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ABSTRACT: 
The interest for automatic code generation from models 
is increasing. A specification is expressed as model and 
verification and validation is performed in the 
application domain. Once the model is formally correct 
and complete, code can be generated automatically. The 
general belief is that this code should be correct as well. 
However, this might be not true: Many parameters 
impact the generation of code and its correctness: it 
depends on conditions changing from application to 
application, the properties of the code depend on the 
environment where it is executed. 

From the principles of ISVV (Independent Software 
Verification and Validation) it even must be doubted 
that the automatically generated code is correct.  
Therefore an additional activity is required proving the 
correctness of the whole chain from modelling level 
down to execution on the target platform. 

Certification of a code generator is the state-of-the-art 
approach dealing with such risks,. Scade [1] was the 
first code generator certified according to DO178B. The 
certification costs are a significant disadvantage of this 
certification approach. All codes needs to be analysed 
manually, and this procedure has to be repeated for re-
certification after each maintenance step.  

But certification does not guarantee at all that the 
generated code does comply with the model. 
Certification is based on compliance of the code of the 
code generator with given standards. Such compliance 
never can guarantee correctness of the whole chain 
through transformation down to the environment for 
execution, though the belief is that certification implies 
well-formed code at a reduced fault rate. 

The approach presented here goes a direction different 
from manual certification.. It is guided by the idea of 
automated proof: each time code is generated from a 
model the properties of the code when being executed in 
its environment are compared with the properties 
specified in the model. This allows to conclude on the 

correctness of the whole chain for every application and 
related generated code. 

1 INTRODUCTION 
Faults may be introduced in the chain from modelling to 
target execution either by a model itself or by the code 
generator.  

If a model is the source of a fault, modification is 
actually part of the normal development cycle of an 
application and does not pose a problem, provided its 
identification is supported by a code generator e.g. by 
comprehensive presentation of the properties as 
observed in the execution environment.. 

If the source is the code generator, the needed 
modification of the generator will lead to loss of its 
certification. The alternative, modification of the 
generated code, will lead to loss of previous verification 
and certification of the model and the generated code. 

Manual analysis of properties of the executed code for 
evaluation of its correctness is also very expensive, and 
also not free of potential human errors. However, an 
automaton cannot replace an engineer for this task, 
because oracles are not available to predict what is 
correct or not (this is at least true in most cases, only in 
simple cases an oracle may exist). 

An automated proof would be rather helpful to conclude 
on the correctness of large amounts of code as usually 
produced by code generators. This issue leads to the 
question how an automaton can contribute to 
verification and validation though not knowing the 
results, thereby significantly reducing costs and time.  

As an automaton does not know itself what is correct or 
not in an application, a practical solution must rely on a 
proof for which the automaton does not need to evaluate 
the contents of application-specific properties. 

This conclusion guides to a simple comparison of two 
sets of properties: if both sets comply, the result is 
correct. The principal problem is that the model set 
("specification") and the set of properties ("results") 
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observed when executing the generated code cannot be 
taken for such a comparison, because they are not 
equivalent from the automaton's point of view. 

Apparently, the observed properties need to be 
transformed back into a model representation to get two 
equivalent representations. This is the approach chosen.  

This paper will present and discuss this approach and 
first results obtained rom practice in the context of the 
ISG modelling environment [3]. In chapter 2 the 
principal approach to verification of the whole chain is 
explained. Chapter 3 identifies the steps needed in 
practice for auto-proving. Chapter 4 discusses the 
current results. In chapter 5 the chosen approach is 
compared to model verification based on Message 
Sequence Charts (MSC) [4]. Finally, conclusions are 
drawn in chapter 6. 

2 THE VERIFICATION CHAIN 
The ISGL language [3] is centered around behaviour, 
performance (timing and scheduling), communication 
(by signals) and distribution of processes across a 
platform. Therefore these properties will be subject of 
observation (which is already inherently supported by 

ISG) and back-transformation into the reference domain 
of a model. 

The advantages are: 

•  cost reduction due to automation of the 
verification process for the code generator, 

•  immediate proof of correctness for every 
application and each of its versions based on 
observations in its real environment. 

