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ABSTRACT:

Various strategies for fault identification existe-g.
based on formal analysis of code or on testing — of
which each focuses on certain identification aspaod
fault types. This paper characterises the strengtits
weaknesses of methods — in theory and practice —
focusing on application-independent identification
strategies, and it suggests strategies to maxinhise
number of detected faults while minimising the reth
effort. Fault activation conditions are discussed i
detail, resulting in an extended scope on stimutati
needs. In particular, the contribution of autonmatio
raising the activation probabilities is investighte
Various examples of fault activation mechanisms and
statistics on fault types vs. identification methoare
provided as observed in practice. An interestirayltas

the identification of application-dependent testesaby
application-independent test strategies.

1 INTRODUCTION

The ultimate goal of fault identification as undem in

this paper is to maximise the number of observable
faults at minimum effort. This intention implies
identification of faults even though they may be
dormant under some conditions or in the current
operational context of a software system (dependimg

a platform, mission configuration, etc.). In thespect,
this goal is fully in-line with the goal of ISVV,
Independent Software Verification and Validation.

To succeed for this ultimate goal the mechanisms of
fault activation and fault hiding must be known,tkat
measures can be taken to minimise the number of
dormant faults. Once the required mechanisms are
known, the efficiency and reliability of identifitan
strategies have to be considered. A number of ebemmp
is provided to explain the identified mechanismsaoilt
hiding and how they are addressed by automation.
Finally, statistics on observed fault types, their
activation conditions and the efficiency of ideit@ftion
(fault presence vs. identification in practice) are
presented.

In Chapter 2 we introduce a terminology of faulisl a
fault activation to get a baseline for the follogin
discussions. In Chapter 3 we introduce the consdler
fault identification strategies and analyse for ethiault
types they are sensitive. In Chapter 4 we present
representative examples for the various fault tyged

evaluate the sensitivity of a strategy. Finally,
conclusions are provided in Chapter 5.

Larger tables have been moved to the appendix (€hap
8).

2 CLARIFICATION OF TERMS

For understanding of the strategies a clarificatisn
needed for the terms fault, error and failure asdus
the context of software. Various definitions of she
terms exist, e.g. by ISO/IEC [1], IEEE [2], DO17§8,
which are using the same term for different thingén
a different interpretation.

2.1 Application-Independent Fault
I dentification Strategies

First of all, we introduce the term “application-
independent fault identification strategy”. In our
understanding such a strategy allows to identifgudt
without requiring specific knowledge on the appica
like a result of a calculation. Consequently, we ar
looking on strategies which are based on violatién
syntactic, semantic or other rules or on occurrevice
symptoms like exceptions raised when a fault is
activated.

2.2 Fault, Error, Failure

While DO178B uses the sequence “errer fault —
failure” to describe the source of an anomaly aisd i
consequences, ISO/IEC and IEEE consider instead
“fault — error— failure” to describe the same effects.

The termanomalyis used here whenever we do not
want to distinguish between fault, error and falur

In this respect our definition of these terms is:

« a fault is related to violation of a certain rulehich
may have an impact on the quality-of-service

(QoS),

example: potentialfor index out-of-range

* an error is the manifestation of a fault, i.e. wkeen
violation of the ruledoesoccur, which may have
an impact on the quality of service,
example: the indeactuallyis out-of-range

« a failure is the manifestation of a reductiorQufS
example: an exception caused by the error (like
“access violation”) prevents execution of the
service.
example: out-of-range and resulrézlly faulty.



An anticipated fault is a fault for which the pdskiy
of its occurrence is known in advance. A non-
anticipated fault is a fault which is raised unestpdly.

In order to understand the mechanisms by whichtsfaul
may hide, more terms related to occurrence of gault
need to be considered.

2.3 Occurringvs. Detected

The termsoccurring and detected address different
points of fault identification. A fault magccur during
execution of the codaf( run-timg, while a fault may be
detectedduring execution at run-timer by analysisat
pre-run-time or at post-run-time Detection implies
presence of a fault, and occurrence iseaessarybut
not asufficientcondition for detection.

24 Fixit or Forget It?

We are taking the ternoccurring where usually
detecteds used. When a fault occurs, i.e. the violation
of a rule actually occurs, it might not ketected
especially if it does not manifest as a failureef\a
failure mightoccur without beingdetected because the
QoS is not or cannot be checked in this situation.

The essential question is whether we should onkg ca

about detected faults, errors or failures or about

occurring ones and even such which do not occur at all
under the actual conditions, but still have theeptal

to occur. Consequently, shall we adopt the follavin

argument? “If nobody is able to detect an anomaly i

terms of a reduced QoS, it is not a violation of a
contract at all”.

As we will see later, the decision, whether sudhudt
can be ignored, cannot be made before the activatio
condition of the fault is really known. Thereforeeper
knowledge about the fault is required. Howeverpfra
rigorous point of viewany chance needs to be taken to
identify faults.

In consequence, our understanding is, that alleshap

a fault, ‘non-occurring but having a potential to
occur”, “occurring” and ‘detected” faults must be
considered for fault identification. Therefore wellw
discuss in detail how faults can be activated and/o
detected, which

* may occuronly, i.e. the violation of a rule happens,
but they are not detected or detectable, or

e even may or canot occurunder typical conditions,
but are present in the code and have a potential fo
activation.

As an example, a quality check may be done, but the
reduced quality may be not recognised because the
feedback to the test engineer is too complex to be
properly interpreted.

The answer to above question heavily impacts the
strategies to be applied for fault identificatio®ur
position is: an anomaly which may occur must be
subject of an identification strategy aiming to ifix

Therefore it is not sufficient to look for errors even
failures only, but for faults as such. As detectafna
fault is strongly related to fault activation, wélwletail
this discussion in the following section about eatid
and dormant faults.

2.5 Dormant and Activated

Apart from the definition of fault, error, failur@nother
issue is related to the terms “dormant” and “a¢&da
when being associated with fault and error. The afse
these terms becomes even more complicated when the
whole chain from higher abstraction level (model,
programming language) down to execution of thefyina
code on a processor is considered.

The common understanding is that

« the termsactivatedanddormantare complementary
to each other in the sense: a fault, which is not
activated, is dormant.

» a fault is activated when it manifests to an error.

This is not very precise regarding the term “adtosd’.
Activation requires a condition for activation, the
“activation condition”. Following above understangi
on dormant and activated, it remains unclear wimat a
activation condition really is. If an index is aally out-
of-range, is this understood as the activation itimg
even if there is no impact on QoS, at all? Theesfar
deeper investigation on activation conditions isdesl.

We have observed curious situations like

1. a fault in the source code is masked by a compiler
or by the processor architecture (examples 2 and 3
in Tab. 8-1 below),

. a fault is introduced by the transformation process
(in case of models), a compiler, the processor’s
architecture and/or resource utilisation (examples
4 and 5, Tab. 8-1),

.a fault is masked in the execution context
depending on memory or stack allocation or the
status of the execution environment, in general
(examples 6 — 8, Tab. 8-1).

Depending on the scope considered for the anortaly,
may be concluded that

e an anomaly is present or not, in the sense there is
fault potential or not,

e it is dormant (it cannot occur under given
circumstances) or activated (then there is possibly
chance to detect it) depending on conditions
unknown in most cases before the anomaly is
detected.



In cases 1 and 2 above we are talking about aftphat
dependent anomaly” where platform is a synonym for
model transformer compiler, operating systemtest
conditionsand/orhardware architectureand in case 3
about a “context-dependent anomaly” wherentext
stands for any item impacting the activation candg

(at run-time) on a given platform.

The termdependenindicates that thdasic activation
condition of a fault may be biased by another ctmali
The basic activation condition for an out-of-rarfgalt

is that the valués actually out-of-range. However — as
we can see in example 6 of Tab. 8-1 — this is a
necessarycondition for fault activation, but may be not
sufficient— because the QoS may be not compromised.

When considering the source code only

 in Case 1, ignoring the full scope down to execautio
of the binary format, a fault would be considersd a
present, while in the binary format or during
execution it has vanished: no fault potential
anymore. Such a fault we calbrmant w.r.t. the
platform or a platform-dependent faul{PDF),
because the activation condition depends on the
platform.

e in Case 2, a fault is not present in the sourcecod
but in the binary format and the service of the
system could be affected. In consequence, such a
fault cannot be detected by source code analysis
only. It is a PDF, toa a fault is added by a
platform and the engineer does not know about it.

« in Case 3, a fault would be present, but would not
compromise the service during any operational or
test condition, unless the memory structure or the
execution environment are modified e.g. during
maintenance. Such a fault we cdbbrmant w.r.t.
the contexbr acontext-dependent faullCDF). In
this sense missing a deadline would be classified a
an CDF, i.e. the activation condition depends on
the context “CPU-power” or “CPU-time
consumption”.

