

Automated Verification of Code Generated from Models:

Comparing Specifications with Observations

Ralf Gerlich, Daniel Sigg, Rainer Gerlich

 BSSE System and Software Engineering, Auf dem Ruhbuehl 181,

88090 Immenstaad, Germany, Phone +49/7545/91.12.58, Mobile +49/171/80.20.659,
Fax +49/7545/91.12.40, e-mail:Ralf.Gerlich@bsse.biz, Rainer.Gerlich@bsse.biz, Daniel.Sigg@bsse.biz,

URL: http://www.bsse.biz

ABSTRACT:
The interest for automatic code generation from models
is increasing. A specification is expressed as model and
verification and validation is performed in the
application domain. Once the model is formally correct
and complete, code can be generated automatically. The
general belief is that this code should be correct as well.
However, this might be not true: Many parameters
impact the generation of code and its correctness: it
depends on conditions changing from application to
application, the properties of the code depend on the
environment where it is executed.

From the principles of ISVV (Independent Software
Verification and Validation) it even must be doubted
that the automatically generated code is correct.
Therefore an additional activity is required proving the
correctness of the whole chain from modelling level
down to execution on the target platform.

Certification of a code generator is the state-of-the-art
approach dealing with such risks,. Scade [1] was the
first code generator certified according to DO178B. The
certification costs are a significant disadvantage of this
certification approach. All codes needs to be analysed
manually, and this procedure has to be repeated for re-
certification after each maintenance step.

But certification does not guarantee at all that the
generated code does comply with the model.
Certification is based on compliance of the code of the
code generator with given standards. Such compliance
never can guarantee correctness of the whole chain
through transformation down to the environment for
execution, though the belief is that certification implies
well-formed code at a reduced fault rate.

The approach presented here goes a direction different
from manual certification.. It is guided by the idea of
automated proof: each time code is generated from a
model the properties of the code when being executed in
its environment are compared with the properties
specified in the model. This allows to conclude on the

correctness of the whole chain for every application and
related generated code.

1 INTRODUCTION
Faults may be introduced in the chain from modelling to
target execution either by a model itself or by the code
generator.

If a model is the source of a fault, modification is
actually part of the normal development cycle of an
application and does not pose a problem, provided its
identification is supported by a code generator e.g. by
comprehensive presentation of the properties as
observed in the execution environment..

If the source is the code generator, the needed
modification of the generator will lead to loss of its
certification. The alternative, modification of the
generated code, will lead to loss of previous verification
and certification of the model and the generated code.

Manual analysis of properties of the executed code for
evaluation of its correctness is also very expensive, and
also not free of potential human errors. However, an
automaton cannot replace an engineer for this task,
because oracles are not available to predict what is
correct or not (this is at least true in most cases, only in
simple cases an oracle may exist).

An automated proof would be rather helpful to conclude
on the correctness of large amounts of code as usually
produced by code generators. This issue leads to the
question how an automaton can contribute to
verification and validation though not knowing the
results, thereby significantly reducing costs and time.

As an automaton does not know itself what is correct or
not in an application, a practical solution must rely on a
proof for which the automaton does not need to evaluate
the contents of application-specific properties.

This conclusion guides to a simple comparison of two
sets of properties: if both sets comply, the result is
correct. The principal problem is that the model set
("specification") and the set of properties ("results")

mailto:Rainer.Gerlich@bsse.biz

observed when executing the generated code cannot be
taken for such a comparison, because they are not
equivalent from the automaton's point of view.

Apparently, the observed properties need to be
transformed back into a model representation to get two
equivalent representations. This is the approach chosen.

This paper will present and discuss this approach and
first results obtained rom practice in the context of the
ISG modelling environment [3]. In chapter 2 the
principal approach to verification of the whole chain is
explained. Chapter 3 identifies the steps needed in
practice for auto-proving. Chapter 4 discusses the
current results. In chapter 5 the chosen approach is
compared to model verification based on Message
Sequence Charts (MSC) [4]. Finally, conclusions are
drawn in chapter 6.

2 THE VERIFICATION CHAIN
The ISGL language [3] is centered around behaviour,
performance (timing and scheduling), communication
(by signals) and distribution of processes across a
platform. Therefore these properties will be subject of
observation (which is already inherently supported by

ISG) and back-transformation into the reference domain
of a model.

