

Fault Identification Strategies

Rainer Gerlich1, Ralf Gerlich1, Carsten Dietrich2

1 BSSE System and Software Engineering, Auf dem Ruhbuehl 181,
88090 Immenstaad, Germany, Phone +49/7545/91.12.58, Mobile +49/171/80.20.659, +49/178/76.06.129

Fax +49/7545/91.12.40, e-mail:Rainer.Gerlich@bsse.biz, Ralf.Gerlich@bsse.biz URL: http://www.bsse.biz
2 DLR, Deutsches Zentrum fuer Luft- und Raumfahrt, Space Agency, D-53227 Bonn, Königswinterer Str. 522-524

ABSTRACT:

Various strategies for fault identification exist – e.g.
based on formal analysis of code or on testing – of
which each focuses on certain identification aspects and
fault types. This paper characterises the strengths and
weaknesses of methods – in theory and practice –
focusing on application-independent identification
strategies, and it suggests strategies to maximise the
number of detected faults while minimising the related
effort. Fault activation conditions are discussed in
detail, resulting in an extended scope on stimulation
needs. In particular, the contribution of automation in
raising the activation probabilities is investigated.
Various examples of fault activation mechanisms and
statistics on fault types vs. identification methods are
provided as observed in practice. An interesting result is
the identification of application-dependent test cases by
application-independent test strategies.

1 INTRODUCTION

The ultimate goal of fault identification as understood in
this paper is to maximise the number of observable
faults at minimum effort. This intention implies
identification of faults even though they may be
dormant under some conditions or in the current
operational context of a software system (depending on
a platform, mission configuration, etc.). In this respect,
this goal is fully in-line with the goal of ISVV,
Independent Software Verification and Validation.

To succeed for this ultimate goal the mechanisms of
fault activation and fault hiding must be known, so that
measures can be taken to minimise the number of
dormant faults. Once the required mechanisms are
known, the efficiency and reliability of identification
strategies have to be considered. A number of examples
is provided to explain the identified mechanisms of fault
hiding and how they are addressed by automation.
Finally, statistics on observed fault types, their
activation conditions and the efficiency of identification
(fault presence vs. identification in practice) are
presented.

In Chapter 2 we introduce a terminology of faults and
fault activation to get a baseline for the following
discussions. In Chapter 3 we introduce the considered
fault identification strategies and analyse for which fault
types they are sensitive. In Chapter 4 we present
representative examples for the various fault types and

evaluate the sensitivity of a strategy. Finally,
conclusions are provided in Chapter 5.

Larger tables have been moved to the appendix (Chapter
8).

2 CLARIFICATION OF TERMS

For understanding of the strategies a clarification is
needed for the terms fault, error and failure as used in
the context of software. Various definitions of these
terms exist, e.g. by ISO/IEC [1], IEEE [2], DO178B [3],
which are using the same term for different things or in
a different interpretation.

2.1 Application-Independent Fault
Identification Strategies

First of all, we introduce the term “application-
independent fault identification strategy”. In our
understanding such a strategy allows to identify a fault
without requiring specific knowledge on the application
like a result of a calculation. Consequently, we are
looking on strategies which are based on violation of
syntactic, semantic or other rules or on occurrence of
symptoms like exceptions raised when a fault is
activated.

2.2 Fault, Error, Failure

While DO178B uses the sequence “error → fault →
failure” to describe the source of an anomaly and its
consequences, ISO/IEC and IEEE consider instead
“fault → error → failure” to describe the same effects.

The term anomaly is used here whenever we do not
want to distinguish between fault, error and failure.

In this respect our definition of these terms is:

• a fault is related to violation of a certain rule, which
may have an impact on the quality-of-service
(QoS),
example: potential for index out-of-range

• an error is the manifestation of a fault, i.e. when a
violation of the rule does occur, which may have
an impact on the quality of service,
example: the index actually is out-of-range

• a failure is the manifestation of a reduction of QoS.
example: an exception caused by the error (like
“access violation”) prevents execution of the
service.
example: out-of-range and result is really faulty.

An anticipated fault is a fault for which the possibility
of its occurrence is known in advance. A non-
anticipated fault is a fault which is raised unexpectedly.

In order to understand the mechanisms by which faults
may hide, more terms related to occurrence of faults
need to be considered.

2.3 Occurring vs. Detected

The terms occurring and detected address different
points of fault identification. A fault may occur during
execution of the code (at run-time), while a fault may be
detected during execution at run-time or by analysis at
pre-run-time or at post-run-time. Detection implies
presence of a fault, and occurrence is a necessary, but
not a sufficient condition for detection.

2.4 Fix it or Forget It?

We are taking the term occurring where usually
detected is used. When a fault occurs, i.e. the violation
of a rule actually occurs, it might not be detected,
especially if it does not manifest as a failure. Even a
failure might occur without being detected, because the
QoS is not or cannot be checked in this situation.

The essential question is whether we should only care
about detected faults, errors or failures or about
occurring ones and even such which do not occur at all
under the actual conditions, but still have the potential
to occur. Consequently, shall we adopt the following
argument? “If nobody is able to detect an anomaly in
terms of a reduced QoS, it is not a violation of a
contract at all”.

As we will see later, the decision, whether such a fault
can be ignored, cannot be made before the activation
condition of the fault is really known. Therefore deeper
knowledge about the fault is required. However, from a
rigorous point of view, any chance needs to be taken to
identify faults.

In consequence, our understanding is, that all shapes of
a fault, “non-occurring, but having a potential to
occur”, “occurring” and “detected” faults must be
considered for fault identification. Therefore we will
discuss in detail how faults can be activated and/or
detected, which

• may occur only, i.e. the violation of a rule happens,
but they are not detected or detectable, or

• even may or can not occur under typical conditions,
but are present in the code and have a potential for
activation.

As an example, a quality check may be done, but the
reduced quality may be not recognised because the
feedback to the test engineer is too complex to be
properly interpreted.

The answer to above question heavily impacts the
strategies to be applied for fault identification. Our
position is: an anomaly which may occur must be
subject of an identification strategy aiming to fix it.

Therefore it is not sufficient to look for errors or even
failures only, but for faults as such. As detection of a
fault is strongly related to fault activation, we will detail
this discussion in the following section about activated
and dormant faults.

2.5 Dormant and Activated

Apart from the definition of fault, error, failure another
issue is related to the terms “dormant” and “activated”
when being associated with fault and error. The use of
these terms becomes even more complicated when the
whole chain from higher abstraction level (model,
programming language) down to execution of the binary
code on a processor is considered.

The common understanding is that

• the terms activated and dormant are complementary
to each other in the sense: a fault, which is not
activated, is dormant.

• a fault is activated when it manifests to an error.

This is not very precise regarding the term “activation”.
Activation requires a condition for activation, the
“activation condition”. Following above understanding
on dormant and activated, it remains unclear what an
activation condition really is. If an index is actually out-
of-range, is this understood as the activation condition,
even if there is no impact on QoS, at all? Therefore a
deeper investigation on activation conditions is needed.

We have observed curious situations like

1. a fault in the source code is masked by a compiler
or by the processor architecture (examples 2 and 3
in Tab. 8-1 below),

2. a fault is introduced by the transformation process
(in case of models), a compiler, the processor’s
architecture and/or resource utilisation (examples
4 and 5, Tab. 8-1),

3. a fault is masked in the execution context
depending on memory or stack allocation or the
status of the execution environment, in general
(examples 6 – 8, Tab. 8-1).

Depending on the scope considered for the anomaly, it
may be concluded that

• an anomaly is present or not, in the sense there is
fault potential or not,

• it is dormant (it cannot occur under given
circumstances) or activated (then there is possibly a
chance to detect it) depending on conditions
unknown in most cases before the anomaly is
detected.

In cases 1 and 2 above we are talking about a “platform-
dependent anomaly” where platform is a synonym for
model transformer, compiler, operating system, test
conditions and/or hardware architecture, and in case 3
about a “context-dependent anomaly” where context
stands for any item impacting the activation conditions
(at run-time) on a given platform.

The term dependent indicates that the basic activation
condition of a fault may be biased by another condition.
The basic activation condition for an out-of-range fault
is that the value is actually out-of-range. However – as
we can see in example 6 of Tab. 8-1 – this is a
necessary condition for fault activation, but may be not
sufficient – because the QoS may be not compromised.

When considering the source code only

• in Case 1, ignoring the full scope down to execution
of the binary format, a fault would be considered as
present, while in the binary format or during
execution it has vanished: no fault potential
anymore. Such a fault we call dormant w.r.t. the
platform or a platform-dependent fault (PDF),
because the activation condition depends on the
platform.

• in Case 2, a fault is not present in the source code,
but in the binary format and the service of the
system could be affected. In consequence, such a
fault cannot be detected by source code analysis
only. It is a PDF, too: a fault is added by a
platform and the engineer does not know about it.

• in Case 3, a fault would be present, but would not
compromise the service during any operational or
test condition, unless the memory structure or the
execution environment are modified e.g. during
maintenance. Such a fault we call dormant w.r.t.
the context or a context-dependent fault (CDF). In
this sense missing a deadline would be classified as
an CDF, i.e. the activation condition depends on
the context “CPU-power” or “CPU-time
consumption”.