These two activation dependencies (PDF and CDF)
have to be considered together with more basic
activation conditions which we call — following the
terminology of dependencies:
* input-dependency
i.e. a fault is related to incoming data,
and the related fault type is arput-dependent fault
(IDF)
example: index out-of-range
 resource-dependency
i.e. a fault is related to lack of resources like
memory, stack, CPU-power,
and the related fault type israsource-dependent
fault (RDF),
» event dependency

i.e. a fault depends on external events like a
hardware fault or it is raised by software, e.g.aby
fault handling part or fault propagation,

and the related fault type @&vent-dependertdr an
event-dependent fallEDF).

We take the terminput here instead ofdata to
distinguish between data which are essential taiokt
result, e.g. for execution of an algorithm — tin@ut
data and data of the context, e.g. data which are not
used during the calculation, but which may impéet t
activation condition.

The following examples E1, E2, E3 and E4 discuss th
fault potential of an IDF w.r.t. the informationailable

to prove absence of an IDF, i.e. the scope coresitier

a proof:

El:

int arr[500];
k=arr[5+71;

E2:

const int i=5,j=7;
int arr[500];
k=arr[i+j];

E3:

int myFunc(int i, int j) {
int arr[500];

return arr[i+j]; }

E4:

int callee(int i, int j) {
int arr[500];

return arr[i+j]; }

void caller() {
int i=5,j=7k;
}

k=callee(i,));
In E1 very clearly there is no fault in the codeadit
regarding data corruption. The index is — usually —
stored in a register, no way to activate the faatept
we do take into account a processor, compiler or
assembler fault.

In E2 the situation is similar — at first glanceowever,
from a rigorous point of view there is a fault putel

by software: the contents of i and j could be dsstd at
run-time. E.g. we have observed that even a baségpo

— stored outside the scope of a function — may be
corrupted, manifesting as a Heisenbug.

In E3 — very clearly — there is fault potentialchase it
cannot be proven — in the scope of function myFdnc
that the sum of i and j will really be in the range.
499.

The following cases are possible when the fault is
activated by the basic condition (IDF) for E3:

* an access violation occurs, the fault occurs angl ma
be detected by a raised exception,



* no address violation exception occurs, the address
of arr[index out-of-range] may point to a value
which is different from what is expected: the fault
occurs and may be detected,

* no address violation exception occurs, the address
of arr[index out-of-range] may point to a value
which is identical with what is expected: the fault
remains undetected regarding QoS, no way to
detect it due to a reduced QoS. However, it may be
detected by dataflow analysis, considering a larger
scope or by a changed data context.

E4 is similar to E2 — in principle. Whether theseea
fault potential in E4 depends on the scope. Conisige
the scope of the caller and the callee, there ianti
potential — apart from potential impacts by the teah

or the platform as discussed for E1 and E2. However
this — positive — conclusion is just a snapshotabee
the proof is context-dependent: if by maintenarfoe t
situation in the caller changes, the proof mayargér
hold. Therefore — from a rigorous point of viewheite

is a fault potential for callee — even when for the
moment it can be ruled out. But it does exist reuay
the full lifecycle of the software, and this canhehust
not be ignored.

The essential fact is that the assumptions whiphoaf
depends on are usually not known. A formal analyser
e.g., can detect an out-of-range condition as being
impossible. However, it does not list the assunmstion
which this decision is based, and therefore it iama
unknown whether after maintenance the proof ig stil
valid. Consequently, the analysis must be repeafted
any — even the smallest — modification. This cosicl

is also true for reuse.

From a rigorous point of view, a proof on functitewvel
by stimulation that an out-of-range will not cause
failure, is much safer and more rigorous than afom
system level considering operational values, only.

The behaviour of the code at run-time in E3 coudd b
made deterministic, i.e. detectable, as shown il E3
provided an error handler is implemented on thelle¥
the caller.

E3. 1:
#define ERROR -1
int myFunc(int i, int j) {
int k,arr[500];
k=i+j;
if (k<0 || k>499)
k= ERROR;
else
k=arr[i+j];
return k; }

While for E3 it is unknown which value is returned
when the fault is activated and — probably unknewn
whether it is in the valid range or not, in E3.&rthis a
convention to flag the error, so that it can beedietd

easily before it becomes critical (assuming thatiegs
not overlap with any contents of arr). The actiwati
condition is very clearly fixed, there is no platfe or
context-dependency yielding a dormant fault or a-no
detectable error.

Exceptions can be a better alternative in languages
supporting them — such as Java, C++ or Ada — as the
clearly occur outside of the normal function inaee,
while the error value might be ignored by a caller.

3 FAULT IDENTIFICATION STRATEGIES

To understand the required fault identificatioratggies
we need knowledge about

« the activation conditions of faults,

« the principal strategies and their potential toedet
faults — in theory and practice, and

« the fault-detection efficiency of a strategy.
These three aspects will be considered in thistehap

The selected examples have been collected frone thre
projects (Tab. 3-1):

» two Ada projects of Cat. A and C, after completion
of normal tests and ISVV,

» one C project of Cat. C, after operation.

Lang. | Cat. | K Lines| KLOC | Functions
Ada A 71 18 808
Ada C 900 430 5500

C C 48 40 765

Tab. 3-1: Analysed Projects

The examples are representative for the fault typdg
the original code is not shown.

The analysis and test of the code as reportedifm th
paper were executed after all usual fault ideratfan
methods (analyses, test, reviews) had been perfbrme

For the Ada projects examples on complex activation
conditions only are given in Tab. 8-1 and Tab.2, 8-
while more details will be presented for the C pobjin
Chapter 4.

3.1 Fault Activation Conditions

Tab. 8-1 gives a number of examples for IDF, CD# a
PDF activation conditions and their combinations
collected from the three projects. The represerdati
source code is provided as far as needed for
understanding of the activation condition. The
activation dependency is explained in the lastmolu

3.2 Fault Identification Strategies

Tab. 3-3 lists the considered strategies for fault
identification and describes how a fault can beiified
by a certain strategy. For each strategy examples o



faults are provided which can be — theoretically —
identified by it.

The following strategies have been considered (for
details see Ch. 3.3):

« strategies based on static analysis

For static analysis of the C code the gcc comdlar3
and Cantata++ (cantpp) [4] were used. i.e. symtacti
semantic and dataflow analysis, but not symbolic
execution which is supported e.g. by the PolySpack
[5]. For dynamic analysis (auto-testing) the DARTT
(Ada) [6] and the DCRTT (C) [7] tools were applied.

« strategies based on symptoms and dynamic Tab. 3-2 gives the mapping between the considered

analysis.

To increase the probability of fault detection,tites
was combined with fault injection and platform
diversification.

methods and applied tools.

Detailed results are presented in Chapter 4 forGhe
project.

M ethod
. . Dynamic Analysis
Tool Static Analysis Auto-Testing
syntax| semantic | dataflow symbo_llc a“‘?m"’!'y coverage
execution] monitoring | evaluation
gcc compiler x x x
gcc linker x
static
Cantata++ x X
theoretically x
dynamic / DCRTT x x x
auto-testing

Tab. 3-2 Coverage of Methods by Tools

3.3 Assessment of Strategies

Tab. 8-2 discusses the efficiency of each of the
strategies for the collected examples and the wbder
fault types:
« static analysis
0 syntactic analysis
0 semantic analysis
o dataflow analysis
o0 symbolic execution
« dynamic, symptom-based analysis
o analysis of run-time anomalies
testing, possibly extended by fault injection and
platform diversification
0 coverage analysis

Symbolic execution was not applied, theoretical

conclusions are made only.

If a strategy is not listed for a certain fault éyphe fault
type cannot be detected by it.

The following criteria are considered
assessments:

for the

« the reliability to detect a fault, theoreticallycaim
practice,

e the manual and computational effort needed to
detect and localize a fault.

The two principal categories of fault identificati@as
discussed in Ch. 3.2 are

» execution-independent (incl. symbolic execution),
mainly based on code analysis, and

» execution-dependent, i.e. testing, fault injection,
platform and context diversification incl.
evaluation of results at post-run-time.

Clearly, testing is not a method by which all fautan
be identified [8].

Execution-independent methods are based on formal
rules, an aspect which seems to make them sugerior
testing. However, this is the theoretical pointigw. In
practice, they may be less reliable than expected
depending on the fault type in question for théofwing
reasons:

 the analysis cannot be completed due to lack of
computation time and/or disk and/or memory
resources,

« a clear decision in the sense of green (no faall) a
red (clearly a fault) cannot be derived,

» the tool itself may be subject to faults to some
degree and suggests a wrong decision.

The first two reasons depend on the fault type thed
complexity of the context: when information is nedd
across compilation units (files in C, packages dajit
may be difficult to derive a useful result in piaet To
compensate the possibility of a fault in the toah
independent tool should be used (tool diversifaati



This may also provide a clear or clearer hint dfaalt / types. ldentification methods based on symptoms lik

no fault” suggestion. The probability that a faaltsuch exceptions do not need to know a certain fault typer
a tool suggests a wrong conclusion increases \Wigh t  to its manifestation, i.e. they do cover non-aptatéd
complexity of the context it has to consider. faults. They are just looking for the consequenees

provided they can be observed. Therefore there is a
good chance to detect such faults by symptoms., Last
but not least, symptom-based strategies are thg onl
ones which can identify PDF and CDF.