The advantages are:

• cost reduction due to automation of the
verification process for the code generator,

• immediate proof of correctness for every
application and each of its versions based on
observations in its real environment.

Fig. 2-1 shows the principal verification chain as
applied by the verifier of the ISG code generator
(CGverifier):

• automated transformation from the reference
model domain into distributed, instrumented
executable code,

• automated observation of the relevant
properties when executing the generated code
in its intended environment,

• automated transformation of the observed
properties back into the observed model,

• automated comparison of the reference and the
observed model.

Fig. 2-1: The Automated Verification Chain

From the compliance of reference and observed model
the correctness of the generated code can be derived,
provided that

1. the code generator and the back transformator are
independent,

2. a fault in one of both transformators is not
compensated by a fault in the other transformator.

Condition 1 shall be satisfied by independent
implementations which only interface with minimum
information on the relationship between properties and

modelling elements. In fact, the back transformation
requires a quite different and probably simpler
implementation than code generation, which makes it
easier to assess its correctness.

Condition 2 cannot be formally satisfied, but the
probability should be rather small due to the
independency of both generators, especially compared
to the fault probability human beings may introduce into
a certification process. A cleanroom approach can be
applied to the development of forward and backward
generators, but the fact that different, though

Observation of
Properties

Reference
Model Automated

Code Generation

Back
Transformation Observed

Model

Comparison

Execution of
Generated Code

Observation of
Properties

communicating teams implement the code generator
resp. the verification facility should provide acceptable
credibility and reliability of the results.

3 THE VERIFICATION STEPS

3.1 Observation of Properties
The properties of the code shall be observed from
messages issued by the "application" (the generated
code) when

• application signals are exchanged between the
processes,
including information on source and destination
process and their instances, the current state and
the message type,

• timer signals are issued
providing information on scheduling and
timeout events

• additional information signals are issued,
providing information e.g. on state transitions
and timing requests.

The observed sequence of such signals does allow to
construct a model equivalent to the reference model
w.r.t to the properties to be verified. This implies that in
a first step of the CGverifier only certain modelling
elements are considered for the comparison, the ones
which can be derived from the supported observations
(see Table 3-3).

An essential point of the chosen approach is that
• only one incoming signal is processed at any

instant of time, and
• no, one or a sequence of signals is issued

during processing of such an incoming signal,
• messages on atomic activities and the current

and next state are issued.

Branches in such processing steps due to conditions can
be identified by the number of occurrences of signals
following an incoming signal.

3.2 Back Transformation and Comparison
From the observed sequence the back transformation
will construct the Observed Model which should look
like the equivalent of the model or parts of it (see 4.3 for
a discussion on this point), so that the comparison
should yield an "OK", or "not OK" in case of non-
compliances. For this transformation only the intended
operational semantics of the modeling language together
with the observation interface need to be known.

The transformator will track the states and incoming
messages and correlate any following out-going
message, while evaluating different streams from

process instances to derive a process type as envelop of
such instances.

The Observed Model will only represent such code parts
which have been executed.. E.g. if a timeout is not
observed, the observed model may lack the related part.
Consequently, this implies that a successful comparison
can only be reached when during observation full
statement and decision coverage (nodes and edges of the
code structure) of the reference model is achieved. In
case faults are handled in the model, the faults should
occur, which may imply the need for fault injection
during execution.

The need for full coverage may increase the test effort,
however it also ensures a well tested model and
implementation.

Identification of performance properties mostly depend
on statistical observations of quantities like jitter of
periods, timeouts and data lengths. Therefore an exact
match cannot be required, and verification is limited to
the compliance of the observed sub-range with the
reference range.

3.2.1 Monitored Items
Verification is based on the items listed in Table 3-6.
They are grouped into

• state items
• distribution items
• items of messages
• items related to timer operations
• items confirming execution of a UDF
• general items.

