Evaluation of
Auto-Test-Generation Strategies and Platforms

R.Gerlich®), R.Gerlich®®@, Th.Boll), J.Mayer
(WBSSE @University of Ulm

DASIA'07

29.05. - 01-06.2007, Naples, ltaly

Dr. Rainer Gerlich Tel. +49/7545/91.12.58
Auf dem Ruhbtihl 181 Fax +49/7545/91.12.40
88090 Immenstaad Mobil +49/171/80.20.659
Germany email Rainer.Gerlich@bsse.biz

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms

Overview

m Test Strategies
m Platform Dependencies
m Auto-Testing Results

m Conclusions

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved

DASIA’07, Evaluation of Auto-Testing Strategies and Platforms

Dimensions of Auto-Testing

Languages
Languages
C Ada Java
Tool DCRTT | DARTT | SmartG

Java
Languages
Platforms Coverage
C Ada Java
Ada Block + +
Exception + +
Decision +
Path Set +
Coverage
Statement
Block Except Decision Path
Lattice Class
Languages
Test Mode
Random C Ada Java
Test Modes Random + + +
Operational Lattice + +
Operational +

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 3

Coverage

% Block coverage
¢ record when a block is accessed
» 1 .. nsamples in a “basket”
» n user-defined, usually 1 “sufficient”, but more needed
+» figures presented are based on n=1
% EXception coverage
*» record when an exception occurs
+» take each exception type in any case
(exception code, location)
» Statement Coverage
+» identical with block coverage, if no exception occurs
*» equivalent to combination of block + exception recording
% Decision Coverage
+*» record all items impacting branches (if, switch, for, while)
¢ short circuit code, MC/DC
% Path Set Coverage
+» identify paths to a block
" much more combinations than for block and statement coverage
=~ but more reliable test coverage
s 1 ..nsamples in a “basket” per path set

CR)

L)

CR)

L)

CAR)

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 4

Path Set Coverage

Example # path | Time Mean
sets /ms | Throughput/s
GCD 8 ~350 ~23
rectangle 96 ~3300 ~29
intersection
rect-in-rect 9 ~560 ~16
point-in-rect 9 ~55 ~164

%

%

%

%

fast (~3000/s), but often incomplete coverage
slow, but complementary in coverage

Path sets constructed by transformation of code
¢ equivalence transformation (e.g. loop-unrolling, unfolding, ...
¢ Insertion of constraints to enforce decisions (e.g. <l oopcond>=t r ue)
constraint-based test data generation (starting point: Gotlieb et al, 2001)
*» extended to path set coverage using transformed code (statement coverage)

numbers lead to combined strategy
¢+ first random/lattice:
+* then constraint-based:

future optimisations
*» optimise constraint solver for inconsistency detection (proof by refutation)
+» path-look-ahead based on control-flow-graph properties

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms

Test Modes (1/2)

* Lattice (black-box) (subprogram parameters)
*» type range is divided into n intervals
¢ position of samples may be driven by a weight profile
more samples around a user-defined center
¢ full coverage from type’first .. type’last
¥~ good results for out-of-range-conditions at lower and upper limit
s coverage filter: lower values are preferred
* Random (black-box) (subprogram parameters)
¢ (pseudo) random choice over type’first .. type’last
¢ currently no weights
¢ coverage filter: random distribution
% Extension: information from code analysis (white-box)
+ additional test cases (lattice + random)
¢ constants found in source code

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 6

Test Modes (2/2)

* Operational Mode

“* running a program in normal operation

¢ collection of coverage for all subprograms simultaneously

% case-to-case: input generation according to specification

¢ flex: applications-specific generator according to parsing rules
¢ test cases are complementary to lattice + random modes

Future extensions: path set + global data + stack data

* outcome from path class coverage activities

¢ identify criteria to enter a branch

¥~ based on constraint-solving techniques

*» “simple” conditions are covered by “normal” lattice- and random
based test generation

s “complex” conditions are identified by constraint-solving techniques
matter of CPU time consumption

