the less anomalies
" Ada code: developed according to standards
" DCRTT test suite is a special case: intended generation of exceptions, locks, aborts



Test Case Filtering: Approach

" Filtering
" identify test inputs of interest
# auto-testing produces a  high number of test inputs 

take coverage criterion to reduce this set to a “feasible” set
n samples for each block and decision item
each exception type

" reduced set can be evaluated manually (should be)

Specification
Source Code
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Auto-Test
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" Test driver generation
" auto-generate independent test driver
" auto-feed in recorded inputs
" auto-check output against previously observed outputs
" run test driver on target or another platform
" integrate test driver with another (test) tool to benefit

from complementary capabilities
# integration with Cantata++

“ Target
Environment “

Filtered
Test Inputs

Auto-Test
Execution

Filter
Criteria

Independent Test Driver
Integration of Cantata++



Test Case Filtering: Results

" Platform aspects
" diversification brings more filtered test cases

VC++ gccTest Cases

DCRTT lattice random lattice random
Total Samples 552339 428318 552342 428318

Filtered 769 626 736 600

Non-compliances 3 3 0 0

VC++ gccTest Cases

flex lattice random lattice random
Total Samples 525660 492489 533070 487122

Filtered 359 328 365 313

Non-compliances 101 101 47 39
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g
" a priori: unknown which one is the best ...

" Test re-execution
" execution of filtered test inputs by independent test driver
" re-evaluation by independent tool
" non-compliances indicate computational non-determinisms,

exception type and location
" varying test conditions:

memory, exception sensitivity, numerics



Platform Dependencies: Exceptions, Locks and Aborts

" Exceptions
" activation compiler-dependent 
" numerics
" differences indicate 

numerical weakness + instability

" Locks + Aborts
" identify dormant problems 
" context / status dependency
" diff i di t k + i t bilit

DCRTT
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" differences indicate weakness + instability

flex
189 functions

VC++ gcc

lattice random lattice random
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Platform Dependencies: Coverage

" General considerations
" the more information 

about valid operation conditions,
the higher the coverage

" impact by exceptions
" gcc: higher coverage, less exceptions

" flex
" poor context information ⇒

Coverage / %DCRTT
Test Suite

142 functions Lattice Random
Coverage Type VC++ gcc VC++ gcc
Block 91.10 92.6 85.20 85.20
Decision 96.70 97.10 91.90 91.90

true 90.74 93.20 83.53 83.53
false 96.14 96.16 94.90 94.90

Coverage / %flex

189 functions Lattice Random
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" poor context information ⇒
low coverage + high exception rate

" can be improved by adherence to 
coding standards

" oSIP
" further evaluation dropped due to

high abort rate
" results may be corrupted due to 

crashes FUT, re-run required, ~18 h

Coverage Type VC++ gcc VC++ gcc
Block 15.28 17.15 15.20 16.44
Decision 16.75 21.25 18.01 19.33

true 56.97 58.85 54.16 55.86
false 86.49 84.26 87.23 87.57

Coverage / %oSIP

655 functions Lattice Random

Coverage Type VC++ gcc VC++ gcc
Block 8.94 ??
Decision 4.36 ??

true 34.65 ??
false 76.75 ??



Test Strategy vs. Coverage

" Block coverage

flex
gcc

Rule coverage max. = 92.31%
Coverage / %

Test Mode Block Decision
Lattice 17.2 21.3
Random 16.5 19.3
Lattice + Rnd 18.6 22.8
Operational Mode (OM)   max. 29.58 42.95
Latt + OM                         max. 37.46 49.43
Rnd + OM                        max. 37.55 49.32
Latt + Rnd + OM              max. 38.42 49.57
OM                          cumulated 38.82 49.84
Latt + OM                cumulated 45.64 55.59
Rnd + OM               cumulated 45.72 55.77
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" Block coverage
" lattice, random + OM test cases: complementary, significant part
" lattice and random: coverage figure nearly equivalent, 

but structurally different
" Decision coverage

" lattice, random + OM test cases: complementary, small part
" lattice and random: nearly equivalent

" flex
" poor context information
" lattice and random: robustness testing, fault injection
" the higher the lattice, random or operational coverage,

the more overlap in coverage

Latt + Rnd + OM     cumulated 46.43 55.73



Rule-based + Lattice + Random Testing: Block Coverage

Cumulated Block-Coverage vs. Rule-Coverage
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" flex rules
" 76 rules to simplify expressions
" 29 rule files generated, for 7 flex did not terminate
" up to 2000 rules per file, up to 3000 bytes per rule (line)
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Rule-based + Lattice + Random Testing: Decision Coverage

Cumulated Decision-Coverage vs. Rule-Coverage
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" flex (not adherent to defensive programming style)
" the lower the coverage, the more disjoined are lattice, random, operational
" ideal case: all figures would be identical
" 6 rules not yet covered

0

10

20

55 60 65 70 75 80 85 90 95Rules [%]

Module Testing Lattice
Module Testing Random
Module Testing Lattice+Random
OM only cumulated
OM + Module Testing Lattice cumulated
OM + Module Testing Random cumulated
OM + Module Testing Lattice+Random cumulated



Modified Test Evaluation for (Full) Auto-Testing
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General Conclusions (1/3)

" Coverage

" good programming style ⇒ high coverage

" poor information about valid conditions ⇒ low coverage

" the more defensive the programming style, the higher the coverage
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" auto-testing cannot compensate poor context information

# auto-testing strongly supports well-formed code

# low coverage indicates weakness in code and potential problems

# the more information on type ranges, the higher the coverage

⇒ Ada better than C



General Conclusions (2/3)

" Efficiency

" the better the programming style, the more efficient is auto-testing

" the better the programming style, the higher the cost savings by auto-testing

# the lower the coverage, the higher is the manual effort for
testing, verification, validation
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# the lower the coverage, the less context information is provided
⇒ recurring effort during maintenance

" Result production flex
" ~ 7 hours for all test modes + combinations + cumulation

# immediate feedback on code status

" one script only needs to be started

" most time needed for result presentation in Excel

" script can be easily adapted to other programs



General Conclusions (3/3)

" Platform Diversification
" potential to identify more filtered test cases

" potential to identify more exceptions

" potential to identify more weakness

" Test Strategies

" l i i

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved           DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 22

" complementary in test generation

" significant non-overlapping part for “flex-type” code

" “rule-based” test generation complements “type-range” approach

" deeper analysis needed on non-covered parts

" indication for dead code (hypothesis to be checked):

(too) low code coverage at high coverage of input domain

in case all test modes are combined