Specific consideration is needed for automatic atite
of a fault by testing. Testing can be divided imm
principal test purposes: evaluation of test reshbidtsed
on

« application-dependent information, The evaluation figures as provided in Chapter 4 do

« information for fault identification which is valid  SUPPOrt these considerations.

for every application. . o
3.3.3 Enforcing Fault Activation
In the second case automated detection of an sativa

fault is possible when its manifestation symptomsan Certain strategies — like fault injection, platform
be observed automatically at run-time or evaluaed  diversity and variation of the context — can inseethe
post-run-time, like exceptions, aborts, deadlocks, Probability of fault activation which is only a ntett of
livelocks or specific messages and insufficient €xecution-dependent identification methods.

coverage. When aiming to demonstrate correctness (per tesf)ca
Detection of faults by coverage analysis requiieisid a representative (execution) environment is reguire
of all other faults before being efficient. Otheswj However, such an environment is not a pre-comlitio
curious coverage figures may be a matter of excegfi for fault identification. In latter case everytgins
aborts etc. allowed which helps to catch a fault. Consequertly,
strategies useful to activate a fault are allowed a
3.3.1 Required Manual Effort strongly recommended: fault injection, platform

diversification, variation of the context. Sevefalilt
identification strategies may be combined like faul
injection with platform diversification. We have
experienced that porting the code to another piaitfo
and running it under changed conditions like enmfat
of hardware or another operating system is ratbefull
qto detect — specifically non-anticipated — faulthich
cannot be detected at all on the original platform.

From the perspective of identification an essemaht

is the effort needed to find the critical locationthe
code and the raising condition. Execution-indepahde
methods like semantic and dataflow analysis often
immediately point to such a location and report the
reason very clearly due to the direct relationship
between code and fault. When symptoms are observe
the location of fault occurrence can be identifiednost
cases, but not the reason directly. Automation — either to support platform diversifioa

by auto-porting of the code or to stimulate thesafe-
under-test over a — possibly huge — valid and idval
input domain — turned out as a pre-condition to
efficiently raise the activation probabilities tolevel
which make the symptoms observable within a
reasonable period of (execution / test) time.

Finding the reason requires usually manual analykis
the context. Symbolic execution also reports mane o
symptoms of a fault (range exceeded, division-trpkre
rather than on the source of a fault (where annelaée
range comes from). Therefore the identificatioroefbf
symbolic execution tends to be higher than forater

static analysis strategies and is comparable with . .
identification effort of dynamic analysis strategjie 3.3.4 Automatic Identification of Test Cases

Though some faults can be detected by both, exeeuti ~ The combination  of ~automatic ~stimulation and
dependent and execution-independent, methods, aboveautomatic evaluation of test coverage (block and

conclusions suggest that it may be more efficierstart decision coverage/ MC/DC) allows the identificatioh
finding by execution-independent methods — as far a application-dependent test cases by application-
possible. independent test and analysis methods.

Consequently, execution-independent method sheoaild b
applied prior to execution-dependent methods (dyonam
analysis, symbolic execution). This will decreabe t
manual effort required for fault fixing.

3.3.2 Non-Anticipated Faults

All static analysis methods apply rules to idenfiults,
which implies they only can detect anticipated ffaul



Fault Ident. Strat.

Activity for Detection or Activation

Fault M anifestation

Sour ce of Fault (non-exhaustive list)

Syntactic Analysis

Code analysis based on syntaatles. Rules ma
extend beyond normal language syntax scope.

yerror or warning, compilation abort

syntax erroultiple data declaration

= instead of == in condition, which usually is rro$yntax error

Semantic Analysis

Code analysis based on local s&rmzonsistency ruleg
Rules may extend beyond normal language sem
scope.

.error or warning message, compilat
atimrt

@ssignment to constant field
invalid types in assignment
missing variable declaration
inconsistent interfaces
inconsistent declarations

types too small/big for used range

(warning or error)
(warning or error)
(error)
(error)

(error)

(warning)

Dataflow Analysis

Code analysis detecting relatibeswveen definitions g
data items and their reached uses. Can be comipiitie
constant value propagation.

fwarning message
3|

unused assignment
missing initialisation/assignment
use of wrong source/target variables

Symbolic Execution

State transition equations ammstructed based
control flow. Presence and/or absemiesome types d
faults can be deduced for some or all possiblestat

BITOr OF warning message
f

out-of-range
dead code
critical casts
de-referenced NULL pointer
numerical exceptions
memory access outside allocated range
memory leak

Stimulation variation of parameter und heap dathiwivalid range exception, abort, lock uninitialized data
only deadlocks and livelocks
out-of-range
critical casts
de-referenced NULL pointer
numerical exceptions
Stimulation variation of Parameter and Heap-Data within valdi|@&xception, abort, lock missing protection againsalid data (out-of-range)
+ invalid range faults in fault handling code

Fault Injection

corruption of return values

exception, abort, lock

missing protection against invalid data (out-ofgan

missing check on returned NULL-pointer
critical casts

out-of-range

faults in fault handling code

missing protection against fault propagation

Range Checks type range monitoring (DCRTT support) DCRTT msg. out-of-range

Checks on memonyCheck on corruption of mallocated memory DCRTT msg. change of data outside the portion of allocatechorg
corruption

Platform variation of OS, processor, compiler or memaryceptions, unused variables

diversification

allocation

compiler messages, DCRTT msg.

uninitialized data

data corruption without raising an exception
unsupported exceptions (like suppressed FPE)

Coverage

Analysis of identified functions with coage<1009

coverage figures<100% and red-colourg

2dead code

and manual analysis of function code

parts in graphics (DCRTT)

faults inlogical expressionsundetected by pre-run-time tools

Tab. 3-3: Fault Identification Strategies vs. Raliypes




The mechanism applied by DCRTT (called “Test Case
Filtering”) is straightforward once the capabil#ief
automatic stimulation and coverage evaluation at ru
time are available:

1. define an upper limit on the number of
executions after which an item is considered as
“covered” (usually 1),

whenever a non-covered item (block or
decision item) is entered in accordance with (1)
above, record the corresponding inputs, outputs
and other relevant data,

generate test drivers from such data for later
regressions tests or tests on a target with
resource constraints, which

a. stimulate the function-under-test with
test inputs,

compare the
actual outputs.

confirm manually the correspondence between
fillered inputs and outputs (proof of
correctness) and thereby upgrade the
automatically recorded inputs to test cases. If
an output is faulty, correct the code and repeat
the automatic stimulation until the outputs are
correct.

recorded against the

Usually, test cases are derived from the specifinat
Therefore the approach described above seems to be
non-compliant with standards — on the first glance.
However, upgrading from test inputs to test cases
implies a check against the specification. Consetiye

the verification procedure is changed, while the
verification result is the same:

while usually the correct result (together with
test inputs) is derived from the specification
and is considered as reference for the
correctness of the test output,

in case of test case filtering the recorded input
comes first, and the derivation of the correct
output for the given input from the
specification comes after, including checking
of the coverage of the specification by the
automatically identified test cases.

Another advantage of test case filtering is thalriéady
considers the code, and provides test cases wkeiobr n
can be explicitly derived from a specification, hase
they are a matter of non-functional requirements on
quality, safety, reliability etc. Such requirements
otherwise would have to be applied to each piedhef
code manually, then leading to additional code st
cases e.g. to check on proper fault handling. Wailgh
manual identification of test cases is rather tasliand
error-prone, it is straightforward for automatic
stimulation and does not require any manual effort.

Moreover, the filtered test cases are application-
dependent, but were detected by an application-
independent identification strategy.

3.3.5 Explanation of Assessment Terms

The following terms are used to characterise the
identification capability of a strategy for a cémtdault
type in Tab. 8-2.

(as symbolic execution was not applied,
theoretical considerations are possible in thigkas

only

» Scope of analysis
= CU
compilation unit + interface files

SC
required source code down to given level of call
hierarchy

FS

required (full) scope over all levels + execution
environment, from function-under-test incl. all
further callees

* identification reliability

o theoretical

assessment based on theoretical considerations
medium, high, sure and capability to identify a
CDF or PDF.

CDF and/or PDF require support for fault
activation. A strategy not providing this support
will most probably not identify this fault.

medium

the fault may be detected

high

good chance to detect the fault

sure
the fault will be detected in any case

0 observed
assessment based on practical observations
= n/a
not applied in practice
yes
the strategy identified such a fault type once, at
least

no
the strategy did not identify such a fault type
although present and identification was
expected

« identification effort

0 manual
the effort needed to identify the source of the
fault

= low
the issued message directly points to the source
of the fault

= medium



the message points to a location in the source
code, and the context has to be analysed
manually
= high

the message points to a location in the source
code. Detailed manual analysis is required,
possibly across boundaries of functions and
compilation units

0 computational

the computational time needed until a tool reports
a fault or a symptom
= very low
range of seconds or lower
" low
range of minutes

= medium
range of hours
= high
range of dozens of hours or days.