Fig.  2-1 shows the principal verification chain as 
applied by the verifier of the ISG code generator 
(CGverifier): 

•  automated transformation from the reference 
model domain into distributed, instrumented 
executable code, 

•  automated observation of the relevant 
properties when executing the generated code 
in its intended environment, 

•  automated transformation of the observed 
properties back into the observed model, 

•  automated comparison of the reference and the 
observed model. 

 

 

 

 

 

 

 

 

 

 

Fig.  2-1: The Automated Verification Chain 
 
From the compliance of reference and observed model 
the correctness of the generated code can be derived, 
provided that 

1. the code generator and the back transformator are 
independent, 

2. a fault in one of both transformators is not 
compensated by a fault in the other transformator. 

Condition 1 shall be satisfied by independent 
implementations which only interface with minimum 
information on the relationship between properties and 

modelling elements. In fact, the back transformation 
requires a quite different and probably simpler 
implementation than code generation, which makes it 
easier to assess its correctness. 

Condition 2 cannot be formally satisfied, but the 
probability should be rather small due to the 
independency of both generators, especially compared 
to the fault probability human beings may introduce into 
a certification process. A cleanroom approach can be 
applied to the development of forward and backward 
generators, but the fact that different, though 
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communicating teams implement the code generator 
resp. the verification facility should provide acceptable 
credibility and reliability of the results. 

3 THE VERIFICATION STEPS 

3.1 Observation of Properties 
The properties of the code shall be observed from 
messages issued by the "application" (the generated 
code) when 

•  application signals are exchanged between the 
processes, 
including information on source and destination 
process and their instances, the current state and 
the message type, 

•  timer signals are issued 
providing information on scheduling and 
timeout events 

•  additional information signals are issued, 
providing information e.g. on state transitions 
and timing requests. 

The observed sequence of such signals does allow to 
construct a model equivalent to the reference model 
w.r.t to the properties to be verified. This implies that in 
a first step of the CGverifier only certain modelling 
elements are considered for the comparison, the ones 
which can be derived from the supported observations 
(see Table  3-3). 

An essential point of the chosen approach is that  
•  only one incoming signal is processed at any 

instant of time, and 
•  no, one or a sequence of signals is issued 

during processing of such an incoming signal, 
•  messages on atomic activities and the current 

and next state are issued. 

Branches in such processing steps due to conditions can 
be identified by the number of occurrences of signals 
following an incoming signal. 

3.2 Back Transformation and Comparison 
From the observed sequence the back transformation 
will construct the Observed Model which should look 
like the equivalent of the model or parts of it (see 4.3 for 
a discussion on this point), so that the comparison 
should yield an "OK", or "not OK" in case of non-
compliances. For this transformation only the intended 
operational semantics of the modeling language together 
with the observation interface need to be known. 

The transformator will track the states and incoming 
messages and correlate any following out-going 
message, while evaluating different streams from 

process instances to derive a process type as envelop of 
such instances. 

The Observed Model will only represent such code parts 
which have been executed.. E.g. if a timeout is not 
observed, the observed model may lack the related part. 
Consequently, this implies that a successful comparison 
can only be reached when during observation full 
statement and decision coverage (nodes and edges of the 
code structure) of the reference model is achieved. In 
case faults are handled in the model, the faults should 
occur, which may imply the need for fault injection 
during execution. 

The need for full coverage may increase the test effort, 
however it also ensures a well tested model and 
implementation. 

Identification of performance properties mostly depend 
on statistical observations of quantities like jitter of 
periods, timeouts and data lengths. Therefore an exact 
match cannot be required, and verification is limited to 
the compliance of the observed sub-range with the 
reference range. 

3.2.1  Monitored Items 
Verification is based on the items listed in Table  3-6. 
They are grouped into 

•  state items 
•  distribution items 
•  items of messages 
•  items related to timer operations 
•  items confirming execution of a UDF 
•  general items. 