These two activation dependencies (PDF and CDF)
have to be considered together with more basic
activation conditions which we call – following the
terminology of dependencies:

• input-dependency
i.e. a fault is related to incoming data,
and the related fault type is an input-dependent fault
(IDF)
example: index out-of-range

• resource-dependency
i.e. a fault is related to lack of resources like
memory, stack, CPU-power,
and the related fault type is a resource-dependent
fault (RDF),

• event dependency

i.e. a fault depends on external events like a
hardware fault or it is raised by software, e.g. by a
fault handling part or fault propagation,
and the related fault type is event-dependent or an
event-dependent fault (EDF).

We take the term input here instead of data to
distinguish between data which are essential to obtain a
result, e.g. for execution of an algorithm – the input
data, and data of the context, e.g. data which are not
used during the calculation, but which may impact the
activation condition.

The following examples E1, E2, E3 and E4 discuss the
fault potential of an IDF w.r.t. the information available
to prove absence of an IDF, i.e. the scope considered for
a proof:

In E1 very clearly there is no fault in the code at all,
regarding data corruption. The index is – usually –
stored in a register, no way to activate the fault, except
we do take into account a processor, compiler or
assembler fault.

In E2 the situation is similar – at first glance. However,
from a rigorous point of view there is a fault potential
by software: the contents of i and j could be destroyed at
run-time. E.g. we have observed that even a base pointer
– stored outside the scope of a function – may be
corrupted, manifesting as a Heisenbug.

In E3 – very clearly – there is fault potential, because it
cannot be proven – in the scope of function myFunc –
that the sum of i and j will really be in the range 0 ..
499.

The following cases are possible when the fault is
activated by the basic condition (IDF) for E3:

• an access violation occurs, the fault occurs and may
be detected by a raised exception,

E3:
int myFunc(int i, int j) {
 int arr[500];
 return arr[i+j]; }

E4:
int callee(int i, int j) {
 int arr[500];
 return arr[i+j]; }

void caller() {
 int i=5,j=7,k;
 k=callee(i,j); }

E2:
const int i=5,j=7;
int arr[500];
k=arr[i+j];

E1:
int arr[500];
k=arr[5+7];

• no address violation exception occurs, the address
of arr[index out-of-range] may point to a value
which is different from what is expected: the fault
occurs and may be detected,

• no address violation exception occurs, the address
of arr[index out-of-range] may point to a value
which is identical with what is expected: the fault
remains undetected regarding QoS, no way to
detect it due to a reduced QoS. However, it may be
detected by dataflow analysis, considering a larger
scope or by a changed data context.

E4 is similar to E2 – in principle. Whether there is a
fault potential in E4 depends on the scope. Considering
the scope of the caller and the callee, there is no fault
potential – apart from potential impacts by the context
or the platform as discussed for E1 and E2. However,
this – positive – conclusion is just a snapshot, because
the proof is context-dependent: if by maintenance the
situation in the caller changes, the proof may no longer
hold. Therefore – from a rigorous point of view – there
is a fault potential for callee – even when for the
moment it can be ruled out. But it does exist regarding
the full lifecycle of the software, and this cannot / must
not be ignored.

The essential fact is that the assumptions which a proof
depends on are usually not known. A formal analyser,
e.g., can detect an out-of-range condition as being
impossible. However, it does not list the assumptions on
which this decision is based, and therefore it remains
unknown whether after maintenance the proof is still
valid. Consequently, the analysis must be repeated after
any – even the smallest – modification. This conclusion
is also true for reuse.

From a rigorous point of view, a proof on function-level
by stimulation that an out-of-range will not cause a
failure, is much safer and more rigorous than a proof on
system level considering operational values, only.

The behaviour of the code at run-time in E3 could be
made deterministic, i.e. detectable, as shown in E3.1 –
provided an error handler is implemented on the level of
the caller.

While for E3 it is unknown which value is returned
when the fault is activated and – probably unknown –
whether it is in the valid range or not, in E3.1 there is a
convention to flag the error, so that it can be detected

easily before it becomes critical (assuming that -1 does
not overlap with any contents of arr). The activation
condition is very clearly fixed, there is no platform- or
context-dependency yielding a dormant fault or a non-
detectable error.

Exceptions can be a better alternative in languages
supporting them – such as Java, C++ or Ada – as they
clearly occur outside of the normal function interface,
while the error value might be ignored by a caller.

3 FAULT IDENTIFICATION STRATEGIES

To understand the required fault identification strategies
we need knowledge about

• the activation conditions of faults,

• the principal strategies and their potential to detect
faults – in theory and practice, and

• the fault-detection efficiency of a strategy.

These three aspects will be considered in this chapter.

The selected examples have been collected from three
projects (Tab. 3-1):

• two Ada projects of Cat. A and C, after completion
of normal tests and ISVV,

• one C project of Cat. C, after operation.

Lang. Cat. K Lines KLOC Functions
Ada A 71 18 808
Ada C 900 430 5500
C C 48 40 765

Tab. 3-1: Analysed Projects

The examples are representative for the fault types only,
the original code is not shown.

The analysis and test of the code as reported in this
paper were executed after all usual fault identification
methods (analyses, test, reviews) had been performed.

For the Ada projects examples on complex activation
conditions only are given in Tab. 8-1 and Tab. 8-2,
while more details will be presented for the C project in
Chapter 4.

3.1 Fault Activation Conditions

Tab. 8-1 gives a number of examples for IDF, CDF and
PDF activation conditions and their combinations
collected from the three projects. The representative
source code is provided as far as needed for
understanding of the activation condition. The
activation dependency is explained in the last column.

3.2 Fault Identification Strategies

Tab. 3-3 lists the considered strategies for fault
identification and describes how a fault can be identified
by a certain strategy. For each strategy examples of

E3.1:
#define ERROR -1
int myFunc(int i, int j) {
int k,arr[500];
k=i+j;
if (k<0 || k>499)
 k= ERROR;
else
 k=arr[i+j];
return k; }

faults are provided which can be – theoretically –
identified by it.

The following strategies have been considered (for
details see Ch. 3.3):

• strategies based on static analysis

• strategies based on symptoms and dynamic
analysis.

To increase the probability of fault detection, testing
was combined with fault injection and platform
diversification.

For static analysis of the C code the gcc compiler 3.2.3
and Cantata++ (cantpp) [4] were used. i.e. syntactic,
semantic and dataflow analysis, but not symbolic
execution which is supported e.g. by the PolySpace tool
[5]. For dynamic analysis (auto-testing) the DARTT
(Ada) [6] and the DCRTT (C) [7] tools were applied.
Tab. 3-2 gives the mapping between the considered
methods and applied tools.

Detailed results are presented in Chapter 4 for the C
project.

Tool

Method

Static Analysis Dynamic Analysis
Auto-Testing

syntax semantic dataflow
symbolic
execution

anomaly
monitoring

coverage
evaluation

static

gcc compiler ×××× ×××× ××××

gcc linker
 ××××

Cantata++
 ×××× ××××

theoretically
 ××××

dynamic /
auto-testing

DCRTT
 ×××× ×××× ××××

Tab. 3-2: Coverage of Methods by Tools
3.3 Assessment of Strategies

Tab. 8-2 discusses the efficiency of each of the
strategies for the collected examples and the observed
fault types:

• static analysis
o syntactic analysis
o semantic analysis
o dataflow analysis
o symbolic execution

• dynamic, symptom-based analysis
o analysis of run-time anomalies

testing, possibly extended by fault injection and
platform diversification

o coverage analysis

Symbolic execution was not applied, theoretical
conclusions are made only.

If a strategy is not listed for a certain fault type, the fault
type cannot be detected by it.

The following criteria are considered for the
assessments:

• the reliability to detect a fault, theoretically and in
practice,

• the manual and computational effort needed to
detect and localize a fault.

The two principal categories of fault identification as
discussed in Ch. 3.2 are

• execution-independent (incl. symbolic execution),
mainly based on code analysis, and

• execution-dependent, i.e. testing, fault injection,
platform and context diversification incl.
evaluation of results at post-run-time.

Clearly, testing is not a method by which all faults can
be identified [8].

Execution-independent methods are based on formal
rules, an aspect which seems to make them superior to
testing. However, this is the theoretical point of view. In
practice, they may be less reliable than expected
depending on the fault type in question for the following
reasons:

• the analysis cannot be completed due to lack of
computation time and/or disk and/or memory
resources,

• a clear decision in the sense of green (no fault) and
red (clearly a fault) cannot be derived,

• the tool itself may be subject to faults to some
degree and suggests a wrong decision.

The first two reasons depend on the fault type and the
complexity of the context: when information is needed
across compilation units (files in C, packages in Ada) it
may be difficult to derive a useful result in practice. To
compensate the possibility of a fault in the tool, an
independent tool should be used (tool diversification).

This may also provide a clear or clearer hint on a “fault /
no fault” suggestion. The probability that a fault in such
a tool suggests a wrong conclusion increases with the
complexity of the context it has to consider.

Specific consideration is needed for automatic detection
of a fault by testing. Testing can be divided into two
principal test purposes: evaluation of test results based
on

• application-dependent information,

• information for fault identification which is valid
for every application.

In the second case automated detection of an activated
fault is possible when its manifestation by symptoms can
be observed automatically at run-time or evaluated at
post-run-time, like exceptions, aborts, deadlocks,
livelocks or specific messages and insufficient
coverage.

Detection of faults by coverage analysis requires fixing
of all other faults before being efficient. Otherwise,
curious coverage figures may be a matter of exceptions,
aborts etc.

3.3.1 Required Manual Effort

From the perspective of identification an essential point
is the effort needed to find the critical location in the
code and the raising condition. Execution-independent
methods like semantic and dataflow analysis often
immediately point to such a location and report the
reason very clearly due to the direct relationship
between code and fault. When symptoms are observed
the location of fault occurrence can be identified in most
cases, but not the reason directly.