3.3.6 Assessment Conclusions

The following compile options were used for thetista
analysis tools:
= gce
-Wall -Wunreachable-code -Wmissing-noreturn
-Wfloat-equal -Wpointer-arith -Wsign-compare
Remark: -Wall doesot imply:
“switch on all warnings”

= Cantata++
--comp x86-Win32-gcc3.2.3 --ci:-ids --keepmod
--no_link --parse:--c <path>\gcc.exe -c

All static analysis strategies do not consider thal
execution context and its potential impact eithefdult
masking or platform dependent fault generation.hSuc
conditions can only be covered with dynamic analysi
testing.

Version 3.2.3 (and higher) of gcc shows a signifiya
increased capability to detect semantic faults. Wan
faults which previously could only be detected by
specific static analysis tools can be found todsyab
compiler like gcc.

With DARTT the faults as listed in Tab. 8-1, exde®
1-5 (non-exhaustive list) were found. With DCRTE th
examples for C in Tab. 8-1 (examples 6-11, non-
exhaustive list) and Tab. 8-2 were found.

The following conclusions consider the practicalules
of syntactic, semantic, dataflow analysis and afadyic
analysis, but not of symbolic execution, becauss th
strategy was not applied.

The examples 4,6,7,14,20 as given in Tab. 8-2igonf
that not every fault, which should be detected dare
by static analysis tools, will be detected in piaetFor

these cases dynamic analysis was the only strategy
which detected the fault.

Observation of run-time anomalies was the only
strategy which identified the faults of examples
9,10,11,12,13,15,16,17, and in nearly all casescem
for 16 — the fault was detected due to fault ingct

Coverage analysis was the only strategy by whieh th
faults of examples 1,5,6 could be detected.

Consequently, pure static analysis — syntactic,asgin
and dataflow analysis — is not sufficient to deteltt
faults, as the presented results demonstrate. \&theth
symbolic execution can also cover faults detectét w
observation of run-time anomalies and coveragenis a
open issue, in practice. However, the theoretical
conclusions in Tab. 8-3 suggest, that symbolic
execution cannot cover the observed fault types &-6
18-22 from a principal point of view (see also @iR).
For fault types 1, 11, and 13 it strongly dependshe
context whether they could be covered in practice.

Fault types 5, 6, 20 can only be covered by dynamic
analysis, and it is likely that this conclusioralso valid
for fault types 1, 11, 13.

Semantic analysis was the only strategy which can
identify an inconsistency as described in examgle 2

Regarding computation time, syntactic, semantic and
dataflow analysis are the fastest strategies (lamy—

low) due to the limited context of a compilationitun
For these strategies the manual effort to identify
source of a fault can be expected low to medium-and
in general — to be lower than for the other striagdue

to the strong correlation of analysis and messages
flagging the fault. In the other cases a message bei
correlated manually with the source of the faulthe
code.

3.3.7 Tool Operation

The installation procedures are straight forwand &t
tools and complete within about 15 minutes or dess
time.

Specific preparation of the tools (gcc, Cantatat++,
DCRTT) for analysis and test execution was not
required. The execution of gcc and Cantata++ was an
integral part of DCRTT test automation. DCRTT itsel
only requires provision of the set of source filasa
directory and configuration of test conditions lifeault
injection, scope of stimulation etc.. The only pre-
condition to be fulfilled for DCRTT (and DARTT) is
that the source files should be compilable andaliié
free of errors.

All relevant diagnostic messages from compiler,
Cantata++ and DCRTT are filtered and collected in
separate files by the DCRTT run-time support. Iseca
of Cantata++ only the features of static analys&ew



used, but not the features for test set up, bechisés
inherently supported by the DCRTT feature for test
driver generation (see also Ch. 4.6, test casifily).

DCRTT filters test cases according to coverageGait
when scanning a function-under-test over the input
domain (parameters and static/global data including
fault injection). Once the input-output relationstias
been confirmed as being correct, such test casks wi
serve as further reference, e.g. when re-exectdisis.
Such test drivers can be re-executed on the dewelop
and target environment, even under memory limikegtio
such as 64KB, e.g. together with a lean operating
system like KEIL.

If desired, DCRTT will also generate these tesvets
in a format compatible with Cantata++, so that nanu
definition of test cases is no longer required.

4 EVALUATION OF RESULTS

In this chapter evaluation figures for static arydamic
strategies will be presented for the C software (40
KLOC) already mentioned in chapter 3.

During the development of this software a gcc 2.x
version was used to detect faults by static amalysi
Therefore many warnings were shown now by gcc 3.2.3
and Cantata++, indicating the progress made fdicsta
analysis.

Only such faults will be discussed here which have
reasonable and obvious fault potential.

Violation of rules such as standards on readabdity
source code, errors in source code which will cause
compilation errors, or messages on unused datacdre
considered as a “fault” in the context of this pape
Unused data were detected, but not tracked as their
amount would have compromised the figures for the
more “serious” faults.

Compilation errors are of relevance here becausheof
long history of the source code under inspectiome B
evolution of compilers some violation of syntaatides
will be recognised as an “error” today, while it smaot
flagged as an error in an earlier compiler version.

The number of all these faults is estimated as haged
on observation of corresponding compiler messagds a
analysed source code, probably being in a rangbeof
number of recorded faults, but possibly up to rplds

of this amount.

Also, anomalies due to lack of robustness (non-
defensive programming style, missing protectionirzgja
invalid data) are not considered as faults here. &0
discussion on robustness issues see Ch. 4.3. Thieanu
of reported anomalies related to robustness isisugs
the range of 200.

4.1 Detected Faults

Tab. 4-1 gives the number of faults detected btjrtg.

All faults which were detected by static analysie a
listed in the related column. As DCRTT also
contributed to static analysis (see Tab. 8-3) the
contribution from “classical” static analysis medisois
shown in separate gray-shadowed lines.

I dentification Strategy
Item , dynamic Total
static -
min max
faults |with 270 44 122 314
abs. DCRTT
without 159 0 0 159
faults |with 86.0 14.0 74.2 100.p
% without | 50.6
faults/ |with 6.8 1.1 5.8 7.9
KLOC |without | 4.0 | 0.0 00 | 4.0

Tab. 4-1: Identified Faults

For dynamic analysis a minimum and a maximum value
are provided:
e minimum
faults are counted, only (see Ch. 3.3.1), whicHatou
or cannot identified at pre-run-time by static
analysis, because e.g.

o the fault is platform- or context-dependent,

o the identification at pre-run-time is too
complex, impossible or the tool did not identify
it though it should have been possible, in
principle.

This figure is complementary to the one of static

analysis regarding the total number of detected

faults.

e maximum

all identified faults are counted which could have
been detected by symptoms or dynamic fault
analysis, also such ones which are covered by
“classical” static analysis.
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Identified Faults
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0

with contribution from  no contribution from DCRTT

DCRTT

Fig. 4-1: Fault Coverage vs. Analysis Mode

Fig. 4-1 visualises the fault identification pofeht
regarding the impact by auto-testing / DCRTT.



Tab. 4-2 correlates the faults detected by sympttim
the identification methods and when the method was
applied: at run-time or post-run-time. Fig. 4-2sis

the graphical equivalent of the percentage figures.

As an important result, the figures of Tab. 4-di¢gate

that neither static nor dynamic analysis strategias
fully cover the spectrum of (observed) faults. Tglou
this conclusion is related to the observed fauftshe

reference application, it is valid in general.

Another major result derived from Tab. 4-2 istth@d
(fault injection) + 1 (platform diversification) 82out of
44 faults (63.6%) (rows 2 and 3) could only be diete
by enforcing activation conditions raising the
probability for fault occurrence, e.g. due to

» flagging lack of memory (heap, stack) by a
modified return code (NULL),

« modified return codes indicating a fault like -1 or
NULL in other cases,

« invalid input data (out-of-range),
« faults activating the fault handling parts,

« conditions activating platform-dependent faults.
Only about 30% of faults (row 1 of Tab. 4-2 were

fault related to non-activated data corruption % i
intended platform.

Finally, three faults were detected by coveragdyaisa

in parts where the coverage figures were suffijent
high and not corrupted by occurrence of exceptions.
Possibly, more such faults could have been detéatted
the sources of exceptions would have been removed.

coverage analysis

latf
platform ok

diversification
2%

Fig. 4-2: Fault Coverage vs. DCRTT Identification

detected by stimulation with valid data. Strategies

Consequently, (automated) fault injection is a “thtis

maximise fault identification. A minor, though non-

negligible part of one event only is related totfiplan

diversification, which identified a serious, butrd@nt

Symptom-based Applied # % Comment
Fault I dentification M ethod at Faults

Recording of exceptions, aborts, run-time 13 29,55 The phrasénore run-time checks”means: these are

deadlocks, livelocks anmhore run-time specific checks to identify malloc- and file-usagad

checksduring stimulation under nomina corruption of mallocated memory supported by thet|te
conditions and run-time anomalies environment.