For each item the source is given from where the 
information is provided: 

•  model ("model") 
•  generated code ("code") 

and for which purpose the information may be used: 
•  information only ("info") 
•  cross-checks ("cc") 
•  verification of the code generator ("vv") 

For verification of the code generator (vv) only 
minimum information from the generated code is 
allowed, originating at the basic locations in the 
generated source code and the underlying run-time 
system provided by ISG. However, additional 
information may be useful  

•  to check the contents of the Observed Model 
internally in the cgVerifier by information 
declared as "info", and 



 
 

  

•  to apply cross-checks to the back 
transformation based on redundant information 
declared as "cc" to raise the chance for 
detection of a fault in the forward and backward 
chain. 

Such items may contain model information or 
information from the generated code, depending on the 
location. 

3.2.2 Verification Issues 
Table  3-3 defines the verification issues to which a 
location contributes. This allows the construction of the 
Observed Model from the observations. 

At each location in the code which is relevant for 
observation of a desired property, a message is issued. 

In case of UDF calls (call of User-Defined Functions 
during a transition in a Finite State Machine) four levels 
are introduced to verify the call of a UDF up to the 
degree supported by ISG: 

•  a stub generated by ISG is executed as UDF, 
•  a call of an external UDF from a stub into 

which the call was inserted manually, 
•  a call of an external UDF from a stub and an 

interface function generated by auto-integration 
•  the direct call of an external UDF. 

From the sequence of recorded properties a model is 
constructed by translating each such record into a 
statement of the ISG modeling language, yielding the 
“observed model” at the end. 

3.3 Observation Sequences 
The following principal sequences of signals shall be 
observed by which the properties of the generated code 
can be identified when it is executed. 

3.3.1 Basic Sequences 
Sequence of Activities 

This sequence (Table  3-1) is the simplest one. It only 
consists of activities following an incoming message, 
and the state is not changed at the end. 

Simple Transition Sequence 

This sequence stands for the basic activities which can 
be observed in response to an incoming message 
immediately followed by a transition into a permanent 
state. 

Timer Request 

This sequence is observed when scheduling is required 
or a timeout condition is raised. 

Sequence Type Step 
Activities in-message 

activity 
Transition Sequence of activities   

state transition 
Timer request timer request sent 

timer request received 
Table  3-1: Basic Sequences 

3.3.2 Composed Transition Sequences 
A number of compositions of simple and further 
composed sequences are possible (Table  3-2). 

Multiple Transition Sequence 

Such a sequence repeats the Simple Transition Sequence 
for intermediate transitions to (UML) pseudo-states, 
terminated by a Simple Transition Sequence entering a 
permanent state. 

Entry/Exit Extended Sequence 

This sequence adds activities before and/or after a 
transition into another permanent state. If both, the 
number of entry and exit activities is 0, it is equivalent 
to the Multiple Transition Sequence. 

Timer Extended Sequence 

In case a timer event is received, either for scheduling or 
handling of a timeout, it is converted into an equivalent 
incoming message, which is processed like any other 
incoming message, e.g. sent by another process. Table  
3-2 only shows the Entry/Exit Transition Sequence, but 
a Multiple Transition Sequence is possible in this 
context, too. 

Sequence Type Step 
Multiple 
transition 
sequence 

Simple transition sequence to a 
(UML) pseudo-state 
Simple transition sequence to a 
permanent state 

Exit / Exit 
Transition 
Sequence 

Simple transition sequence to a 
(UML) pseudo-state 
Sequence of Activities   
Exit Activity 
Sequence of Activities 
state transition 
Entry Activity 
Sequence of Activities 

Timer extended 
sequence 

timer response event 
Exit/Enter Transition Sequence 

Table  3-2: Composed Sequences 



 
 

  

Property Group Property Item Verification Issue 
Behaviour Process 

State 
In-message 
State transition 

The tuple (process,state, inMsg) must exactly match.  
All activities following an incoming message must exactly match. 
An activity is characterised by the tuple 