Finding the reason requires usually manual analysis of
the context. Symbolic execution also reports more on
symptoms of a fault (range exceeded, division-by-zero)
rather than on the source of a fault (where an extended
range comes from). Therefore the identification effort of
symbolic execution tends to be higher than for the other
static analysis strategies and is comparable with
identification effort of dynamic analysis strategies.

Though some faults can be detected by both, execution-
dependent and execution-independent, methods, above
conclusions suggest that it may be more efficient to start
finding by execution-independent methods – as far as
possible.

Consequently, execution-independent method should be
applied prior to execution-dependent methods (dynamic
analysis, symbolic execution). This will decrease the
manual effort required for fault fixing.

3.3.2 Non-Anticipated Faults

All static analysis methods apply rules to identify faults,
which implies they only can detect anticipated fault

types. Identification methods based on symptoms like
exceptions do not need to know a certain fault type prior
to its manifestation, i.e. they do cover non-anticipated
faults. They are just looking for the consequences –
provided they can be observed. Therefore there is a
good chance to detect such faults by symptoms. Last,
but not least, symptom-based strategies are the only
ones which can identify PDF and CDF.

The evaluation figures as provided in Chapter 4 do
support these considerations.

3.3.3 Enforcing Fault Activation

Certain strategies – like fault injection, platform
diversity and variation of the context – can increase the
probability of fault activation which is only a matter of
execution-dependent identification methods.

When aiming to demonstrate correctness (per test case),
a representative (execution) environment is required.
However, such an environment is not a pre-condition
for fault identification. In latter case everything is
allowed which helps to catch a fault. Consequently, all
strategies useful to activate a fault are allowed and
strongly recommended: fault injection, platform
diversification, variation of the context. Several fault
identification strategies may be combined like fault
injection with platform diversification. We have
experienced that porting the code to another platform
and running it under changed conditions like emulation
of hardware or another operating system is rather useful
to detect – specifically non-anticipated – faults which
cannot be detected at all on the original platform.

Automation – either to support platform diversification
by auto-porting of the code or to stimulate the software-
under-test over a – possibly huge – valid and invalid
input domain – turned out as a pre-condition to
efficiently raise the activation probabilities to a level
which make the symptoms observable within a
reasonable period of (execution / test) time.

3.3.4 Automatic Identification of Test Cases

The combination of automatic stimulation and
automatic evaluation of test coverage (block and
decision coverage/ MC/DC) allows the identification of
application-dependent test cases by application-
independent test and analysis methods.

Fault Ident. Strat. Activity for Detection or Activation Fault Manifestation Source of Fault (non-exhaustive list)

Syntactic Analysis Code analysis based on syntactic rules. Rules may
extend beyond normal language syntax scope.

error or warning, compilation abort syntax error, multiple data declaration
= instead of == in condition, which usually is not a syntax error

Semantic Analysis Code analysis based on local semantic consistency rules.
Rules may extend beyond normal language semantic
scope.

error or warning message, compilation
abort

assignment to constant field (warning or error)
invalid types in assignment (warning or error)
missing variable declaration (error)
inconsistent interfaces (error)
inconsistent declarations (error)
types too small/big for used range (warning)

Dataflow Analysis Code analysis detecting relations between definitions of
data items and their reached uses. Can be combined with
constant value propagation.

warning message unused assignment
missing initialisation/assignment
use of wrong source/target variables

Symbolic Execution State transition equations are constructed based on
control flow. Presence and/or absence of some types of
faults can be deduced for some or all possible states.

error or warning message out-of-range
dead code
critical casts
de-referenced NULL pointer
numerical exceptions
memory access outside allocated range
memory leak

Stimulation variation of parameter und heap data within valid range
only

exception, abort, lock uninitialized data
deadlocks and livelocks
out-of-range
critical casts
de-referenced NULL pointer
numerical exceptions

Stimulation
+
Fault Injection

variation of Parameter and Heap-Data within valid and
invalid range

exception, abort, lock missing protection against invalid data (out-of-range)
faults in fault handling code

corruption of return values exception, abort, lock missing protection against invalid data (out-of-range)
missing check on returned NULL-pointer
critical casts
out-of-range
faults in fault handling code
missing protection against fault propagation

Range Checks type range monitoring (DCRTT support) DCRTT msg. out-of-range
Checks on memory
corruption

Check on corruption of mallocated memory DCRTT msg. change of data outside the portion of allocated memory

Platform
diversification

variation of OS, processor, compiler or memory
allocation

exceptions,
compiler messages, DCRTT msg.

unused variables
uninitialized data
data corruption without raising an exception
unsupported exceptions (like suppressed FPE)

Coverage Analysis of identified functions with coverage<100%
and manual analysis of function code

coverage figures<100% and red-coloured
parts in graphics (DCRTT)

dead code
faults in logical expressions, undetected by pre-run-time tools

Tab. 3-3: Fault Identification Strategies vs. Fault Types

The mechanism applied by DCRTT (called “Test Case
Filtering”) is straightforward once the capabilities of
automatic stimulation and coverage evaluation at run-
time are available:

1. define an upper limit on the number of
executions after which an item is considered as
“covered” (usually 1),

2. whenever a non-covered item (block or
decision item) is entered in accordance with (1)
above, record the corresponding inputs, outputs
and other relevant data,

3. generate test drivers from such data for later
regressions tests or tests on a target with
resource constraints, which

a. stimulate the function-under-test with
test inputs,

b. compare the recorded against the
actual outputs.

4. confirm manually the correspondence between
filtered inputs and outputs (proof of
correctness) and thereby upgrade the
automatically recorded inputs to test cases. If
an output is faulty, correct the code and repeat
the automatic stimulation until the outputs are
correct.

Usually, test cases are derived from the specification.
Therefore the approach described above seems to be
non-compliant with standards – on the first glance.
However, upgrading from test inputs to test cases
implies a check against the specification. Consequently,
the verification procedure is changed, while the
verification result is the same:

• while usually the correct result (together with
test inputs) is derived from the specification
and is considered as reference for the
correctness of the test output,

• in case of test case filtering the recorded input
comes first, and the derivation of the correct
output for the given input from the
specification comes after, including checking
of the coverage of the specification by the
automatically identified test cases.

Another advantage of test case filtering is that it already
considers the code, and provides test cases which never
can be explicitly derived from a specification, because
they are a matter of non-functional requirements on
quality, safety, reliability etc. Such requirements
otherwise would have to be applied to each piece of the
code manually, then leading to additional code and test
cases e.g. to check on proper fault handling. While such
manual identification of test cases is rather tedious and
error-prone, it is straightforward for automatic
stimulation and does not require any manual effort.

Moreover, the filtered test cases are application-
dependent, but were detected by an application-
independent identification strategy.

3.3.5 Explanation of Assessment Terms

The following terms are used to characterise the
identification capability of a strategy for a certain fault
type in Tab. 8-2.

 (as symbolic execution was not applied, only
theoretical considerations are possible in this case):

• Scope of analysis
� CU

compilation unit + interface files

� SC
required source code down to given level of call
hierarchy

� FS
required (full) scope over all levels + execution
environment, from function-under-test incl. all
further callees

• identification reliability

o theoretical
assessment based on theoretical considerations
� medium, high, sure and capability to identify a

CDF or PDF.

CDF and/or PDF require support for fault
activation. A strategy not providing this support
will most probably not identify this fault.

� medium
the fault may be detected

� high
good chance to detect the fault

� sure
the fault will be detected in any case

o observed
assessment based on practical observations

� n/a
not applied in practice

� yes
the strategy identified such a fault type once, at
least

� no
the strategy did not identify such a fault type
although present and identification was
expected

• identification effort
o manual

the effort needed to identify the source of the
fault

� low
the issued message directly points to the source
of the fault

� medium

the message points to a location in the source
code, and the context has to be analysed
manually

� high
the message points to a location in the source
code. Detailed manual analysis is required,
possibly across boundaries of functions and
compilation units

o computational

the computational time needed until a tool reports
a fault or a symptom
� very low

range of seconds or lower
� low

range of minutes

� medium
range of hours

� high
range of dozens of hours or days.

3.3.6 Assessment Conclusions

The following compile options were used for the static
analysis tools:

� gcc
-Wall -Wunreachable-code -Wmissing-noreturn
-Wfloat-equal -Wpointer-arith -Wsign-compare
Remark: -Wall does not imply:

“switch on all warnings”

� Cantata++
--comp x86-Win32-gcc3.2.3 --ci:-ids --keepmod
--no_link --parse:--c <path>\gcc.exe -c

All static analysis strategies do not consider the real
execution context and its potential impact either by fault
masking or platform dependent fault generation. Such
conditions can only be covered with dynamic analysis /
testing.

Version 3.2.3 (and higher) of gcc shows a significantly
increased capability to detect semantic faults. Many
faults which previously could only be detected by
specific static analysis tools can be found today by a
compiler like gcc.

With DARTT the faults as listed in Tab. 8-1, examples
1-5 (non-exhaustive list) were found. With DCRTT the
examples for C in Tab. 8-1 (examples 6-11, non-
exhaustive list) and Tab. 8-2 were found.

The following conclusions consider the practical results
of syntactic, semantic, dataflow analysis and of dynamic
analysis, but not of symbolic execution, because this
strategy was not applied.