As above + fault injection run-time 27 61,36 Stiatidn under nominal and non-nominal conditipns

including enforced faults for return values.
If types are not properly defined (e.g. int instedicecnum)
or the range is not checked, valid values, i.eueslin the
specified type range, will be invalid, in fact, bese they
are not in the intended range.

As above + platform diversification run-time 1 2,2This specific fault was detected by corruption | of
mallocated memory: the test environment allocated
function parameters by malloc, while in the opersdi
environment they were allocated on the stack. @tisved
the automated detection at run-time immediatelyeraft
memory corruption.

Coverage analysis post-rup- 3 6,82 | Coverage analysis requires stimulation undeninal and

time non-nominal conditions to reach a maximum of brasch
incl. such ones for fault handling.
To be efficient a high coverage figure should beiacd
which requires fixing of all faults which cause eptions
and aborts.
Total a4 100

Tab. 4-2: Results of Symptom-based Fault Detection



4.2 Fault Coverage and Potential of Strategies

Details on observed fault types, the most efficient
identification strategy and the distribution of ebged
faults and fault types are shown in Tab. 8-3 anHig.

8-1 and Fig. 8-2, respectivelfiab. 4-3explains the
acronyms as used in Tab. 8-3.

Acronym Description

Block Coverage

detection possible by coverage analysis

Compiler

DCRTT specific add-on’s

Exception

invalid Input (in parameter, static data)

invalid input is in valid / specified range

Lock (deadlock or livelock)

Linker

Decision Coverage (MC/DC)

detection possible by MC/DC

invalid Output (return value, out parameter)

detected due to platform diversity

possibly depending on platform

Run-time message issued by DCRTT

feature could be covered by symbolic executipn

Tool, Cantata++

could also be identified by a static analysid top

X |~|—|n|Do D03 |Z|r|X|[—|[—|MO|O|c|m

feature could be covered by analysis method,
but was not observed in practice

() could possibly be covered, but theoretically
incomplete

small
letters

theoretical assessment, not applied or observed
in practice

Tab. 4-3: Acronyms as used in Tab. 8-3

A capital letter always (except for i and s) me#mest
the referenced strategy is the most efficient stpatin
terms of procurement costs and fault identification
capability, if several ones may successfully beliegp
Rounded brackets express a principal capabilitya of
strategy to identify a fault type, but it is notreuf
identification is really supported or even fullygsible.
An “x” indicates that identification should have dve
possible by a certain strategy, but was not observe
Further, an “s” indicates that symbolic executibowd

be capable to identify a fault type, without saying
anything about practical results. Finally, an fitlicates
that invalid input was received though the valuesiva
the valid / specified range. This is a matter opiietise
use of types, which is — in part — a consequeficheo
type concept of C. Therefore DCRTT offers an optmn
precisely specify a limited range. If more than one
capital letter occurs in a row, no clear decisiontbe
optimum strategy is possible.

The main parts of Tab. 8-3 are:
« the fault types, which are described in Col. 2 - 3,
* the strategies of static analysis in Col. 4 — 7,

 the strategies of dynamic analysis in Col. 8 and 9
followed by applied stimulation methods (data
stimulation, platform diversification),

* the observed number of faults in Col. 12-14

The following conclusions depend on the specifigltfa
distribution profile as given in Tab. 8-3, but astl
valid in general — apart from the quantities. The
discussion below refers to the bottom lines of T&k3,
where summary figures are provided.

A detailed view is required for the figures for tita
analysis, which include contributions from “clasdic
static analysis tools and an additional contrinufrom
DCRTT (dynamic analysis, testing), identified by
specific analysis directly related to the preparatof
the test environment. Therefore three sets of suynma
figures are provided: the first set counting the
contribution from classical static analysis, thecs®l set
considering the contribution from dynamic analykis
DCRTT, and the third set showing all contributions

While in total 25 fault types (51%) and 270 faB§%)
were covered by static analysis, “classical’ tools
without DCRTT did only cover 18 fault types (37%)
and 159 faults (51%).

For dynamic analysis a minimum and maximum value
is provided for the number of observed faults {cb.
4-1). The minimum refers to the faults which canbet
detected by static analysis at all, the maximum em

to the amount which can be detected by dynamic
analysis, at most.

The contribution of strategies to fault coveragshewn

in Fig. 4-3. 192 faults could be covered by static
analysis, 44 faults by dynamic analysis, and 78tfau
could have been covered either by static or dynamic
analysis, where preference should be given tocstati
analysis as discussed in Ch. 3.3.1.
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Fig. 4-3: Fault Coverage by Strategies

Dynamic analysis did cover 21 fault types (43%) 44d
faults (14%) at least, i.e. what was not covergd b
classical static analysis, and could cover 31 fgudes
(64%) and 122 faults (39%) at most. To these figure
the related contribution from DCRTT static analysis
should be considered, in addition: 7 fault type4%)



and 111 faults (35%), which yields in total for the
minimum 57% fault types and 111+44=155 faults
(49%).

Regarding the comparison classical analysis vs. DCR
the figures areHig. 4-4): 81 by classical analysis, 155
by DCRTT and 78 by both.

350

300 +

7B

250
both

200 +

B DCRTT only
130 +

Identified Faults

o classical static analysis
only

100 +

30 4

o4
Fig. 4-4: Fault Coverage by Tools

Today, compilers (together with linker) can already
detect a lot of fault types as indicated by ‘C'cislumn
“semantic analysis”. 9 out of 49 (~18%). When
combining all four static analysis strategies (incl
symbolic execution) and considering their maximum
potential for fault identification, only 3 out oP4fault
types would be not covered. Taking a more realistic
view, eight fault types may not be covered.

The largest contribution in the area of static gsial
comes from semantic analysis supporting detection o
about 51% of these fault types.

Symbolic execution may cover 40-63% of the fault
types and 27-39% of the faults. Unfortunately, no
practical results could be derived due to lack ebal.
The practical aspect is whether the full potentidl
really be available in practice due to a potentifiligh
effort and/or high number of false alarms for whiah
clear decision on fault occurrence can be derived.

Anomaly monitoring supports detection of 39-43% of
fault types and 13-50% of faults. Actually, coverag
analysis contributed with about 4%, and has a peien
for about 21% for identification of observed fatylpes,
and 1-25% in case of faults.

4.3 Robustness

One of the challenging issues of testing based on
function prototypes/specifications — as DARTT and
DCRTT do — is the compliance between a prototypk an
its (function) body. It is common practice to rein
valid data in the body, without checking on theidsal
range of data coming in through the interface (see
remarks for Example E3.1 in sect. 3.1).

Run-time anomalies (exceptions, aborts, locks) edus
by such discrepancies between prototype / spetidita
and a body are not included in the figures of Tdhl.
As in all such cases the specification allows aatiev

range than allowed, provision of data in the vatidge
(according to the specification) implies fault icijen.

The following number of such anomalies were found
during testing for the three projects of Tab. 3-1:

* Ada, Cat. A

anomalies were found during module testing. By
detailed manual analysis it was proven that the
conditions raising the anomalies cannot occur & th
overall system context — actually.

* Ada, Cat. C

0 About 700 anomalies were observed. Most of
them were related to the fact that operands of
arithmetic operations like +,-,*,/ and the result
cannot have the same type, which is usually a
problem if the range of the type is rather small:
i:=i+1; will always lead to an exception when on
the right side the full range of i is applied (even
for the full range of type Integer).

0 Apart from these — more or less — “uncritical”
anomalies, a few cases were found - after
completion of usual test and ISVV activities —
which were critical.

e C
About 200 anomalies were reported. Most of them
were related to out-of-range conditions, e.g. for a
index into an array because the index is of type in
while the array size is of limited range and nogean
check was implemented.

Consequently, by dynamic testing, especially wizarit f
injection is applied in addition, an immediate dem is

possible — as confirmed in practice — on whether
defensive programming style was applied or notoA-n
defensive style has consequences on detection

probability based on code execution, because such
anomalies will create an undesired change of cbntro
flow due to exceptions, aborts, deadlocks, livesock
Therefore

e at run-time
more faults may be hidden,

e at post-run-time
faults in logical expressions (bad branching,
deadcode) are more difficult to detect because the
coverage figures are becoming too low, so that
critical cases with a small contribution to coverag
cannot be distinguished easily from those resulting
from an undesired interruption of the control flow.

Consequently, the maximum number of faults can only
be detected by dynamic analysis when all “obstécles
raising exceptions are immediately removed when
detected.



4.4 Variation of Test Conditions

To achieve maximum coverage figures and fault
identification, stimulation conditions should beriea.
This may require a number of runs of DCRTT/DARTT
with different configuration options.

The following principal configuration options anbdet
described sequence of execution and result evaiuati
turned out as rather useful:

1. stimulation of function parameters in valid
range only
fix all anomalies before proceeding to next step

2. stimulation of parameters in valid and invalid
range
fix all anomalies before proceeding to next step

3. extend stimulation to global/static data as
performed in steps 1 and 2
fix all anomalies before proceeding to next step

4. activate fault injection and repeat steps 1-3
fix all anomalies before proceeding to next step

5. evaluate coverage figures and identify faults
related to erroneous conditions (wrong
conditions, missing brackets after conditional
expressions) or other dead code.