+ also consider global and stack data

¥~ auto-testing should come close to 100% coverage

Y UL AT OT U DOOL OQYyJlT T dllU QUlLwa © Chyiica iy, UV ARy meoa veu UAOIA VI, CVAUualluvll Ul AULUT T SILTY dlatyico d u rialuvi s

Auto-Test Strategies

Auto-Testing

A

A 4

Application-independent Application-dependent

Type Range

Constraint- Rules Operational

Analysis Data
A 4
Generator
y A Y : y y
Lattice-based Random-based ngls—ggt— Operational-based <
1..n 1..m 1..] 1..k lated
> cumulate
© () (D)
low range tull range full range \Jops range
n=1 m=1 =1 k>1
A 4 A 4 A 4 A 4
Coverage

Filtered Test Cases + Independent (Target) Test Driver

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms

Systems-under-Test

% DCRTT Test Suite
+» test cases for critical issues of auto-testing
¢ nature of code leads to high coverage
+ demonstration of non-reachable code: total coverage < 100%
*» demonstration of exception capture: significant part of exceptions

% Open Source Packages
¢ open to everybody to re-run tests
s comparison of results from different tools (0SIP = DART)

<+ GNU oSIP
*» open software for the Session Initiation Protocol (SIP)

*» flex, Berkeley University
< parser, code generator

Functions | LOC | Blocks | Decisions

DCRTT 142 3862 865 938
flex 189 12452 | 2397 2871
o0SIP 655 19368 | 3402 9227

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 9

Overview on Coverage

120

100

80

60

40

20 ~

Coverage vs. LOCs

DCRTT-C
speclal case
\ Cat. A-Ada
—e— C-Block cowerage
—a— Ada-Block cowerage
C-Decision Cowerage \\ 'N;it.C-Ada
EQ(-C
R
1 10 100 1000 10000 100000 LOCs 1000000

e

*%

J
‘0

L)

e

*%

S

*%

The more defensive the programming style = the higher the coverage

The more information on type ranges = the higher the coverage

Ada better than C

DCRTT test suite is a special case: adherent to defensive programming style

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 10

Overview on Locks and Aborts

(%] Exceptions + Aborts vs. LOCs

70

60

—e— C-Excptions per Test case

flex-C 7

50 —a— Ada-Exceptions per Test case
C-Functions with Exceptions /

20 Ada-Functions with Exceptions

—x— C-Aborts

—e— Ada-Aborts

30 -

DORTT.C Cat, C-Ada

special case

*03IP-C Mé
0 | | | Cat. A- ‘

1 10 100 1000 10000 100000 LOCs 1000000

20 A

The more defensive the programming style = the less anomalies

The more context information = the less anomalies

Ada code: developed according to standards

DCRTT test suite is a special case: intended generation of exceptions, locks, aborts

J J J J
0‘0 0‘0 0‘0 0‘0

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 11

Test Case Filtering: Approach

K/

% Filtering Specification
Source Code

* identify test inputs of interest
" auto-testing produces a high number of test inputs

\4

take coverage criterion to reduce this set to a “feasible” set

Auto-Test
n samples for each block and decision item Environment
each exception type “ Development l
¢ reduced set can be evaluated manually (should be) Environment
% Test driver generation é)l:;%uTue:rt]
*» auto-generate independent test driver “ Target l Filter
» auto-feed in recorded inputs Environment * Criteria
¢ auto-check output against previously observed outputs Filtered
< run test driver on target or another platform Test Inputs
** Integrate test driver with another (test) tool to benefit l

from complementary capabilities
P y cap Independent Test Driver

=~ integration with Cantata++ Integration of Cantata++

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 12

Test Case Filtering: Results

Test Cases VC++ gcc Test Cases VCH+ gce
DCRTT lattice | random | lattice | random flex lattice | random | lattice | random
Total Samples 552339 | 428318 | 552342 | 428318 | Total Samples 525660 | 492489 | 533070 | 487122
Filtered 769 626 736 600 Filtered 359 328 365 313
Non-compliances 3 3 0 0 Non-compliances | 101 101 47 39

o

« Platform aspects
+» diversification brings more filtered test cases

/

¢ a priori: unknown which one is the best ...