The examples 4,6,7,14,20 as given in Tab. 8-2 confirm
that not every fault, which should be detected for sure
by static analysis tools, will be detected in practice. For

these cases dynamic analysis was the only strategy
which detected the fault.

Observation of run-time anomalies was the only
strategy which identified the faults of examples
9,10,11,12,13,15,16,17, and in nearly all cases – except
for 16 – the fault was detected due to fault injection.

Coverage analysis was the only strategy by which the
faults of examples 1,5,6 could be detected.

Consequently, pure static analysis – syntactic, semantic
and dataflow analysis – is not sufficient to detect all
faults, as the presented results demonstrate. Whether
symbolic execution can also cover faults detected with
observation of run-time anomalies and coverage is an
open issue, in practice. However, the theoretical
conclusions in Tab. 8-3 suggest, that symbolic
execution cannot cover the observed fault types 2-6, 8,
18-22 from a principal point of view (see also Ch. 4.2).
For fault types 1, 11, and 13 it strongly depends on the
context whether they could be covered in practice.

Fault types 5, 6, 20 can only be covered by dynamic
analysis, and it is likely that this conclusion is also valid
for fault types 1, 11, 13.

Semantic analysis was the only strategy which can
identify an inconsistency as described in example 22.

Regarding computation time, syntactic, semantic and
dataflow analysis are the fastest strategies (very low –
low) due to the limited context of a compilation unit.
For these strategies the manual effort to identify the
source of a fault can be expected low to medium and –
in general – to be lower than for the other strategies due
to the strong correlation of analysis and messages
flagging the fault. In the other cases a message must be
correlated manually with the source of the fault in the
code.

3.3.7 Tool Operation

The installation procedures are straight forward for all
tools and complete within about 15 minutes or even less
time.

Specific preparation of the tools (gcc, Cantata++,
DCRTT) for analysis and test execution was not
required. The execution of gcc and Cantata++ was an
integral part of DCRTT test automation. DCRTT itself
only requires provision of the set of source files in a
directory and configuration of test conditions like fault
injection, scope of stimulation etc.. The only pre-
condition to be fulfilled for DCRTT (and DARTT) is
that the source files should be compilable and linkable
free of errors.

All relevant diagnostic messages from compiler,
Cantata++ and DCRTT are filtered and collected in
separate files by the DCRTT run-time support. In case
of Cantata++ only the features of static analysis were

used, but not the features for test set up, because this is
inherently supported by the DCRTT feature for test
driver generation (see also Ch. 4.6, test case filtering).

DCRTT filters test cases according to coverage criteria
when scanning a function-under-test over the input
domain (parameters and static/global data including
fault injection). Once the input-output relationship has
been confirmed as being correct, such test cases will
serve as further reference, e.g. when re-executing tests.
Such test drivers can be re-executed on the development
and target environment, even under memory limitations
such as 64KB, e.g. together with a lean operating
system like KEIL.

If desired, DCRTT will also generate these test drivers
in a format compatible with Cantata++, so that manual
definition of test cases is no longer required.

4 EVALUATION OF RESULTS

In this chapter evaluation figures for static and dynamic
strategies will be presented for the C software (40
KLOC) already mentioned in chapter 3.

During the development of this software a gcc 2.x
version was used to detect faults by static analysis.
Therefore many warnings were shown now by gcc 3.2.3
and Cantata++, indicating the progress made for static
analysis.

Only such faults will be discussed here which have a
reasonable and obvious fault potential.

Violation of rules such as standards on readability of
source code, errors in source code which will cause
compilation errors, or messages on unused data are not
considered as a “fault” in the context of this paper.
Unused data were detected, but not tracked as their
amount would have compromised the figures for the
more “serious” faults.

Compilation errors are of relevance here because of the
long history of the source code under inspection. Due to
evolution of compilers some violation of syntactic rules
will be recognised as an “error” today, while it was not
flagged as an error in an earlier compiler version.

The number of all these faults is estimated as high based
on observation of corresponding compiler messages and
analysed source code, probably being in a range of the
number of recorded faults, but possibly up to multiples
of this amount.

Also, anomalies due to lack of robustness (non-
defensive programming style, missing protection against
invalid data) are not considered as faults here. For a
discussion on robustness issues see Ch. 4.3. The number
of reported anomalies related to robustness issues is in
the range of 200.

4.1 Detected Faults

Tab. 4-1 gives the number of faults detected by testing.
All faults which were detected by static analysis are
listed in the related column. As DCRTT also
contributed to static analysis (see Tab. 8-3) the
contribution from “classical” static analysis methods is
shown in separate gray-shadowed lines.

Item

Identification Strategy

Total
static

dynamic

min max

faults
abs.

with
DCRTT

270 44 122 314

without 159 0 0 159

faults
%

with 86.0 14.0 74.2 100.0

without 50.6

faults/
KLOC

with 6.8 1.1 5.8 7.9

without 4.0 0.0 0.0 4.0

Tab. 4-1: Identified Faults

For dynamic analysis a minimum and a maximum value
are provided:

• minimum
faults are counted, only (see Ch. 3.3.1), which could
or cannot identified at pre-run-time by static
analysis, because e.g.

o the fault is platform- or context-dependent,

o the identification at pre-run-time is too
complex, impossible or the tool did not identify
it though it should have been possible, in
principle.

This figure is complementary to the one of static
analysis regarding the total number of detected
faults.

• maximum

all identified faults are counted which could have
been detected by symptoms or dynamic fault
analysis, also such ones which are covered by
“classical” static analysis.

Fig. 4-1: Fault Coverage vs. Analysis Mode

Fig. 4-1 visualises the fault identification potential
regarding the impact by auto-testing / DCRTT.

Tab. 4-2 correlates the faults detected by symptoms to
the identification methods and when the method was
applied: at run-time or post-run-time. Fig. 4-2 shows
the graphical equivalent of the percentage figures.

As an important result, the figures of Tab. 4-1 indicate
that neither static nor dynamic analysis strategies can
fully cover the spectrum of (observed) faults. Though
this conclusion is related to the observed faults of the
reference application, it is valid in general.

Another major result derived from Tab. 4-2 is that 27
(fault injection) + 1 (platform diversification) =28 out of
44 faults (63.6%) (rows 2 and 3) could only be detected
by enforcing activation conditions raising the
probability for fault occurrence, e.g. due to

• flagging lack of memory (heap, stack) by a
modified return code (NULL),

• modified return codes indicating a fault like -1 or
NULL in other cases,

• invalid input data (out-of-range),

• faults activating the fault handling parts,

• conditions activating platform-dependent faults.
Only about 30% of faults (row 1 of Tab. 4-2 were
detected by stimulation with valid data.

Consequently, (automated) fault injection is a “must” to
maximise fault identification. A minor, though non-
negligible part of one event only is related to platform
diversification, which identified a serious, but dormant

fault related to non-activated data corruption on its
intended platform.

Finally, three faults were detected by coverage analysis
in parts where the coverage figures were sufficiently
high and not corrupted by occurrence of exceptions.
Possibly, more such faults could have been detected if
the sources of exceptions would have been removed.

Fig. 4-2: Fault Coverage vs. DCRTT Identification
Strategies

Symptom-based
Fault Identification Method

Applied
at

Faults

% Comment

Recording of exceptions, aborts,
deadlocks, livelocks and more run-time
checks during stimulation under nominal
conditions and run-time anomalies

run-time 13 29,55 The phrase “more run-time checks” means: these are
specific checks to identify malloc- and file-usage and
corruption of mallocated memory supported by the test
environment.

As above + fault injection run-time 27 61,36 Stimulation under nominal and non-nominal conditions
including enforced faults for return values.
If types are not properly defined (e.g. int instead of enum)
or the range is not checked, valid values, i.e. values in the
specified type range, will be invalid, in fact, because they
are not in the intended range.

As above + platform diversification run-time 1 2,27 This specific fault was detected by corruption of
mallocated memory: the test environment allocated
function parameters by malloc, while in the operational
environment they were allocated on the stack. This allowed
the automated detection at run-time immediately after
memory corruption.

Coverage analysis post-run-
time

3 6,82 Coverage analysis requires stimulation under nominal and
non-nominal conditions to reach a maximum of branches
incl. such ones for fault handling.
To be efficient a high coverage figure should be achieved
which requires fixing of all faults which cause exceptions
and aborts.

Total 44 100

Tab. 4-2: Results of Symptom-based Fault Detection

4.2 Fault Coverage and Potential of Strategies

Details on observed fault types, the most efficient
identification strategy and the distribution of observed
faults and fault types are shown in Tab. 8-3 and in Fig.
8-1 and Fig. 8-2, respectively. Tab. 4-3 explains the
acronyms as used in Tab. 8-3.
Acronym Description

B Block Coverage
b detection possible by coverage analysis
C Compiler
D DCRTT specific add-on’s
E Exception
I invalid Input (in parameter, static data)
i invalid input is in valid / specified range
K Lock (deadlock or livelock)
L Linker
M Decision Coverage (MC/DC)
m detection possible by MC/DC
O invalid Output (return value, out parameter)
P detected due to platform diversity
p possibly depending on platform
R Run-time message issued by DCRTT
s feature could be covered by symbolic execution
T Tool, Cantata++
t could also be identified by a static analysis tool
x feature could be covered by analysis method,

but was not observed in practice
() could possibly be covered, but theoretically

incomplete
small
letters

theoretical assessment, not applied or observed
in practice

Tab. 4-3: Acronyms as used in Tab. 8-3

A capital letter always (except for i and s) means that
the referenced strategy is the most efficient strategy in
terms of procurement costs and fault identification
capability, if several ones may successfully be applied.
Rounded brackets express a principal capability of a
strategy to identify a fault type, but it is not sure if
identification is really supported or even fully possible.
An “x” indicates that identification should have been
possible by a certain strategy, but was not observed.
Further, an “s” indicates that symbolic execution should
be capable to identify a fault type, without saying
anything about practical results. Finally, an “i” indicates
that invalid input was received though the value was in
the valid / specified range. This is a matter of imprecise
use of types, which is – in part – a consequence of the
type concept of C. Therefore DCRTT offers an option to
precisely specify a limited range. If more than one
capital letter occurs in a row, no clear decision on the
optimum strategy is possible.