It strongly depends on the quality of the applmati
whether all steps have to be executed sequentally
described above — possibly several times — or a
shortened sequence is possible. However, as eaph st
only requires to change a few configuration patanse
and the tests are executed in background without
requiring any human intervention, the manual effort
reduces to evaluation of test results, only.

Consequently, this effort is a matter of the qyadit the
software under test: the better, the less.

45 Test Duration

The test duration of automated stimulation strongly
depends on the complexity of the application, ike of
the input domain and the execution time of a fuoeti
under-test.

Many symbols in an application will increase thedi
needed for linking. If linking is in the range ofimtes
and the number of functions is in the range of
thousands, this may already require dozens of hours
days (1 minute x 1008 16:30 hours).

A huge input domain (incl. invalid data) may regua
high number of stimulation steps to achieve a sigffit
high density of test samples. However, experience
shows that a few thousands of test samples arieisutf
to achieve maximum coverage. The number of auto-

Deadlocks and livelocks also may significantly ease
the test duration. This is a matter of the uppmitlion
execution time per function. If it is 15 minutesdabO
functions will run into a lock, this will waste abiphalf
a day of test time.

Consequently, a high test duration — though not
requiring human resources, but impacting the turn-
around time — may be an indication for the poorliqua

of the software under test, especially of its poor
testability. As a rule of thumb: the higher it ihe
poorer is the quality.

Finally, there is no need to test all functionsetitgr. A
sub-set always can be tested, based on what isded|
in the provided files. This may speed up the overal
duration in case tests need to be repeated.

4.6 Test Input Filtering

The identification of “interesting test inputs” by
coverage criteria (extended by inputs causing
anomalies) reduces the huge number (like 8x#8t
inputs) to an amount which can be evaluated manuall
and — when the results have been confirmed to be
correct — be upgraded to reference test cases for
regression testing and testing on the target.

Roughly, about 5,000 “interesting” test cases havee
considered for full coverage which yields the daling
average figures to achieve full coverage (executiach
block or logical decision once at least):

o« ~ltestcase per 8 LOC
» ~7 test cases per function
» ~1test case per 1,000 stimulation inputs.

Though the high reduction ratio of about 1,000 setn
indicate a rather inefficient stimulation approagh,
actually visualizes the broad coverage of the sasjl
the input domain which is mapped onto a much smalle
number of equivalence classes representative fer th
code-under-test.

4.7 Lifecycle I mpacts

When anomalies are detected after completion of the
coding phase, more effort is required for fixing.
Therefore, it is highly recommended to apply auto-
testing as soon as first pieces of code are cobipitnd
linkable.

4.8 ldentification Strategiesand FMECA

In the past, testing consumed much manual time and
effort for test preparation, execution and evabratbf
results. Therefore FMECA (Failure Mode, Effects and
Criticality Analysis) was considered as an instrame

generated samples was about 6,500 on the average fo for reduction of analysis and test effort by guiglithe

the 765 functions tested, when suggesting 3,00&$ty
configuration, yielding a total of about 5XlQest
samples for all functions.

engineers towards the most relevant/critical pafta
system. This procedure implied to neglect othertspar



which were identified as non-critical, but whichillst
could be faulty.

Today, due to full automation of testing as supgbiiy
DCRTT, manual effort is only needed for test
evaluation and configuration of test modes (see Ch.
4.4). Due to automated stimulation over the input
domain, all parts of the software can be coverditlat
expenses. The budget required for auto-testingislgn
driven by the quality of the software, as poor gyal
will increase the size of automatically generatgubrts,

the related effort for manual evaluation, and thgrde

of re-execution of tests as described in Ch. 4.4.

Consequently, concentrating the effort on parts, to
which FMECA guides to, is no longer indispensable.
Due to these extended capabilities, quality aigligs

no longer limited by budget constraints as in tastp

5 CONCLUSIONS

In this paper principal considerations were drawn o
how application-independent faults can be idemtifie
and how sensitive a certain strategy is w.r.t. égain
fault types. As an unexpected benefit of the pcatti
exercises it was found that also application-depend
test cases can be identified by a generic, apjgitat
independent strategy.

A major conclusion is that platforms and contextyma
impact the activation conditions of faults and eveay
add or remove faults. In most cases these faldtaiam-
anticipated and cannot be detected by static asalys
methods, but only by dynamic analysis based on
monitoring of symptoms.

The detailed conclusions on the analyses presanted
this paper are divided into the following topics:
e principal problems of fault identification,
e suggested strategies for fault identification,
« aspects of project and lifecycle management,
* the role of automation.

5.1 Principal Problems

Above discussion yields that faults may be hidden f
the following reasons:

« during testing
o fault activation is masked by context- or
platform-dependent conditions,
o afaultis not activated,
o afaultis not recorded due to a fault in the tool,

« during static analysis or symbolic execution of the
code
o the fault cannot be identified as its activation
depends on the platform

o the fault cannot be identified due to practical
resource limitations, unsupported features or
faults in a tool.

In some cases for which fault identification bytista
analysis was theoretically expected, one counter
example at least was found that the fault was not
detected for the software-under-test. As a consegje
even supported anticipated faults may remain hidden
while unsupported anticipated faults will remaiddgn

for this strategy, for sure.

Some examples were given for cases where faults can
be added or removed silently during transformatibn
the source code into executable code.

Finally, only anticipated faults can be identifidxy
analysis strategies including requirements-basstthtg
symbolic execution and FMECA, while automated
dynamic analysis in general has the potential ¢mtidly
non-anticipated faults as well.

5.2 Suggested Strategy

Above considerations strongly suggest diversiiorat
of tools in general and a combination of possibly
orthogonal or independent tools regarding principal
fault coverage of a strategy, its tool implementaand

its complexity:

* to apply static analysis at pre-run-time for detact
of anticipated faults with medium to high
complexity of tool implementation, and

» dynamic, symptom-based analysis for detection of
anticipated and non-anticipated faults derived from
test results incl. coverage analysis, requiring low
complexity of the strategy and little to medium
complexity of tool implementation.

High complexity of a strategy implies increased
probability of a fault in the tool, and the samérige for
definition of the rules which form the base of stat
analysis. For these reasons rule-based static spaly
cannot be considered as perfect, while it was denst
as perfect in the past. Of course, testing is alsba
perfect strategy. However, a combination of such
possibly non-perfect — independent methods and tool
implementations gives a higher chance to detedtsfau
If not being combined, not all types of faults caa
detected as the contents of Tab. 4-1 and TaB.d@&s
prove.

As far as a fault is not identified, its potentiaipact
and hazard potential remains unknown. Therefore tes
effort must not be reduced at the cost of faulecin,
and projects should put forward the ambition of
detecting as many faults as possible, whetheripatixd
or non-anticipated, having a potential to be attigeor
not under given conditions. Symptom-based analysis
requires removal of faults as soon as they arectigte



Otherwise faults may remain undetected due to code imposed by budget and schedule. As described in Ch.

unreachable by the raised anomalies.

The results presented in Chapter 4 prove thatcstati
analysis is not sufficient to detect all faultsepwhen
combining all strategies of this fault identificati
domain. Vice versa, this is also true for dynamic
analysis.

The analyses as given in this paper demonstratéhba
potential of fault identification needs to be calesed
for each of the strategies to be sure that all dypke
faults can really be caught. Consequently, thisldetm
an assessment of the “quality of the fault idecwifion
potential” of a strategy, similarly to mutation tieg
which evaluates the “quality of a test set”.

5.3 Management Aspects

According to the discussion in Ch. 5.1 and 5.2 gpal
decisions need to be made on fault identification
strategies in order to achieve a high coverageaol f
types by the chosen fault identification strategies

Testing was already considered as a key strategfyein
past complementing static analysis. However, dubeo
rather high effort needed to prepare the test enwmient
and to evaluate the results, testing was limitegads

of the code — more or less — aiming an optimum mix
between costs and fault identification probability.

Full automation of testing — only requiring deliyeof
the source code — significantly helps to reduceeffart
while widening the scope to stimulation and moriitgr
of the whole code, thereby overcoming constraints
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4.6 relevant test cases can be automatically dbiive
rather comfortable way just by provision of the mau
code.

However, this way of full auto-testing requires fiv

faults immediately when they are identified. Theref
auto-testing should be applied as soon as piecesdsf
are ready for linking.

From this perspective late start of auto-testing
unnecessarily increases costs and effort.

5.4 Roleof Automation

Automation turned out as a pre-condition to identif
faults which may be hidden or occur very rarely,
otherwise.