(UDF call, outMsg, destination process, destination instance). 
A sequence of activities begins with an incoming message and terminates when the next incoming 
message for the same process instance occurs. 
Such a sequence may include a state transition to a non-pseudo-state. 
The destination state may be the same as the current state. 
A terminating state transition always enters a non-pseudo state (in UML sense). 
State transitions occurring within such a sequence may enter a pseudo-state. 
A sequence must not terminate in a pseudo-state. 
A conditional state transition may occur at the end of a sequence. 
When a state is left, onExit activities may occur, i.e. a sequence may be extended by additional 
activities when a state is left. 
When a state is entered, onEntry activities may occur, i.e. a sequence may be preceded by additional 
activities when a state is entered. 
A sequence of activities related to anystate may be observed in every state.  
An activity related to asyncstate may be observed in every state. 

Link to Code 
Extensions 

UDF Call The execution of a UDF must be verified on the lowest level possible: 
•  in the generated stub 
•  in the generated code integrating external C and Ada code 
•  in the provided external code if observation is supported 

Communication In-Message The received message and the receiving process instance must comply with the destination list 
included in the message. 

Receiver Instance The destination instance must comply with the (max.) number of instances. 
All instances must have received one message, at least. 

Destination Instance The destination instance must comply with the (max.) number of instances. 
Channel The observed communication channel must comply with the reference channel. 

Distribution Process Instance Every instance is mapped onto one logical processor only. 
Logical Processor A logical processor is not mapped onto more than one physical processor.. 

Performance Period The observed range of a period must comply with the reference range. 
The observed timer modes must comply with the reference modes. 

Timeout The observed timeout delay must comply with the reference range. 
Message Length The observed timeout delay must comply with the reference range. 

Table  3-3: Verification Issues 



 
 

  

3.4 An Example 
Table  3-4 shows the definition of a model in ISGL language [3]. The model consists of process types sps and 
controller. A process type is a template from which processes (instances of a process type) are derived by specifiying 
the maximum number of instances. 

Each process is organised as a Finite State Machine (FSM). In every state a message shall be received, upon which a 
sequence of actions may be executed, terminated by a state transition into the same or another state. Pseudo-states may 
be entered, too (not used in this simple example). A pseudo-state is a state which may be entered from another state, 
only, but it is not entered on reception of an incoming message. When another permanent state is entered (not a pseudo-
state) an exit and an entry action sequence may be executed to terminate the previous state correctly and to perform 
some initialisation of the next state (this feature is not shown in the example). 

sps states: 
  in state startup: 
   on message poweron: send message startup to controller instance 1  
        enter state identify 
   end 
  end 
  in state identify: 
   on message GetIdentity: reset timeout GetIdentity 
    create timer motion with constant period 100 msecs ... 2 secs  
    enter state init 
   end 
   on timeout GetIdentity: 
    send message startup to controller instance 1  
     expect reply GetIdentity within 5 secs  
    keep samestate 
   end 
  end 
  in state init: 
   on timer motion: 
    send message ReadyToLoad to controller instance 1 
    enter state idle_WaitExec 
   end 
  end 
controller states: 
  in anystate: 
   on message startup: 
    send message GetIdentity to process sps instance 1 
    keep samestate 
   end 
  end 
 end 

Table  3-4: An Example of an ISGL model 
Active  Process   Message State     Message /     Destination Process 
Process Instance  Type              Parameters    Process     Instance 
sps,        1,    in,     startup,  poweron 
sps,        1,    out,    startup,  startup,      controller, 1 
sps,        1,    trans,  identify 
controller, 1,    in,     startup,  startup 
controller, 1,    out,    startup,  getidentity,  sps,        1 
sps,        1,    in,     identify, getidentity 
sps,        1,    period, identify, motion, 0.1,2 
sps,        1,    trans,  init 

Table  3-5: Observed Sequence of Signals 

 

 



 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table  3-6: Recorded Properties 

 

 

 

 

 

 