The main parts of Tab. 8-3 are:
• the fault types, which are described in Col. 2 - 3,
• the strategies of static analysis in Col. 4 – 7,

• the strategies of dynamic analysis in Col. 8 and 9
followed by applied stimulation methods (data
stimulation, platform diversification),

• the observed number of faults in Col. 12-14

The following conclusions depend on the specific fault
distribution profile as given in Tab. 8-3, but are still
valid in general – apart from the quantities. The
discussion below refers to the bottom lines of Tab. 8-3,
where summary figures are provided.

A detailed view is required for the figures for static
analysis, which include contributions from “classical”
static analysis tools and an additional contribution from
DCRTT (dynamic analysis, testing), identified by
specific analysis directly related to the preparation of
the test environment. Therefore three sets of summary
figures are provided: the first set counting the
contribution from classical static analysis, the second set
considering the contribution from dynamic analysis /
DCRTT, and the third set showing all contributions.

While in total 25 fault types (51%) and 270 faults (86%)
were covered by static analysis, “classical” tools
without DCRTT did only cover 18 fault types (37%)
and 159 faults (51%).

For dynamic analysis a minimum and maximum value
is provided for the number of observed faults (cf. Tab.
4-1). The minimum refers to the faults which cannot be
detected by static analysis at all, the maximum number
to the amount which can be detected by dynamic
analysis, at most.

The contribution of strategies to fault coverage is shown
in Fig. 4-3. 192 faults could be covered by static
analysis, 44 faults by dynamic analysis, and 78 faults
could have been covered either by static or dynamic
analysis, where preference should be given to static
analysis as discussed in Ch. 3.3.1.

Fig. 4-3: Fault Coverage by Strategies

Dynamic analysis did cover 21 fault types (43%) and 44
faults (14%) at least, i.e. what was not covered by
classical static analysis, and could cover 31 fault types
(64%) and 122 faults (39%) at most. To these figures
the related contribution from DCRTT static analysis
should be considered, in addition: 7 fault types (14%)

and 111 faults (35%), which yields in total for the
minimum 57% fault types and 111+44=155 faults
(49%).

Regarding the comparison classical analysis vs. DCRTT
the figures are (Fig. 4-4): 81 by classical analysis, 155
by DCRTT and 78 by both.

Fig. 4-4: Fault Coverage by Tools

Today, compilers (together with linker) can already
detect a lot of fault types as indicated by ‘C’ in column
“semantic analysis”: 9 out of 49 (~18%). When
combining all four static analysis strategies (incl.
symbolic execution) and considering their maximum
potential for fault identification, only 3 out of 49 fault
types would be not covered. Taking a more realistic
view, eight fault types may not be covered.

The largest contribution in the area of static analysis
comes from semantic analysis supporting detection of
about 51% of these fault types.

Symbolic execution may cover 40-63% of the fault
types and 27-39% of the faults. Unfortunately, no
practical results could be derived due to lack of a tool.
The practical aspect is whether the full potential will
really be available in practice due to a potentially high
effort and/or high number of false alarms for which no
clear decision on fault occurrence can be derived.

Anomaly monitoring supports detection of 39-43% of
fault types and 13-50% of faults. Actually, coverage
analysis contributed with about 4%, and has a potential
for about 21% for identification of observed fault types,
and 1-25% in case of faults.

4.3 Robustness

One of the challenging issues of testing based on
function prototypes/specifications – as DARTT and
DCRTT do – is the compliance between a prototype and
its (function) body. It is common practice to rely on
valid data in the body, without checking on the valid
range of data coming in through the interface (see
remarks for Example E3.1 in sect. 3.1).

Run-time anomalies (exceptions, aborts, locks) caused
by such discrepancies between prototype / specification
and a body are not included in the figures of Tab. 4-1.
As in all such cases the specification allows a broader

range than allowed, provision of data in the valid range
(according to the specification) implies fault injection.

The following number of such anomalies were found
during testing for the three projects of Tab. 3-1:

• Ada, Cat. A

anomalies were found during module testing. By
detailed manual analysis it was proven that the
conditions raising the anomalies cannot occur in the
overall system context – actually.

• Ada, Cat. C

o About 700 anomalies were observed. Most of
them were related to the fact that operands of
arithmetic operations like +,-,*,/ and the result
cannot have the same type, which is usually a
problem if the range of the type is rather small:
i:=i+1; will always lead to an exception when on
the right side the full range of i is applied (even
for the full range of type Integer).

o Apart from these – more or less – “uncritical”
anomalies, a few cases were found – after
completion of usual test and ISVV activities –
which were critical.

• C

About 200 anomalies were reported. Most of them
were related to out-of-range conditions, e.g. for an
index into an array because the index is of type int
while the array size is of limited range and no range
check was implemented.

Consequently, by dynamic testing, especially when fault
injection is applied in addition, an immediate decision is
possible – as confirmed in practice – on whether a
defensive programming style was applied or not. A non-
defensive style has consequences on detection
probability based on code execution, because such
anomalies will create an undesired change of control
flow due to exceptions, aborts, deadlocks, livelocks.
Therefore

• at run-time
more faults may be hidden,

• at post-run-time
faults in logical expressions (bad branching,
deadcode) are more difficult to detect because the
coverage figures are becoming too low, so that
critical cases with a small contribution to coverage
cannot be distinguished easily from those resulting
from an undesired interruption of the control flow.

Consequently, the maximum number of faults can only
be detected by dynamic analysis when all “obstacles”
raising exceptions are immediately removed when
detected.

4.4 Variation of Test Conditions

To achieve maximum coverage figures and fault
identification, stimulation conditions should be varied.
This may require a number of runs of DCRTT/DARTT
with different configuration options.

The following principal configuration options and the
described sequence of execution and result evaluation
turned out as rather useful:

1. stimulation of function parameters in valid
range only
fix all anomalies before proceeding to next step

2. stimulation of parameters in valid and invalid
range
fix all anomalies before proceeding to next step

3. extend stimulation to global/static data as
performed in steps 1 and 2
fix all anomalies before proceeding to next step

4. activate fault injection and repeat steps 1-3
fix all anomalies before proceeding to next step

5. evaluate coverage figures and identify faults
related to erroneous conditions (wrong
conditions, missing brackets after conditional
expressions) or other dead code.

It strongly depends on the quality of the application
whether all steps have to be executed sequentially as
described above – possibly several times – or a
shortened sequence is possible. However, as each step
only requires to change a few configuration parameters
and the tests are executed in background without
requiring any human intervention, the manual effort
reduces to evaluation of test results, only.

Consequently, this effort is a matter of the quality of the
software under test: the better, the less.

4.5 Test Duration

The test duration of automated stimulation strongly
depends on the complexity of the application, the size of
the input domain and the execution time of a function-
under-test.

Many symbols in an application will increase the time
needed for linking. If linking is in the range of minutes
and the number of functions is in the range of
thousands, this may already require dozens of hours or
days (1 minute x 1000 ≈ 16:30 hours).

A huge input domain (incl. invalid data) may require a
high number of stimulation steps to achieve a sufficient
high density of test samples. However, experience
shows that a few thousands of test samples are sufficient
to achieve maximum coverage. The number of auto-
generated samples was about 6,500 on the average for
the 765 functions tested, when suggesting 3,000 by test
configuration, yielding a total of about 5x106 test
samples for all functions.

Deadlocks and livelocks also may significantly increase
the test duration. This is a matter of the upper limit on
execution time per function. If it is 15 minutes and 50
functions will run into a lock, this will waste about half
a day of test time.

Consequently, a high test duration – though not
requiring human resources, but impacting the turn-
around time – may be an indication for the poor quality
of the software under test, especially of its poor
testability. As a rule of thumb: the higher it is, the
poorer is the quality.

Finally, there is no need to test all functions together. A
sub-set always can be tested, based on what is included
in the provided files. This may speed up the overall
duration in case tests need to be repeated.

4.6 Test Input Filtering

The identification of “interesting test inputs” by
coverage criteria (extended by inputs causing
anomalies) reduces the huge number (like 5x106 test
inputs) to an amount which can be evaluated manually
and – when the results have been confirmed to be
correct – be upgraded to reference test cases for
regression testing and testing on the target.

Roughly, about 5,000 “interesting” test cases have to be
considered for full coverage which yields the following
average figures to achieve full coverage (executing each
block or logical decision once at least):

• ~1 test case per 8 LOC
• ~7 test cases per function
• ~1 test case per 1,000 stimulation inputs.

Though the high reduction ratio of about 1,000 seems to
indicate a rather inefficient stimulation approach, it
actually visualizes the broad coverage of the samples in
the input domain which is mapped onto a much smaller
number of equivalence classes representative for the
code-under-test.

4.7 Lifecycle Impacts

When anomalies are detected after completion of the
coding phase, more effort is required for fixing.
Therefore, it is highly recommended to apply auto-
testing as soon as first pieces of code are compilable and
linkable.