For each item the source is given from where the
information is provided:

• model ("model")
• generated code ("code")

and for which purpose the information may be used:
• information only ("info")
• cross-checks ("cc")
• verification of the code generator ("vv")

For verification of the code generator (vv) only
minimum information from the generated code is
allowed, originating at the basic locations in the
generated source code and the underlying run-time
system provided by ISG. However, additional
information may be useful

• to check the contents of the Observed Model
internally in the cgVerifier by information
declared as "info", and

• to apply cross-checks to the back
transformation based on redundant information
declared as "cc" to raise the chance for
detection of a fault in the forward and backward
chain.

Such items may contain model information or
information from the generated code, depending on the
location.

3.2.2 Verification Issues
Table 3-3 defines the verification issues to which a
location contributes. This allows the construction of the
Observed Model from the observations.

At each location in the code which is relevant for
observation of a desired property, a message is issued.

In case of UDF calls (call of User-Defined Functions
during a transition in a Finite State Machine) four levels
are introduced to verify the call of a UDF up to the
degree supported by ISG:

• a stub generated by ISG is executed as UDF,
• a call of an external UDF from a stub into

which the call was inserted manually,
• a call of an external UDF from a stub and an

interface function generated by auto-integration
• the direct call of an external UDF.

From the sequence of recorded properties a model is
constructed by translating each such record into a
statement of the ISG modeling language, yielding the
“observed model” at the end.

3.3 Observation Sequences
The following principal sequences of signals shall be
observed by which the properties of the generated code
can be identified when it is executed.

3.3.1 Basic Sequences
Sequence of Activities

This sequence (Table 3-1) is the simplest one. It only
consists of activities following an incoming message,
and the state is not changed at the end.

Simple Transition Sequence

This sequence stands for the basic activities which can
be observed in response to an incoming message
immediately followed by a transition into a permanent
state.

Timer Request

This sequence is observed when scheduling is required
or a timeout condition is raised.

Sequence Type Step
Activities in-message

activity
Transition Sequence of activities

state transition
Timer request timer request sent

timer request received
Table 3-1: Basic Sequences

3.3.2 Composed Transition Sequences
A number of compositions of simple and further
composed sequences are possible (Table 3-2).

Multiple Transition Sequence

Such a sequence repeats the Simple Transition Sequence
for intermediate transitions to (UML) pseudo-states,
terminated by a Simple Transition Sequence entering a
permanent state.

Entry/Exit Extended Sequence

This sequence adds activities before and/or after a
transition into another permanent state. If both, the
number of entry and exit activities is 0, it is equivalent
to the Multiple Transition Sequence.

Timer Extended Sequence

In case a timer event is received, either for scheduling or
handling of a timeout, it is converted into an equivalent
incoming message, which is processed like any other
incoming message, e.g. sent by another process. Table
3-2 only shows the Entry/Exit Transition Sequence, but
a Multiple Transition Sequence is possible in this
context, too.

Sequence Type Step
Multiple
transition
sequence

Simple transition sequence to a
(UML) pseudo-state
Simple transition sequence to a
permanent state

Exit / Exit
Transition
Sequence

Simple transition sequence to a
(UML) pseudo-state
Sequence of Activities
Exit Activity
Sequence of Activities
state transition
Entry Activity
Sequence of Activities

Timer extended
sequence

timer response event
Exit/Enter Transition Sequence

Table 3-2: Composed Sequences

Property Group Property Item Verification Issue
Behaviour Process

State
In-message
State transition

The tuple (process,state, inMsg) must exactly match.
All activities following an incoming message must exactly match.
An activity is characterised by the tuple

(UDF call, outMsg, destination process, destination instance).
A sequence of activities begins with an incoming message and terminates when the next incoming
message for the same process instance occurs.
Such a sequence may include a state transition to a non-pseudo-state.
The destination state may be the same as the current state.
A terminating state transition always enters a non-pseudo state (in UML sense).
State transitions occurring within such a sequence may enter a pseudo-state.
A sequence must not terminate in a pseudo-state.
A conditional state transition may occur at the end of a sequence.
When a state is left, onExit activities may occur, i.e. a sequence may be extended by additional
activities when a state is left.
When a state is entered, onEntry activities may occur, i.e. a sequence may be preceded by additional
activities when a state is entered.
A sequence of activities related to anystate may be observed in every state.
An activity related to asyncstate may be observed in every state.