Automatic porting of the code, i.e. automatic adéph

of platform-dependent code to make it executable on
another platform, and automatic stimulation ovee th
full valid input domain extended to invalid inpuasid
fault injection, significantly increases the chant®e
meet the conditions of fault activation, which athise
could not be raised due to limited budget and saleed
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8 APPENDIX

Tab. 8-1: Examples on Activation Conditions

Id | Dep. | Lang Example Comment
1 There is a fault in line 4 because the result effitoduct is also of typensigned_bytebut it may exceed 255. An error doeg
not occur if the result is less than 256. It issidared as activated for a result >255, becauseahexception should be
varl:unsigned_byte; thrown.
var2:unsigned_byte; Observation 10n an Intel-CISC-Architecture the result is haadinodulo 256, but no exception is thrown. Morepthes
IDF | g var3:Integer; final result as assigned to var3 may be negative.
+ a _ Explanation 1 The CISC-Processor allows byte-operations ancftie the result is modulo 256. Obviously, théustaf the
PDF -- Assignment for overflow flag was not evaluated. This leads to mare
-- varl, var2, var3 Observation 20n a Sparc-RISC-Architecture the correct resutiitained, but no exception is thrown.
Explanation 2 The RISC-Architecture always performs 32-bit @piens, therefore no overflow will occur. The coasted
var3:=Integer(varl*var2); range must be checked on software level, but olsiyauch a check is not implemented. The corresilt®f the product is
delivered, but due to the cast it remains unknowether this is an error or nétrom this perspective, a cast always shou
be considered as a potential fault.
2 type T_INTS8 is
range -128 .. 127;
for T_INT8'SIZE use 8;
type T_INT16 is
range -32768 ..32767; The essential lines are the 4 last lines. The re$ahe product M_DESC.NB * C_SUBFRAMES is platiodependent. On
for T_INT16'SIZE use 16; an ERC32/Sparc RISC architecture and Aonix complileresults are fully correct in both cases, wbailean Intel CISC
DIM1 :constant:= 80; architecture and GNAT V3.15p compiler the secomiitas -48, i.e. 720 mod 256 as signed number=@22d0, -48=0xd0
DIM2 :constant:= 10; as T_INT8. The critical point is the universal ig¢e in the constant definition. According to thanstard a universal integer
poE| Ada subtype T_NB is T_INT8 range will be converted to the type of the other operamiich is T_INT8. Therefore the result should dieoT INT8.
0..DIM2-1; On the Intel processor no exception was raisedrefoee either the multiplication operated on typgger with later maskin
type T_DESC is record of the result to one byte, only, or it was perfodnas byte-operation, but the overflow bit was igabr
NB : T_NB; As the Sparc always applies 32-bit operations,vesftow did occur. The required handling on typesnd have to be done
end record, on software level. Whether this was done remairops a matter of fact, the source code was nptdued to make it
M_DESC : T_DESC; clear.
M _DESC. NB: =0;
T_NB (M_DESC. NB * DI ML)
M _DESC. NB: =9;
T_NB (M_DESC. NB * DI ML)
3 PDF| Ada |same example as above In case of the In.tel-proceslsor and GNAT compilerdhst to T_NB oM_DESC.NB *DIM1 raised an out-of-range excepti
when the result is -48, while the previous overfigas not flagged.
4 PDE| Ad - delivers different values depending on compileresupied or needed w.r.t. to memory alignment, @895) standard
a | T'size . !
allows different understanding
5 PDE| Ada Alignment clause at range in The Ada standard does not require to make thisifeahdependent of the hardware architecture,iliscause problem
a record when porting between Little/Big Endian architecture

o
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Id | Dep. | Lang Example Comment
tc;)pnes(; ;ch:rr“f;tr{g;l slezt?)rlj e} Obvio_usly, in the declaration of vstr the termingtD of cstr was not considere_d. Therefore the_itlmimg 0 ov_errides_ the

CDF Boolean: ' following byte of bool. As bool only takes the vaiu(_) or 1 (true, fa_lse) (as defined by the contéxiyase of Big-Endian 0

6| + c void func’() { would be replaced by 0. Consequentl_y, no error \Mléoccur_on this platform. If_false wo_uld be aiged to “! True"_:

PDE char var[3]; Oxffffffff, than an error WouI(_j occur. Similarlyt is when porting the C(_)de to a Little-Endian mlatf. Then the Iegdlng byte
Boolean bc;ol' pf boql Would.be corrupted in case of true or i§&=0xffffffff (as vstr is of length 4, bool wouldirectly follow without
strcpy(vstr,cs’tr); } insertion of alignment bytes).

7 The pointer is initialised instead of the area ipointing to. Although it seems to be fully indagent in the sense that it w
char *str: lead to a failure in any ca_se,_it will be_dormafmd exceptio_n is raised. This has been observeWxtorks 5.3 /gcc2.60

CDF str:mallc')c(100)' an Intel X86 platform, while it was raised for te@me versions on the ERC32 target. Apart fromtthexe is another faul

or C str=0://should bé *str=0 missing checking of the pointer returned from mallo

PDF stré:at(str xyz"): ' It may be context-dependent for the following cdiodis: a value could be successfully stored andexetd from addres

' ' zero, then it would be dormant. If this value wobkldestroyed before reading by another illegadssto NULL, it could b
activated.
8 PDF c Li?ﬁt%r short 2=20000,b=2000.c; The result erendg, on the platform. On a Spa(cb(BZt-wiII be correct, on an Intel it may incoatedepending on the
if (c>1d){ }else {} assembler instructions generated by the compiler.
9 IDE ﬁ\(ﬁfj";err[ssllzzi]S?gsult' In this case it is obvious that an out-of-ranged'r:timn will occur. However, yvhether the fault isaljg activated still dgpends
+ C for (li,:O'i<SIZE"i++) ' on what is rgturned for arr[out-of-range]. Firstiyy access violation exception may occur, Ieacbr@terror and a failure d
CDF for G:b'j<SIZé'j++) toa pranch |n.the contrql flow. Secondly, the expé value could be retgrned if the cpntext provisiech a yalue, then the
result;arr[i +j];' fault is not activated. Thirdly, an unexpected eatould be returned, which may manifest as an amdra failure.
10 IDF C mrteftﬂrr]r?(ilﬂjt']!’/}gagu{ld be * A wrong operator is applied: ‘+’ instead of **'. lcase of i=j=2 the fault is dormant, in all otheses it is activated.
11| inde errCode=SUCCESS;
pend C /[ TEST 1l A statement inserted for test purposes was notvethdrhis prevents that the error handling brasamiered.
ent if (errCode==ERROR)




Tab. 8-2: Assessment of Fault Identification Stmats

Id Example Identification Scope I dentification Identification Effort Description
Strategy Rédiability
theory observed manual computatipn
1 if (myfunc(para)==0) ... Cov. Anal. FS de es':(;i ol yes deMeer?aé k(\)lryh low myfunc(para) may return an invariant value, leading
else ... Symb. Exec. SC rr?yfunc n/a rr?yfunc high either the then- or the else-branch never beingutzd.
if (myfunc==0) Cov. Anal. FS sure yes low low myfunc is the address of a fumctind therefore constant
2 T and not NULL, leading to the then-branch never gein
sure es low very low
else ... Sem. Anal. cu y y executed.
if (x=1 || x=2) Cov. Anal. FS sure yes mediun low x is always ae=igl leading to the else-branch never
3 else Svnt. Anal cu sure s low very low being executed. The second part of the disjundésiorever
ynt. ' y y evaluated.
#define EILE PATH “disk:/dir/” Cov. Anal. FS sure yes low low FILE_PATH is a constant pointer, but
4 |if (FILE PATH == NULLj 0O Sem. Anal./ analysis tools did not detect this fault: else-btais never
else - 0O Coﬁstantl cu sure no & low very low reached (deadcode). It seems that this a matfasiofers,
Propagation y because a comparison of constant scalars is détecte
char *fn;
void myfunc() { high / PDF . Missing initialization of fn did not cause an extiep, this
5 if ((fd = fopen(fn,”a”)) == NULL) Cov. Anal. FS + CDF yes medium low became only visible by missing coverage.
{ }
ret_value=SUCCESS; //TEST!! Cov. Anal. FS sure yes medium low
If(ret_value == ERROR)
6 |{//then-branch } Dataflow Anal. / cu sure no & medium verv low A test statement is not removed and prevents biiagich
else Const. Prop. y
{/I else-branch } Symb. Exec. SC sure n/a medium high
cantpp trcat() copies into a string at address 0 (nu
char *str=malloc(100); Dataflow Anal. CuU sure n/a medium very low strea Q copies Into a string at address (nuilhieo),
7 | str=0://should be *str=0: Geeno potentlall_y leading to a memory access fault. Tilecated
strcat(str,"xyz"); Symb. Exec. SC sure n/a medium high g}eargggslz Ig?Sk e(lia.ltﬁ)rrrl:qrj(-jtlem:nedxecriptlon related S
RT anomaly FS sure / PDF vyes medium low P P '
UINT32 itemUsed]..],cc; RT anomaly + depends of] ) Critical cast between signed and unsigned if setlte
INT32 fc; Fault Inj. FS setltem yes medium low returns -1, if e.g. the value of cc is invalid. Titee upper
8 int setltem(UINT32 cc); limit of the loop is Oxffffffff instead of -1 whiclyenerates
fc = setltem(cc); sure yes medium very low | a quasi-endless loop. Can be detected by faulttinje
itemUsed[cc] = fc; Sem. Anal. / CcuU either for cc or the return value, increasing thebpbility
for(i=1;i<itemUsed[cc];i++) Type Checking for a negative value.