4.8 Identification Strategies and FMECA

In the past, testing consumed much manual time and
effort for test preparation, execution and evaluation of
results. Therefore FMECA (Failure Mode, Effects and
Criticality Analysis) was considered as an instrument
for reduction of analysis and test effort by guiding the
engineers towards the most relevant/critical parts of a
system. This procedure implied to neglect other parts

which were identified as non-critical, but which still
could be faulty.

Today, due to full automation of testing as supported by
DCRTT, manual effort is only needed for test
evaluation and configuration of test modes (see Ch.
4.4). Due to automated stimulation over the input
domain, all parts of the software can be covered at little
expenses. The budget required for auto-testing is mainly
driven by the quality of the software, as poor quality
will increase the size of automatically generated reports,
the related effort for manual evaluation, and the degree
of re-execution of tests as described in Ch. 4.4.

Consequently, concentrating the effort on parts, to
which FMECA guides to, is no longer indispensable.
Due to these extended capabilities, quality analysis is
no longer limited by budget constraints as in the past.

5 CONCLUSIONS

In this paper principal considerations were drawn on
how application-independent faults can be identified
and how sensitive a certain strategy is w.r.t. to certain
fault types. As an unexpected benefit of the practical
exercises it was found that also application-dependent
test cases can be identified by a generic, application-
independent strategy.

A major conclusion is that platforms and context may
impact the activation conditions of faults and even may
add or remove faults. In most cases these faults are non-
anticipated and cannot be detected by static analysis
methods, but only by dynamic analysis based on
monitoring of symptoms.

The detailed conclusions on the analyses presented in
this paper are divided into the following topics:

• principal problems of fault identification,

• suggested strategies for fault identification,

• aspects of project and lifecycle management,

• the role of automation.

5.1 Principal Problems

Above discussion yields that faults may be hidden for
the following reasons:

• during testing
o fault activation is masked by context- or

platform-dependent conditions,
o a fault is not activated,
o a fault is not recorded due to a fault in the tool,

• during static analysis or symbolic execution of the
code
o the fault cannot be identified as its activation

depends on the platform

o the fault cannot be identified due to practical
resource limitations, unsupported features or
faults in a tool.

In some cases for which fault identification by static
analysis was theoretically expected, one counter
example at least was found that the fault was not
detected for the software-under-test. As a consequence,
even supported anticipated faults may remain hidden,
while unsupported anticipated faults will remain hidden
for this strategy, for sure.

Some examples were given for cases where faults can
be added or removed silently during transformation of
the source code into executable code.

Finally, only anticipated faults can be identified by
analysis strategies including requirements-based testing,
symbolic execution and FMECA, while automated
dynamic analysis in general has the potential to identify
non-anticipated faults as well.

5.2 Suggested Strategy

Above considerations strongly suggest diversification
of tools in general and a combination of possibly
orthogonal or independent tools regarding principal
fault coverage of a strategy, its tool implementation and
its complexity:

• to apply static analysis at pre-run-time for detection
of anticipated faults with medium to high
complexity of tool implementation, and

• dynamic, symptom-based analysis for detection of
anticipated and non-anticipated faults derived from
test results incl. coverage analysis, requiring low
complexity of the strategy and little to medium
complexity of tool implementation.

High complexity of a strategy implies increased
probability of a fault in the tool, and the same is true for
definition of the rules which form the base of static
analysis. For these reasons rule-based static analysis
cannot be considered as perfect, while it was considered
as perfect in the past. Of course, testing is also not a
perfect strategy. However, a combination of such –
possibly non-perfect – independent methods and tool
implementations gives a higher chance to detect faults.
If not being combined, not all types of faults can be
detected as the contents of Tab. 4-1 and Tab. 8-3 does
prove.

As far as a fault is not identified, its potential impact
and hazard potential remains unknown. Therefore test
effort must not be reduced at the cost of fault detection,
and projects should put forward the ambition of
detecting as many faults as possible, whether anticipated
or non-anticipated, having a potential to be activated or
not under given conditions. Symptom-based analysis
requires removal of faults as soon as they are detected.

Otherwise faults may remain undetected due to code
unreachable by the raised anomalies.

The results presented in Chapter 4 prove that static
analysis is not sufficient to detect all faults, even when
combining all strategies of this fault identification
domain. Vice versa, this is also true for dynamic
analysis.

The analyses as given in this paper demonstrate that the
potential of fault identification needs to be considered
for each of the strategies to be sure that all types of
faults can really be caught. Consequently, this leads to
an assessment of the “quality of the fault identification
potential” of a strategy, similarly to mutation testing
which evaluates the “quality of a test set”.

5.3 Management Aspects

According to the discussion in Ch. 5.1 and 5.2 principal
decisions need to be made on fault identification
strategies in order to achieve a high coverage of fault
types by the chosen fault identification strategies.

Testing was already considered as a key strategy in the
past complementing static analysis. However, due to the
rather high effort needed to prepare the test environment
and to evaluate the results, testing was limited to parts
of the code – more or less – aiming an optimum mix
between costs and fault identification probability.

Full automation of testing – only requiring delivery of
the source code – significantly helps to reduce the effort
while widening the scope to stimulation and monitoring
of the whole code, thereby overcoming constraints

imposed by budget and schedule. As described in Ch.
4.6 relevant test cases can be automatically derived in a
rather comfortable way just by provision of the source
code.

However, this way of full auto-testing requires to fix
faults immediately when they are identified. Therefore
auto-testing should be applied as soon as pieces of code
are ready for linking.

From this perspective late start of auto-testing
unnecessarily increases costs and effort.

5.4 Role of Automation

Automation turned out as a pre-condition to identify
faults which may be hidden or occur very rarely,
otherwise.

Automatic porting of the code, i.e. automatic adaptation
of platform-dependent code to make it executable on
another platform, and automatic stimulation over the
full valid input domain extended to invalid inputs and
fault injection, significantly increases the chance to
meet the conditions of fault activation, which otherwise
could not be raised due to limited budget and schedule.

6 ACKNOWLEDGEMENT

The C testing activities as referenced in this paper were
part of a contract executed for DLR Space Agency
(Deutsches Zentrum fuer Luft- und Raumfahrt) funded
by BMWi (German Federal Ministry of Economics and
Technology).

7 REFERENCES
[1] IEC 65A 122, ISO/IEC 10746

[2] IEEE TC FTD/IFIP WG10.4 definitions on Dependable Computing

[3] RTCA/DO-178B/ED-12B, Software Considerations in Airborne Systems and Equipment Certification

[4] Cantata++, IPL Ltd. Bath, UK, http://www.ipl.com

[5] PolySpace Products, www.mathworks.com/products/polyspace

[6] DARTT, Dynamic Ada Random Test Tool, http://www.bsse.biz → Products → DARTT

[7] DCRTT, Dynamic C Random Test Tool, http://www.bsse.biz → Products → DCRTT

[8] Dahl, O.-J., Dijkstra, E.W. and Hoare, C.A.R. :Structured Programming,
 Academic Press, London, England, 1972

8 APPENDIX

Tab. 8-1: Examples on Activation Conditions

Id Dep. Lang Example Comment

1

IDF
+

PDF

Ada

var1:unsigned_byte;
var2:unsigned_byte;
var3:Integer;

-- Assignment for
-- var1, var2, var3

var3:=Integer(var1*var2);

There is a fault in line 4 because the result of the product is also of type unsigned_byte, but it may exceed 255. An error does
not occur if the result is less than 256. It is considered as activated for a result >255, because then an exception should be
thrown.
Observation 1: On an Intel-CISC-Architecture the result is handled modulo 256, but no exception is thrown. Moreover, the
final result as assigned to var3 may be negative.
Explanation 1: The CISC-Processor allows byte-operations and therefore the result is modulo 256. Obviously, the status of the
overflow flag was not evaluated. This leads to an error.
Observation 2: On a Sparc-RISC-Architecture the correct result is obtained, but no exception is thrown.
Explanation 2: The RISC-Architecture always performs 32-bit operations, therefore no overflow will occur. The constrained
range must be checked on software level, but obviously such a check is not implemented. The correct result of the product is
delivered, but due to the cast it remains unknown whether this is an error or not. From this perspective, a cast always should
be considered as a potential fault.

2

PDF Ada

type T_INT8 is
range -128 .. 127;
for T_INT8’SIZE use 8;
type T_INT16 is
range -32768 ..32767;
for T_INT16’SIZE use 16;
DIM1 :constant:= 80;
DIM2 :constant:= 10;
subtype T_NB is T_INT8 range
0..DIM2-1;
type T_DESC is record
 NB : T_NB;
end record;
M_DESC : T_DESC;
M_DESC.NB:=0;
 T_NB (M_DESC.NB * DIM1)
M_DESC.NB:=9;
 T_NB (M_DESC.NB * DIM1)

The essential lines are the 4 last lines. The result of the product M_DESC.NB * C_SUBFRAMES is platform-dependent. On
an ERC32/Sparc RISC architecture and Aonix compiler the results are fully correct in both cases, while on an Intel CISC
architecture and GNAT V3.15p compiler the second result is -48, i.e. 720 mod 256 as signed number: 720=0x2d0, -48=0xd0
as T_INT8. The critical point is the universal integer in the constant definition. According to the standard a universal integer
will be converted to the type of the other operand, which is T_INT8. Therefore the result should also be T_INT8.
On the Intel processor no exception was raised. Therefore either the multiplication operated on type Integer with later masking
of the result to one byte, only, or it was performed as byte-operation, but the overflow bit was ignored.
As the Sparc always applies 32-bit operations, no overflow did occur. The required handling on types would have to be done
on software level. Whether this was done remains open. As a matter of fact, the source code was not improved to make it
clear.