\J/

% Test re-execution

% re-evaluation by independent tool

exception type and location
% varying test conditions:
memory, exception sensitivity, numerics

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved

% execution of filtered test inputs by independent test driver

% non-compliances indicate computational non-determinisms,

DASIA’07, Evaluation of Auto-Testing Strategies and Platforms

13

Platform Dependencies: Exceptions, Locks and Aborts

DCRTT VC++ gcc
Test Suite
142 functions
lattice | random | lattice | random

Exceptions

expected| 79 60 30 32

occurred| 79 60 30 32

non-compl. 3 3 0 0

Functions with 27 27 17 17
Exceptions
Filtered Tests 769 626 736 600

flex VC++ gcc

189 functions
lattice | random | lattice | random

Exceptions

expected | 179 154 177 146

occurred | 124 110 135 121

non-compl. | 101 101 47 39

Functions with 101 191 91 93
Exceptions
Filtered Tests 359 328 365 313

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved

% Exceptions

o

% activation compiler-dependent
** numerics
+» differences indicate

numerical weakness + instability

% Locks + Aborts
+ identify dormant problems
s context / status dependency

+» differences indicate weakness + instability

Locks + VC++ gcc
Aborts
lattice | random lattice | random
DCRTT | intended | intended | intended | intended
(1) (1) (1) (1)
% - - - -
flex 28+10 17+12 14+14 12+16
38 29 28 28
% | 20.12 15.35 14.81 14.81
oSIP 15+326
341
% 52.06

DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 14

Platform Dependencies: Coverage

DCRTT
Test Suite Coverage /%
142 functions Lattice Random
Coverage Type | VC++ gcc VC++ gcc
Block 91.10 | 92.6 | 85.20 | 85.20
Decision 96.70 | 97.10 | 91.90 | 91.90
true| 90.74 | 93.20 | 83.53 | 83.53
false| 96.14 | 96.16 | 94.90 | 94.90
flex Coverage / %
189 functions Lattice Random
Coverage Type | VC++ gcc VC++ gcc
Block 15.28 | 17.15 | 15.20 | 16.44
Decision 16.75 | 21.25 | 18.01 | 19.33
true | 56.97 [58.85 | 54.16 | 55.86
false| 86.49 | 84.26 | 87.23 | 87.57
oSIP Coverage / %
655 functions Lattice Random
Coverage Type | VC++ gcc VC++ | gcc
Block 8.94 ??
Decision 4.36 ??
true 34.65 ??
false 76.75 ?7?

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved

K/

% General considerations
% the more information
about valid operation conditions,
the higher the coverage
*» Impact by exceptions
¢ gcc: higher coverage, less exceptions

o flex
% poor context information =
low coverage + high exception rate
% can be improved by adherence to
coding standards

 0SIP
s further evaluation dropped due to
high abort rate

% results may be corrupted due to
crashes FUT, re-run required, ~18 h

DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 15

Test Strategy vs. Coverage

flex
gcc Coverage / %
Rule coverage max. = 92.31%
Test Mode Block | Decision
Lattice 17.2 21.3
Random 16.5 19.3
Lattice + Rnd 18.6 22.8
Operational Mode (OM) max.| 29.58 42.95
Latt + OM max.| 37.46 49.43
Rnd + OM max. | 37.55 | 49.32
Latt + Rnd + OM max.| 38.42 | 49.57
oM cumulated | 38.82 49.84
Latt + OM cumulated | 45.64 55.59
RN Bl k Rnd + OM cumulated | 45.72 55.77
. OCK coverage Latt + Rnd + OM___cumulated | 46.43 | 55.73
s lattice, random + OM test cases: = complementary, significant part
* lattice and random: coverage figure nearly equivalent,

but structurally different

R

«* Decision coverage
< lattice, random + OM test cases: complementary, small part
* lattice and random: nearly equivalent