Link to Code
Extensions

UDF Call The execution of a UDF must be verified on the lowest level possible:
• in the generated stub
• in the generated code integrating external C and Ada code
• in the provided external code if observation is supported

Communication In-Message The received message and the receiving process instance must comply with the destination list
included in the message.

Receiver Instance The destination instance must comply with the (max.) number of instances.
All instances must have received one message, at least.

Destination Instance The destination instance must comply with the (max.) number of instances.
Channel The observed communication channel must comply with the reference channel.

Distribution Process Instance Every instance is mapped onto one logical processor only.
Logical Processor A logical processor is not mapped onto more than one physical processor..

Performance Period The observed range of a period must comply with the reference range.
The observed timer modes must comply with the reference modes.

Timeout The observed timeout delay must comply with the reference range.
Message Length The observed timeout delay must comply with the reference range.

Table 3-3: Verification Issues

3.4 An Example
Table 3-4 shows the definition of a model in ISGL language [3]. The model consists of process types sps and
controller. A process type is a template from which processes (instances of a process type) are derived by specifiying
the maximum number of instances.

Each process is organised as a Finite State Machine (FSM). In every state a message shall be received, upon which a
sequence of actions may be executed, terminated by a state transition into the same or another state. Pseudo-states may
be entered, too (not used in this simple example). A pseudo-state is a state which may be entered from another state,
only, but it is not entered on reception of an incoming message. When another permanent state is entered (not a pseudo-
state) an exit and an entry action sequence may be executed to terminate the previous state correctly and to perform
some initialisation of the next state (this feature is not shown in the example).

sps states:
 in state startup:
 on message poweron: send message startup to controller instance 1
 enter state identify
 end
 end
 in state identify:
 on message GetIdentity: reset timeout GetIdentity
 create timer motion with constant period 100 msecs ... 2 secs
 enter state init
 end
 on timeout GetIdentity:
 send message startup to controller instance 1
 expect reply GetIdentity within 5 secs
 keep samestate
 end
 end
 in state init:
 on timer motion:
 send message ReadyToLoad to controller instance 1
 enter state idle_WaitExec
 end
 end
controller states:
 in anystate:
 on message startup:
 send message GetIdentity to process sps instance 1
 keep samestate
 end
 end
 end

Table 3-4: An Example of an ISGL model
Active Process Message State Message / Destination Process
Process Instance Type Parameters Process Instance
sps, 1, in, startup, poweron
sps, 1, out, startup, startup, controller, 1
sps, 1, trans, identify
controller, 1, in, startup, startup
controller, 1, out, startup, getidentity, sps, 1
sps, 1, in, identify, getidentity
sps, 1, period, identify, motion, 0.1,2
sps, 1, trans, init

Table 3-5: Observed Sequence of Signals

Table 3-6: Recorded Properties

Monitored Item Verification Type Info derived from
State Info

Model_state info model
stateFrom vv code

stateTo cc code
isCond cc code

isPseudoFrom cc code
isPseudoTo cc code

transType cc code
Distribution Info

nodeId vv code
hostname vv code

hostId vv code
Message Info

cmd vv code
sender vv code

InstS vv code
nodeIdS vv code
receiver vv code

instD vv code
nodeIdD vv code

channelSDL info code
channelLog vv code

channelPhys vv code
actLen vv code

dataMin info model
dataMean info model

dataMax info model, code
Timer Info

timerOps vv code
timerMode cc code

timerSignal cc code
timerResource cc code

timerCyccles cc code
timeMin info, cc model, code

timeMean info, cc model, code
timeMax info, cc model, code

UDF call
UDFcallee vv code

UDFlen info model
UDFname cc model

General Info
processCurrent vv code
instanceCurrent vv code

format info code
now vv code

Model_line info code

Type of Information

• model

information is derived
from model and
inserted into source
code for cross-
checking

• code

information is derived
from executed code
or the ISG run-time
system.

Verification Type

• cc

for cross-checking
purposes only, but
not for construction of
the Observed Model.

• vv

for verification of the
code generator and
construction of the
Observed Model.