3
PDF Ada same example as above In case of the Intel-processor and GNAT compiler the cast to T_NB of M_DESC.NB * DIM1 raised an out-of-range exception

when the result is -48, while the previous overflow was not flagged.
4

PDF Ada T‘size
delivers different values depending on compiler: as occupied or needed w.r.t. to memory alignment, Ada (83,95) standard
allows different understanding

5
PDF Ada

Alignment clause at .. range in
a record

The Ada standard does not require to make this feature independent of the hardware architecture, this will cause problems
when porting between Little/Big Endian architectures.

Id Dep. Lang Example Comment

6
CDF

+
PDF

C

const char cstr[]=”123”;
typedef enum {false,true}
 Boolean;
void func() {
 char var[3];
 Boolean bool;
 strcpy(vstr,cstr); }

Obviously, in the declaration of vstr the terminating 0 of cstr was not considered. Therefore the terminating 0 overrides the
following byte of bool. As bool only takes the values 0 or 1 (true, false) (as defined by the context), in case of Big-Endian 0
would be replaced by 0. Consequently, no error ever will occur on this platform. If false would be changed to “! True” =
0xffffffff, than an error would occur. Similarly, it is when porting the code to a Little-Endian platform. Then the leading byte
of bool would be corrupted in case of true or if false==0xffffffff (as vstr is of length 4, bool would directly follow without
insertion of alignment bytes).

7

CDF
or

PDF
C

char *str;
str=malloc(100);
str=0;//should be *str=0;
... strcat(str,”xyz”);

The pointer is initialised instead of the area it is pointing to. Although it seems to be fully independent in the sense that it will
lead to a failure in any case, it will be dormant if no exception is raised. This has been observed for VxWorks 5.3 / gcc 2.6 on
an Intel X86 platform, while it was raised for the same versions on the ERC32 target. Apart from that there is another fault:
missing checking of the pointer returned from malloc.
It may be context-dependent for the following conditions: a value could be successfully stored and retrieved from address
zero, then it would be dormant. If this value would be destroyed before reading by another illegal access to NULL, it could be
activated.

8
PDF C

register short a=20000,b=2000,c;
c=a * b;
if (c>10){ } else { }

The result depends on the platform. On a Sparc (32-bit) it will be correct, on an Intel it may incorrect depending on the
assembler instructions generated by the compiler.

9
IDF
+

CDF
C

#define SIZE 500
int i,j,arr[SIZE],result;
for (i=0;i<SIZE;i++)
 for (j=0;j<SIZE;j++)
 result=arr[i+j];

In this case it is obvious that an out-of-range condition will occur. However, whether the fault is really activated still depends
on what is returned for arr[out-of-range]. Firstly, an access violation exception may occur, leading to an error and a failure due
to a branch in the control flow. Secondly, the expected value could be returned if the context provides such a value, then the
fault is not activated. Thirdly, an unexpected value could be returned, which may manifest as an error and a failure.

10 IDF C
int func(int i, int j) {
 return i+j;} //should be * A wrong operator is applied: ‘+’ instead of ‘*’. In case of i=j=2 the fault is dormant, in all other cases it is activated.

11 inde
pend
ent

C
errCode=SUCCESS;
 // TEST !!!!
if (errCode==ERROR)

A statement inserted for test purposes was not removed. This prevents that the error handling branch is entered.

Tab. 8-2: Assessment of Fault Identification Strategies

Id Example Identification
Strategy

Scope Identification
Reliability

Identification Effort Description

theory observed manual computation

1
if (myfunc(para)==0) ...
else ...

Cov. Anal. FS sure yes Med. / high
depends on

myfunc

low
myfunc(para) may return an invariant value, leading to
either the then- or the else-branch never being executed. Symb. Exec. SC

depends on
myfunc

n/a high

2
if (myfunc==0) ...
else ...

Cov. Anal. FS sure yes low low myfunc is the address of a function and therefore constant
and not NULL, leading to the then-branch never being
executed. Sem. Anal. CU sure yes low very low

3
if (x=1 || x=2) ...
else ...

Cov. Anal. FS sure yes medium low x is always assigned 1 leading to the else-branch never
being executed. The second part of the disjunction is never
evaluated. Synt. Anal. CU sure yes low very low

4
#define FILE_PATH “disk:/dir/”
if (FILE_PATH == NULL) { }
else { }

Cov. Anal. FS sure yes low low FILE_PATH is a constant pointer, but
analysis tools did not detect this fault: else-branch is never
reached (deadcode). It seems that this a matter of pointers,
because a comparison of constant scalars is detected.

Sem. Anal. /
Constant

Propagation
CU sure no � low very low

5

char *fn;
void myfunc() {
 if ((fd = fopen(fn,”a”)) == NULL)
 {} }

Cov. Anal. FS
high / PDF

+ CDF
yes medium low

Missing initialization of fn did not cause an exception, this
became only visible by missing coverage.

6

ret_value=SUCCESS; //TEST!!
If(ret_value == ERROR)
{ // then-branch }
else
{ // else-branch }

Cov. Anal. FS sure yes medium low

A test statement is not removed and prevents branching. Dataflow Anal. /
Const. Prop.

CU sure no � medium very low

Symb. Exec. SC sure n/a medium high

7
char *str=malloc(100);
str=0;//should be *str=0;
strcat(str,”xyz”);

Dataflow Anal. CU sure
cantpp

n/a medium very low strcat() copies into a string at address 0 (null-pointer),
potentially leading to a memory access fault. The allocated
memory is leaked. A run-time exception related to access
of address 0 is platform-dependent.

Gcc no
Symb. Exec. SC sure n/a medium high
RT anomaly FS sure / PDF yes medium low

8

UINT32 itemUsed[..],cc;
INT32 fc;
int setItem(UINT32 cc);
fc = setItem(cc);
itemUsed[cc] = fc;
for(i=1;i<itemUsed[cc];i++)

RT anomaly +
Fault Inj.

FS
depends on

setItem
yes medium low

Critical cast between signed and unsigned if setItem
returns -1, if e.g. the value of cc is invalid. Then the upper
limit of the loop is 0xffffffff instead of -1 which generates
a quasi-endless loop. Can be detected by fault injection
either for cc or the return value, increasing the probability
for a negative value.

Sem. Anal. /
Type Checking

CU
sure yes medium very low

Id Example Identification
Strategy

Scope Identification
Reliability

Identification Effort Description

theory observed manual computation

9

File ctrlInit.c
int ctrlArr[4]={1,1,1,0};

File ctrlVal.c
funcCreatePtr
(char **ptr, int ind) {
 if (ctrlArr [ind])
 { *ptr=getStrPtr();
 return SUCCESS;
 } else return SUCCESS; }

File ctrlExec.c
char *ptr=NULL;
if (ERR==funcCreatePtr(&ptr,3))
 exit(99);
else strcpy(ptr,”xxx”);

RT anomaly +
Fault Inj.

FS
sure / CDF

+ PDF
yes medium low Several faults exist in this example which are difficult

detect because the dependencies spawn across file
boundaries.

Firstly, always SUCCESS is returned from funcCreatePtr
preventing branching in file ctrlExec.c.

Secondly, if the value 3 is passed, ptr remains undefined
causing an exception in ctrlExec.c: conditional
initialization across file boundaries.

Cov. Anal. FS high yes medium low

Symb. Exec SC low / CDF n/a medium high

10

void flash(int id) {
 char str[100],msg[1000];
 switch (id) {
 case XXX: strcpy(str,“defined”);
 default: // nothing }
 20nitia(msg,”msg=%s”,str); }

RT anomaly +
Fault Inj.

FS
high / CDF

+ PDF yes medium low
If the value of id is invalid, str is undefined: conditional
initialization within a function.

Symb. Exec. SC
high

n/a medium high

11

void resetTime(int sub,
int status, int activity) {
 switch (sub) {
 case XXX:execTime[activity]
.tv_sec = 0;}}

RT anomaly +
Fault Inj.

FS
medium /

CDF yes medium low

An invalid value of activity leads to an out-of-range
condition. A check is missing.

Symb. Exec. SC

depends on
decl. / def.

of
execTime

n/a medium high

12

void fullName(char *path,
char *fn, char *ffn){
 if (path == NULL)
 20nitia(ffn,”%s”,fn);
 else
 20nitia(ffn,”%s/%s”,path,fn);}

RT anomaly +
Fault Inj.

FS
high / CDF

+ PDF yes medium low
The case fn==NULL is not considered, though it is not
guaranteed.

Symb. Exec. SC
high

n/a medium
depends on

callers

13
void loadDB(int tbl, int id) {
elem1[id]=elem2[tbl];}

RT anomaly +
Fault Inj.

FS
high / CDF

+ PDF
yes medium low

An invalid value of id may cause memory corruption. An
invalid value of id may cause an access violation
exception. Symb. Exec. SC

depends on
decl. / def.
of elem1

n/a medium
depends on

decl. / def. of
elem1 and

Id Example Identification
Strategy

Scope Identification
Reliability

Identification Effort Description

theory observed manual computation
and elem2 elem2

14

long size,*getSize = NULL;
if (readBuf(fd,offset,
(void*)getSize,sizeof(long))
 == ERROR) { … }
else{ size=*getSize;}

RT anomaly +
Fault Inj.