Monitored Item Verification Type Info derived from 
State Info   

Model_state info model 
stateFrom vv code 

stateTo cc code 
isCond cc code 

isPseudoFrom cc code 
isPseudoTo cc code 

transType cc code 
Distribution Info   

nodeId vv code 
hostname vv code 

hostId vv code 
Message Info   

cmd vv code 
sender vv code 

InstS vv code 
nodeIdS vv code 
receiver vv code 

instD vv code 
nodeIdD vv code 

channelSDL info code 
channelLog vv code 

channelPhys vv code 
actLen vv code 

dataMin info model 
dataMean info model 

dataMax info model, code 
Timer Info   

timerOps vv code 
timerMode cc code 

timerSignal cc code 
timerResource cc code 

timerCyccles cc code 
timeMin info, cc model, code 

timeMean info, cc model, code 
timeMax info, cc model, code 

UDF call   
UDFcallee vv code 

UDFlen info model 
UDFname cc model 

General Info   
processCurrent vv code 
instanceCurrent vv code 

format info code 
now vv code 

Model_line info code 

Type of Information 

•  model 

information is derived 
from model and 
inserted into source 
code for cross-
checking 

•  code 

information is derived 
from executed code 
or the ISG run-time 
system. 

Verification Type 

•  cc  

for cross-checking 
purposes only, but 
not for construction of 
the Observed Model. 

•  vv 

for verification of the 
code generator and 
construction of the 
Observed Model. 

•  info 

for additional 
information only 



 
 

  

 
Fig.  3-1:The Application Mode 

 
Timers may be created either with constant or varying 
periods randomly chosen from a given interval. Also, 
timeout conditions may be set when a reply is expected. 
Exception handling is required for every state, in order 
to manage messages not expected in the current state. 

The communication scheme may be specialised for 
every instance of a process type, i.e. for sending of a 
message a list of receiving instances may be specified 
including specific terms like “return to sender instance”.. 

When the automatically generated code is executed a 
sequence of events is recorded like shown in Table  3-5. 
Its contents was simplified for better understanding. 
Such sequences are analysed and the retrieved 
information is converted back into code of the modelling 
language ISGL. Several different sequences observed 
for a process may contribute to obtain an equivalent to 
the original code. E.g. instances of a process may differ 
in communication rom each other, or the length of the 
data attached to a message may differ, so that several 
samples may be needed to conclude on branches in the 
model or a range. Similarly it is  for timing figures, e.g. 
for the expiration deadline of a timeout. 

 
4 FEEDBACK FROM PRACTICE 

4.1 The Application 
Fig.  3-1shows an application to which the back 
transformation was applied. This is the same application 
as discussed in a previous paper on model 
transformation [4]. 

The model represents a manager for telecommands 
which are received from ground and processed on-board 
through several stages (queuing, verification and 
routing) which all are controlled by a packet manager. 

4.2 The Implementation 
The back-transformation was implemented in several 
steps starting with evaluation of the sequence of actions 
executed during a state transition to construct the 
principal skeleton of the FSM of a process type. 

Then dependencies on instances were identified and put 
into the observed model. In a following step the envelop 
of performance properties was evaluated by analysis of a 
number of recorded sequences.  

This way multiple shapes of observed records are 
mapped back into a single piece of code with variants 
for instances or timing. 

4.3 Getting Back the Full Model 
The reconstruction of the model requires observation of 
properties related to each statement type in the code. 
Consequently, only such code of the observed model 
can be generated which corresponds to fully covered 
code in the reference model: full test coverage is 
required to get a 1:1 correspondence between both 
models. 

If the observed model is not complete, then either the 
reference model includes dead code or the executed tests 
are not sufficient. 
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The approach only does verify such parts of the code 
generator, which are executed during testing or 
operation. From a pragmatic point of view this is what is 
needed because there is no need to verify the code 
generator for code not being executed . However, from a 
rigorous point of view it would be desirable to get all 
parts of the code into operation, so that the full model 
can be reconstructed. 

As a consequence, successful verification of the code 
generator implies  sufficient testing which should be 
based on auto-testing for reduction of test effort. 

4.4 Ease of Change Management 
The chosen approach for verification of the code 
generator does not constrain its maintenance. No 
expensive and delaying certification process is needed to 
get it into operation again after a change. After 
execution of the generated code the correctness of the 
maintained version can easily be proven. This gives high 
flexibility for immediate improvements and extensions 
of the code generator. 