\/

% flex

% poor context information

+ lattice and random: robustness testing, fault injection

* the higher the lattice, random or operational coverage,
the more overlap in coverage

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 16

Rule-based + Lattice + Random Testing: Block Coverage

0,
Coverage [%] Cumulated Block-Coverage vs. Rule-Coverage
50
combined I
45
40
35
rule-based auto-testing
30
25
20 . lattice + random: potentially robusiness and invalid range
P — — 2 —2 —t
15 -
—&— Module Testing Lattice
10 —#— Module Testing Random
Module Testing Lattice+Random
OM only cumulated
5 —¥%— OM + Module Testing Lattice cumulated
—e— OM + Module Testing Random cumulated
—+— OM + Module Testing Lattice+Random cumulated
55 60 65 70 75 80 85 90 Rules [%] 95

\J/

** flex rules
% 76 rules to simplify expressions
s 29 rule files generated, for 7 flex did not terminate

/

% up to 2000 rules per file, up to 3000 bytes per rule (line)

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 17

Rule-based + Lattice + Random Testing: Decision Coverage

Coverage [%] Cumulated Decision-Coverage vs. Rule-Coverage

60

combined I

e —5—

50
/ rule-based auto-testing
40

30

lattice + random: potentially robustness and Iinvalld range

' & & &
L 4 v v v v @

20 —= —= i —8 —a

L 4
L 4

—e— Module Testing Lattice
—&— Module Testing Random
10 Module Testing Lattice+Random
OM only cumulated
—¥— OM + Module Testing Lattice cumulated
—e— OM + Module Testing Random cumulated
0 ‘ ‘ ‘ —+— OM + Module Testing Lattice+Random cumulated

55 60 65 70 75 80 85 90 Rules [%] 95

o flex (not adherent to defensive programming style)
*» the lower the coverage, the more disjoined are lattice, random, operational
+» Ideal case: all figures would be identical
% 6 rules not yet covered

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 18

Modified Test Evaluation for (Full) Auto-Testing

Manual Test Case Test
Identification Preparation
A 7'y
: Test Test
Specification | Execution] Evaluation
Coding — |
Result Compliance
Auto-Testing +
Specification > Coding > Operational Testing +
Auto-Filtering

Result Compliance

Harmonisation
Results - Specification

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 19

General Conclusions (1/3)

Coverage
¢ good programming style = high coverage
+ poor information about valid conditions = low coverage

+» the more defensive the programming style, the higher the coverage

* auto-testing cannot compensate poor context information

&~ auto-testing strongly supports well-formed code

" low coverage indicates weakness in code and potential problems

" the more information on type ranges, the higher the coverage

— Ada better than C

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 20

General Conclusions (2/3)

* Efficiency
s the better the programming style, the more efficient is auto-testing
¢ the better the programming style, the higher the cost savings by auto-testing

" the lower the coverage, the higher is the manual effort for
testing, verification, validation

=" the lower the coverage, the less context information is provided
= recurring effort during maintenance

¢ Result production flex
% ~ 7 hours for all test modes + combinations + cumulation
= Immediate feedback on code status
% one script only needs to be started
* most time needed for result presentation in Excel

¢ script can be easily adapted to other programs

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 21

General Conclusions (3/3)

% Platform Diversification
¢ potential to identify more filtered test cases
+ potential to identify more exceptions

¢ potential to identify more weakness

% Test Strategies

% complementary in test generation

% significant non-overlapping part for “flex-type” code

* “rule-based” test generation complements “type-range” approach
s deeper analysis needed on non-covered parts

¢ Indication for dead code (hypothesis to be checked):

(too) low code coverage at high coverage of input domain

in case all test modes are combined

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2007 AllRights Reserved DASIA’07, Evaluation of Auto-Testing Strategies and Platforms 22