FS
high / CDF

+ PDF
yes medium low getSize is initialized with NULL, this value is passed to

readBuf, but it cannot be changed. If ERROR is not
returned, the else-branch will crash.

Dataflow Anal. /
Const. Prop.

CU sure no � medium very low

Symb. Exec. SC sure n/a medium medium

15

int Day(time_t zeit_t)
{ struct tm *zeit;
 zeit = (struct tm *)localtime
((const time_t *)(&zeit_t));
 if(zeit==NULL)
 printf(“no conversion\n”);
 return zeit->tm_mday; }

RT anomaly +
Fault Inj.

FS
high / CDF

+ PDF
yes medium low

If localtime returns NULL in case of lack of memory or an
invalid input, a crash will occur when executing the return.
This can be enforced by fault injection.

Symb. Exec. SC sure n/a medium medium

16

File fault.h
void verifyFault(int ind);
void handleFault(int ind);

File verify.c
#include <fault.h>
void verifyFault(int ind) {
 switch (ind) { …….
 Default: handleFault(ind);} }

File verify.c
#include <fault.h>
void handleFault(int ind) {
 switch (ind) { …….
 Default: verifyFault(ind);}

RT anomaly +
Fault Inj.

FS sure yes medium low

Recursive call of handleFault across file boundaries.
Rarely execution of fault handling part. Enforced
execution by fault injection for ind as parameter of
handleFault.

Symb. Exec. SC high n/a medium high

17

typedef struct TyMsg {
 int msgLen;
 char msgData[100]; }
TyMsg Msg; char buf[100];
getMsg(&Msg);
memcpy(buf,Msg.&msgData[1],
Msg.msgData[0]);

RT anomaly +
Fault Inj.

FS
high / CDF

+ PDF
yes medium low Implicit correlation of contents of msgData[0] and the

actual length of msgData assuming that both are
compliant,but may not. Enforcing non-compliance by fault
injection. Symb. Exec. SC medium n/a medium high

18
int i,j;
printf(“Bit:%d\n”,DB[i].Id[j].Bit)
;

Dataflow. Anal. CU sure yes medium very low Used before defined
Variable undefined when being used, possibly initialized to
0 RT anomaly FS

high / CDF
+ PDF

yes medium low

Id Example Identification
Strategy

Scope Identification
Reliability

Identification Effort Description

theory observed manual computation

19

typedef enum {EMPTY,FULL}STATE;
int create(int flag, STATE state);
int id;
id=create(EMPTY,0xff00ff00);

Sem. Anal. /
Type Checking

CU sure yes low low

enumerated type mixed with another type
args turned around
Wrong literal

20

File myFile1.c
int multiDecl;
File myFile2.c
int multiDecl;

Linker Checks

FS
sure

no �

high low

Link error: multiple symbols
The C standard tolerates multiple declaration of data when
they are not initialized. In this case all symbols are mapped
onto the same address.
When initialization is combined with the declaration at one
location at least, the compiler flags an error.
In case of uninitialized declarations a missing static key
word – though intended – is difficult to detect. This may
cause undesired interference of presumably independent
data and unpredictable results.
Such a potential fault is flagged during automatic
generation of the test environment by DCRTT.

DCRTT analysis yes

21

File myFile1.c
int multiDecl=0;
File myFile2.c
int multiDecl;

Linker Checks yes

DCRTT analysis yes

22 int actl[4] = {0,1,0,0,1,1}; Sem. Anal. CU sure yes low very low
Inconsistency between data declaration and its
22nitialization.

Tab. 8-3: Fault Types vs. Optimum Strategy and Faults Found

Fault Type Fault Sub-Type
Static Analysis Dynamic Analysis Observed Faults

Detection Method Stimulation static dynamic
Syntax

Analysis
Semantic
Analysis

Dataflow
Analysis

Symbolic
Execution

Anomaly
Monitoring

Coverage
Analysis Data Other

min max

1. Uninitialized data Index T s e 3 3
2. Branch-dependent initialization s E 3 3
3. Missing initialization of strings + pointer x s E 1 1
4. Missing initialization of static data (s) E 1 1
5. Range exceeded String (terminating 0 not counted for length) (s) R P 1 1
6. Index/pointer out-of-range after loop s E 1 1
7. Index out-of-range s E i 13 13
8. Malformed logical expressions Assignment instead of comparison (C) T (s) b m 9 9
9. Logical expression of scalars is constant T s b m 1 1
10. Logical expression of pointers is constant x s B M 2 2
11. De-referenced illegal ptr NULL-ptr, ptr->elem after function returning

NULL
 (s) E O 6 6

12. NULL assignment and dereference in branches x s E 1 1

Fault Type Fault Sub-Type
Static Analysis Dynamic Analysis Observed Faults

Detection Method Stimulation static dynamic
Syntax

Analysis
Semantic
Analysis

Dataflow
Analysis

Symbolic
Execution

Anomaly
Monitoring

Coverage
Analysis Data Other

min max

13. Corrupted or non-initialized pointer (!=NULL) (s) E 1 1
14. NULL dereference (s) E 1 1
15. Pointer arithmetic arithmetic on void or function pointer T 29
16. Cast between ptr and int over a number of stages (x) (s) E 1 1
17. Data declarations Inconsistency between declaration and extern D 2
18. Data consistency Missing range check s E I 1 1
19. Missing type in data declaration C 2
20. Mixed type expression Wrong enum literal out of different set T 3
21. Mixing signed and unsigned by a cast T s 14
22. Implicit mixed signed and unsigned expression D E 3 3
23. Test code not removed B M 1 1
24. Macro One stmt expanded to two stmt (if, while, for) (C) b 1 1
25. Unclear semantics, checks on

correctness impossible
Missing correlation between array and array
length

 s E i 3 3

26. Unchecked conversion of data s E i 1 1
27. Missing correlation of data s E i 1 1
28. Unreachable Code Code following endless loop T s K b 10 10
29. Combinations of return and break following

each other
 T s b 47 47

30. code following return (uncond.) T s b 2 2
31. code following break T s b 2 2
32. return following exit C t s b 2 2
33. ; following } T 1
34. Missing return for non-void C t 18
35. Non-terminating recursive calls Function calls itself (s) K I 1 1
36. Recursion after a number of function calls (s) K I 1 1
37. Format %s and int C t (s) e 1 1
38. Too many arguments C t s 1
39. Too few arguments C t s 1
40. Duplicate symbol Data declaration in h-file (L) D 47
41. Multiple data declaration in c-file (L) D 3
42. Incompatible types in assignment Inconsistent function pointer T 3
43. Incompatible parameter lists and

function declaration
Function return type C t 6

44. Parameter type mix (declaration and call) C t 2
45. Mismatch of parameter count D 1

Fault Type Fault Sub-Type
Static Analysis Dynamic Analysis Observed Faults

Detection Method Stimulation static dynamic
Syntax

Analysis
Semantic
Analysis

Dataflow
Analysis

Symbolic
Execution

Anomaly
Monitoring

Coverage
Analysis Data Other

min max

46. Missing includes Missing declarations C C t 1
47. Name overloading Struct and data name D 57
48. Decisions Too large list of decisions D 1
49. Total fault types 48

50. Total faults, observed 314 270 44 122
51. without DCRTT contribution to static analysis 159 44 122
52.

Total fault types covered
contribution from “classical” static
analysis tools, only

abs, min 2 18 2 20
Gray cells in

col. “min” above:
this fault type was
only covered by

dynamic analysis /
testing

Gray numbers
represent values

which are identical
with values in
previous lines.

53. abs, max 3 18 6 30

54. %, min 4,17 37,5 4,17 41,67

55. %, max 6,25 37,5 12,5 62,5

56.

Total fault types covered
contribution from DCRTT, only

abs, min 7 19 2 9 1

57. abs, max 7 21 10 9 1

58. %, min 14,58 39,58 4,17

59. %, max 14,58 42,86 20,83

60.

Total fault types covered
all contributions

abs, min 2 25 2 20 19 2 9 1

61. abs, max 3 25 6 30 21 10 9 1

62. %, min 4,17 52,08 4,17 41,67 39,58 4,17

63. %, max 6,25 51,02 12,5 62,5 42,86 20,83

64.
Total faults covered
contribution from “classical” static
analysis tools, only

abs, min 3 152 4 85

65. abs, max 4 152 9 121

66. %, min 0,96 48,41 1,27 27,07

67. %, max 1,27 48,41 2,87 38,54

68.

Total faults covered
contribution from DCRTT, only

abs, min 111 41 3 27 1

69. abs, max 111 45 77 27 1

70. %, min 35,35 13,06 0,96

71. %, max 35,35 14,33 24,52

72.

Total faults covered
all contributions

abs, min 3 263 4 85 41 3 27 1

73. abs, max 4 263 9 121 45 77 27 1

74. %, min 0,96 83,76 1,27 27,07 13,06 0,96

75. %, max 1,27 83,76 2,87 38,54 14,33 24,52

contribution
from

classical
static

analysis,
not counting

symbolic
execution

contribution
from

DCRTT

contribution
from all

strategies,
not counting

symbolic
execution

Fig.

Fig. 8-1: Fault Coverage vs. Methods and Tools

contribution
from

classical
static

analysis,
not counting

symbolic
execution

contribution
from

DCRTT

contribution
from all

strategies,
not counting

symbolic
execution

Fig. 8-

-2: Fault Type Coverage vs. Methods and Tools