4.5 Independency of the Modelling Language 
Though this verification approach is based on the 
modeling language ISGL and the related code generator, 
the back transformation is available to other modeling 
languages by model transformation [4], too. 

If model transformation ti ISGL is supported for a 
modeling language, then a back transformation is 
possible,too, for every model defined in another 
modeling language. 

5 RELEVANCE TO SDL AND MSC 

This verification approach is similar to the one known in 
the world of SDL [5] and MSC [6], where MSCs 
(Message Sequence Charts) are created when the FSMs 
defined in SDL are executed. These MSCs are the 
"Observed Signals". Some SDL tools (e.g. 
ObjectGEODE [7] and SDT [8]) provide the capability 
to define a number of "reference sequences" of signals 
in MSC notation, which can be compared with the 
observed sequences. Then either a match or no match is 
found or a counter example. 

From this point of view, the ISG process for verification 
of the code verifier is inverse to the SDL/MSC 
approach: 

•  SDL/MSC expresses the reference and 
observed specification in MSCs, i.e. sequences 
of signals, deriving the observed sequences 
from the executed FSMs 

•  ISG expresses the reference and observed 
specification in FSMs included in models, and 

transforms the observed sequence of signals 
(extended MSCs) – as derived from the 
executed FSMs – back into a model (FSM)  
representation. 

In case of SDL/MSC the verification is performed on 
the level of sequences of signals, in case of ISG on the 
level of FSMs and models. Moreover, the a.m. tools did 
not derive the MSCs from the generated code, but from 
an independent, separate simulator of which the code is 
quite different from the later target code. 

ISG also addresses the aspects of performance and 
distribution, which are not considered in case of 
SDL/MSC, because they are not supported in the 
SDL/MSC representation. Therefore CGverifier can 
derive a model (spawned by behaviour / FSM, 
performance and distribution) from the observed signals 
generated by the code intended to run on the target 
system. 

The essential difference is that CGverifier does not 
make a comparison on the level of the signals, but on the 
level of the constructor of the signals. This is possible 
because states and the message contents are part of  such 
signals, which may be considered as an extension of the 
MSC syntax. The benefit is that the number of 
comparisons shrinks drastically, because not all 
combinations of the reference sequences need to be 
compared with every observed sequence. Instead, the 
many sequences of signals have to be filtered and 
interpreted as action sequences of FSMs. 

While in case of SDL/MSC the specification only 
consists of sequences of signals, not allowing to 
construct an "observed model" equivalent to the 
"reference model", the ISG specification extends this 
representation to a specification model, which is the 
cornerstone for the automated comparison on modelling 
level. 

6 CONCLUSIONS 
The implementation of CGverifier demonstrates that a 
back transformation from observed properties into the 
modelling domain and an automated comparison is 
feasible. This shall allow in future to apply the 
automated verification of the generated code w.r.t. the 
reference model in a more general manner.  

The current exercise focused on behaviour, performance 
and distribution, the essential properties of a distributed 
real-time system. In a future step this approach should 
be extended to functional properties. 

As ISG supports integration of code from different tools, 
the back transformation will presumably also be based 
on partitioned verification of the contributions from 
different tools. 



 
 

  

An advantage of the described verification approach is 
that the generated code can automatically be verified at 
little expenses for every executable version derived from 
a model ensuring by real facts that the generated code 
corresponds to the reference model. 

In order to get the full model back from generated code 
each branch must be executed. This requires full test 
coverage and even more than that when performance 
properties shall be retrieved. In consequence, automated 
testing is required, too, to keep the costs of such 
extensive testing low. The issue of back transformation 
supports the need for full testing of code and model, it is 

a pre-condition of success. 

 
The activity described above was funded in part by the 
ASSERT project [2], an Integrated Project (IP 
CL004433) executed in the course of the 6th Frame 
Programme of the EU from 2004 to 2007. The ASSERT 
consortium consisted of about 30 European companies 
lead by ESA as prime.  
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