• info

for additional
information only

Fig. 3-1:The Application Mode

Timers may be created either with constant or varying
periods randomly chosen from a given interval. Also,
timeout conditions may be set when a reply is expected.
Exception handling is required for every state, in order
to manage messages not expected in the current state.

The communication scheme may be specialised for
every instance of a process type, i.e. for sending of a
message a list of receiving instances may be specified
including specific terms like “return to sender instance”..

When the automatically generated code is executed a
sequence of events is recorded like shown in Table 3-5.
Its contents was simplified for better understanding.
Such sequences are analysed and the retrieved
information is converted back into code of the modelling
language ISGL. Several different sequences observed
for a process may contribute to obtain an equivalent to
the original code. E.g. instances of a process may differ
in communication rom each other, or the length of the
data attached to a message may differ, so that several
samples may be needed to conclude on branches in the
model or a range. Similarly it is for timing figures, e.g.
for the expiration deadline of a timeout.

4 FEEDBACK FROM PRACTICE

4.1 The Application
Fig. 3-1shows an application to which the back
transformation was applied. This is the same application
as discussed in a previous paper on model
transformation [4].

The model represents a manager for telecommands
which are received from ground and processed on-board
through several stages (queuing, verification and
routing) which all are controlled by a packet manager.

4.2 The Implementation
The back-transformation was implemented in several
steps starting with evaluation of the sequence of actions
executed during a state transition to construct the
principal skeleton of the FSM of a process type.

Then dependencies on instances were identified and put
into the observed model. In a following step the envelop
of performance properties was evaluated by analysis of a
number of recorded sequences.

This way multiple shapes of observed records are
mapped back into a single piece of code with variants
for instances or timing.

4.3 Getting Back the Full Model
The reconstruction of the model requires observation of
properties related to each statement type in the code.
Consequently, only such code of the observed model
can be generated which corresponds to fully covered
code in the reference model: full test coverage is
required to get a 1:1 correspondence between both
models.

If the observed model is not complete, then either the
reference model includes dead code or the executed tests
are not sufficient.

4 Cmd was stored

1 Send cmd

8a Distribute verified cmd

8b NAK if failure occurred
during verification

3 Store + Verifiy

9 Ready again

6 Verification result
ACK or NAK

7
Ready for
next cmd

5 Verify cmd

PktManager

Routing Queue

Verify

 2 Blocking
GroundControl

The approach only does verify such parts of the code
generator, which are executed during testing or
operation. From a pragmatic point of view this is what is
needed because there is no need to verify the code
generator for code not being executed . However, from a
rigorous point of view it would be desirable to get all
parts of the code into operation, so that the full model
can be reconstructed.

As a consequence, successful verification of the code
generator implies sufficient testing which should be
based on auto-testing for reduction of test effort.

4.4 Ease of Change Management
The chosen approach for verification of the code
generator does not constrain its maintenance. No
expensive and delaying certification process is needed to
get it into operation again after a change. After
execution of the generated code the correctness of the
maintained version can easily be proven. This gives high
flexibility for immediate improvements and extensions
of the code generator.

4.5 Independency of the Modelling Language
Though this verification approach is based on the
modeling language ISGL and the related code generator,
the back transformation is available to other modeling
languages by model transformation [4], too.

If model transformation ti ISGL is supported for a
modeling language, then a back transformation is
possible,too, for every model defined in another
modeling language.

5 RELEVANCE TO SDL AND MSC

This verification approach is similar to the one known in
the world of SDL [5] and MSC [6], where MSCs
(Message Sequence Charts) are created when the FSMs
defined in SDL are executed. These MSCs are the
"Observed Signals". Some SDL tools (e.g.
ObjectGEODE [7] and SDT [8]) provide the capability
to define a number of "reference sequences" of signals
in MSC notation, which can be compared with the
observed sequences. Then either a match or no match is
found or a counter example.

From this point of view, the ISG process for verification
of the code verifier is inverse to the SDL/MSC
approach:

• SDL/MSC expresses the reference and
observed specification in MSCs, i.e. sequences
of signals, deriving the observed sequences
from the executed FSMs

• ISG expresses the reference and observed
specification in FSMs included in models, and

transforms the observed sequence of signals
(extended MSCs) – as derived from the
executed FSMs – back into a model (FSM)
representation.

In case of SDL/MSC the verification is performed on
the level of sequences of signals, in case of ISG on the
level of FSMs and models. Moreover, the a.m. tools did
not derive the MSCs from the generated code, but from
an independent, separate simulator of which the code is
quite different from the later target code.

ISG also addresses the aspects of performance and
distribution, which are not considered in case of
SDL/MSC, because they are not supported in the
SDL/MSC representation. Therefore CGverifier can
derive a model (spawned by behaviour / FSM,
performance and distribution) from the observed signals
generated by the code intended to run on the target
system.

The essential difference is that CGverifier does not
make a comparison on the level of the signals, but on the
level of the constructor of the signals. This is possible
because states and the message contents are part of such
signals, which may be considered as an extension of the
MSC syntax. The benefit is that the number of
comparisons shrinks drastically, because not all
combinations of the reference sequences need to be
compared with every observed sequence. Instead, the
many sequences of signals have to be filtered and
interpreted as action sequences of FSMs.

While in case of SDL/MSC the specification only
consists of sequences of signals, not allowing to
construct an "observed model" equivalent to the
"reference model", the ISG specification extends this
representation to a specification model, which is the
cornerstone for the automated comparison on modelling
level.

6 CONCLUSIONS
The implementation of CGverifier demonstrates that a
back transformation from observed properties into the
modelling domain and an automated comparison is
feasible. This shall allow in future to apply the
automated verification of the generated code w.r.t. the
reference model in a more general manner.

The current exercise focused on behaviour, performance
and distribution, the essential properties of a distributed
real-time system. In a future step this approach should
be extended to functional properties.

As ISG supports integration of code from different tools,
the back transformation will presumably also be based
on partitioned verification of the contributions from
different tools.

An advantage of the described verification approach is
that the generated code can automatically be verified at
little expenses for every executable version derived from
a model ensuring by real facts that the generated code
corresponds to the reference model.

In order to get the full model back from generated code
each branch must be executed. This requires full test
coverage and even more than that when performance
properties shall be retrieved. In consequence, automated
testing is required, too, to keep the costs of such
extensive testing low. The issue of back transformation
supports the need for full testing of code and model, it is

a pre-condition of success.

The activity described above was funded in part by the
ASSERT project [2], an Integrated Project (IP
CL004433) executed in the course of the 6th Frame
Programme of the EU from 2004 to 2007. The ASSERT
consortium consisted of about 30 European companies
lead by ESA as prime.

7 REFERENCES
[1] Scade, Esterel Technologies, Toulouse, http://www.esterel-technologies.com

[2] ASSERT: Automated proof-based System and Software Engineering of Real-Time Systems, IP CL004433,
http://www.assert-project.net

[3] ISGL, ISG Language, http://www.bsse.biz/products/isg

[4] R.Gerlich, D.Sigg, R.Gerlich: Model Transformation in Practice, Proceedings of DASIA’07 organised by
Eurospace Paris, 29.05.-01.06.2007, Naples, Italy

[5] SDL, Specification and Description Language, Z.100, International Telecommunication Union, ITU,
http://www.itu.int

[6] MSC, Message Sequence Charts, Z.120, International Telecommunication Union, ITU, http://www.itu.int

[7] ObjectGeode, SDL toolset, Verilog (now part of Telelogic)

[8] SDT, SDL toolset, Telelogic, http://www.telelogic.com

http://www.assert-project.net/
http://www.bsse.biz/products/isg

	A
	ABSTRACT:
	INTRODUCTION
	THE VERIFICATION CHAIN
	THE VERIFICATION STEPS
	Observation of Properties
	Back Transformation and Comparison
	Monitored Items
	Verification Issues

	Observation Sequences
	Basic Sequences
	Sequence of Activities
	Simple Transition Sequence
	Timer Request

	Composed Transition Sequences
	Multiple Transition Sequence
	Entry/Exit Extended Sequence
	Timer Extended Sequence

	An Example

	FEEDBACK FROM PRACTICE
	The Application
	The Implementation
	Getting Back the Full Model
	Ease of Change Management
	Independency of the Modelling Language

	RELEVANCE TO SDL AND MSC
	CONCLUSIONS
	REFERENCES