Id Example Identification Scope I dentification Identification Effort Description
Strategy Rdiability
theory observed manual computatipn
File ctrllnit.c
int ctrlAn{4]={1,1,1,0} RT anomaly + FS sure / CDF es medium low
File ctrlval . c Fault Inj. + PDF y Several faults exist in this example which areiclif
' detect because the dependencies spawn across file
funcCreatePtr boundaries
(char **ptr, int ind) { )
I{ffg:rrlzé;rét[ér:gl)tr()' Firstly, always SUCCESS is returned from funcCreate
9 return SUCCEéS; Cov. Anal. FS high yes medium low |preventing branching in file ctrlExec.c.
belse return SUCCESS;  } Secondly, if the value 3 is passed, ptr remain®fineld
File ctrlExec.c causing an exception in ctrlExec.c: conditional
char *ptr=NULL; ' initialization across file boundaries.
if (ERR==funcCreatePtr(&ptr,3)) Symb. Exec SsC low / CDR n/a medium high
exit(99);
else strcpy(ptr,”xxx");
void flash(int id) { RT anomaly + high Ff DCFDF
: . FS es medium low
g\r,‘v?trcﬁtgé??]'msg[moo]’ Fault Inj Y If the value of id is invalid, str is undefined:riitional
10 case XXX: strepy(str,“defined"”); high initialization within a function.
default: // nothing } Symb. Exec. scC n/a medium high
20nitia(msg,”"msg=%s",str); }
medium /
void resetTime(int sub, RTFZEﬁTn?Iy * FS CDF yes medium low
1 |nStWi?(t:?]tl(Jssl,Jtl)r;t{act|V|ty) { depends of An invalid value of activity leads to an out-of-ggn
. ; i condition. A check is missing.
case Xz(x..exechme[actMty] Symb. Exec. sc decl. / def. n/a medium high
.tv_sec = 0;}} of
execTime
void fullName(char *path, RT anomaly + high / CDF _
char *n, char *fn){ Fault In;. FS + PDF yes medium low
12 if (path == NULL) The case fn==NULL is not considered, though itas n
20nitia(ffn,"%s",fn); high d q guaranteed.
else Symb. Exec. ScC n/a medium | “€Penason
20nitia(ffn,"%s/%s",path,fn);} callers
RT anomaly + FS high / CDF es medium low
void loadDB(int thl, int id) { Fault Inj. + PDF Y An invalid value of id may cause memory corruptién.
13 eleml[id]:elemZ[tt;I]'} depends of depends on|invalid value of id may cause an access violation
' Symb. Exec. SC | decl. / def. n/a medium | decl. / def. of| exception.
of eleml eleml and




Id Example Identification Scope I dentification Identification Effort Description
Strategy Rdiability
theory observed manual computatipn
and elem2 elem2
ize * ize = . RT anomaly + high / CDF .
!? ?rgejtljzlgﬁfg‘ztilﬁzfet ML Fault Inj. FS + PDF yes medium low | getSize is initialized with NULL, this value is psasi to
14 | (void¥)getSize,sizeof(long)) Datafiow Anal _ readBuf, but it cannot be changed. If ERROR is not
== ERROR) {...} Const. Prop. CuU sure no & medium very low |returned, the else-branch will crash.
o L
else{ size="getSize;} Symb. Exec. SC sure n/a medium medium
int Day(time_t zeit_t) .
{ struct tm *zeit; RTFgﬂﬁTna.‘ly * FS h'%thDCFDF yes medium low
zeit = (struct tm *)localtime - If localtime returns NULL in case of lack of memaryan
15 | ((const time_t *)(&zeit_t)); invalid input, a crash will occur when executing tieturn.
if(zeit==NULL) This can be enforced by fault injection.
printf(“no conversion\n”); Symb. Exec. SC sure n/a medium medium
return zeit->tm_mday; }
File fault.h
void verifyFault(int ind);
void handleFault(int ind);
RT anomaly + .
File verify.c Fault Inj. FS sure yes medium low
ig;glsgﬁf;%ulﬁtlzzt ind) { Recursive call of handleFault across file boundarie
16 | switch (ind) { Rarely execution of fault handling part. Enforced
Default: hand.l.éllzléult(ind)'} } execution by fault injection for ind as parameter o
' ' handleFault.
File verify.c
#include <faulth> Symb. Exec. scC high n/a medium high
void handleFault(int ind) {
switch (ind) { .......
Default: verifyFault(ind);}
typedef struct TyMsg { RT anomaly + high / CDF
int msgLen; It Ini FS yes medium low Implicit lation of contents of Datalo] ahe
char msgData[100]; } Fault Inj. + PDF mplicit correlation of contents of msgDa a[0]

17 | TyMsg Msg: char buf[100]; actual length of msgData assuming that both are
getMsg(&Még)' ’ compliant,but may not. Enforcing non-complianceféayit
memcpy(buf,Msg.&msgData[1], Symb. Exec. SC medium n/a medium high Injection.

Msg.msgData[0]);
inti,j; Dataflow. Anal. CU sure yes mediumny very low Usetbbedefined

18 | printf(“Bit:%d\n”, DBIi].Id[j]. Bit) RT anomaly FS high / CDF yes medium low Variable undefined when being used, possibly ilial to

; + PDF 0




Id Example Identification Scope I dentification Identification Effort Description
Strategy Rdiability
theory observed manual computatipn
typedef enum {EMPTY,FULL}STATE; enumerated type mixed with another type
int create(int flag, STATE state); Sem. Anal. / args turned around
19 lint id; Type Checking cu sure yes low low W?ong literal
id=create(EMPTY,0xffO0ff00);
Link error: multiple symbols
File nyFilel.c Linker Checks no é The C standard tolerates multiple declaration ¢d déhen
int multiDecl; they are not initialized. In this case all symbais mapped
20 |File nyFile2.c onto the same address.
int multiDecl; When initialization is combined with the declaratiat one
DCRTT analysis yes location at least, the compiler flags an error.
FS sure high low In case of unini}ialized deqlara}tipns a missing@sﬂeey
word — though intended — is difficult to detectigmay
File nyFilel.c Linker Checks yes cause undesired_interference of presumably indegrend
int multiDecl=0; data and unpredictable results.
21 |File nyFile2.c Such a potential fault is flagged during automatic
int multiDecl; . generation of the test environment by DCRTT.
DCRTT analysis yes
22 |int actl[4] = {0,1,0,0,1,1}; Sem. Anal. Cu sure yes low very low Iznchq3|§tency between data declaration and its
nitialization.
Tab. 8-3: Fault Types vs. Optimum Strategy andtgdtound
Static Analysis Detectiolr::)ll\l/lqzt:i(fdAnaJySStii;ulation st(?:iscerv:/:::llit:
# Fault Type Fault Sub-Type Synta>_< Semant'ic Dataflqw Symbqlic Anqma!y Coverage Data | Other min | max
Analysis | Analysis | Analysis | Execution Monitoring | Analysis
1. |Uninitialized data Index T s e 3 3
2. Branch-dependent initialization S E 3 3
3. Missing initialization of strings + pointer X S E 1 1
4. Missing initialization of static data (s) E 1 1
5. |Range exceeded String (terminating 0 not countetéfgyth) (s) R P 1 1
6. Index/pointer out-of-range after loop S E 1 1
7. Index out-of-range s E i 13 | 13
8. |Malformed logical expressions Assignment insteadoohparison OoT (s) bm 9
9. Logical expression of scalars is constant T m b 1 1
10 Logical expression of pointers is constant X S B M 2 2
11{De-referenced illegal ptr NULL-ptr, ptr->elem affenction returning (s) E @) 6 6
NULL
12 NULL assignment and dereference in branch X S E 1 1




Static Analysis

Dynamic Analysis

Observed Faults

# Fault Type Fault Sub-Type _ _ Detection M ethod Stimulation |f|static | dynamic
Synta>_< Semant'|c Dataflqw Symbqllc Anqma!y Coverage Data | Other min | max
Analysis | Analysis | Analysis | Execution Monitoring | Analysis

13 Corrupted or non-initialized pointer (I=NULL) sX E 1 1

14 NULL dereference (s) E 1 1

15{Pointer arithmetic arithmetic on void or functiooimpter T 29

16 Cast between ptr and int over a number of stifjes (x) (s) E 1 1

17|Data declarations Inconsistency between declaramohextern D 2

18|Data consistency Missing range check S E [ 1 1

19 Missing type in data declaration C 2

20{Mixed type expression Wrong enum literal out ofafiént set T 3

21 Mixing signed and unsigned by a cast T s 14

22 Implicit mixed signed and unsigned expressi D E 3 3

23|Test code not removed BM 1 1

24{Macro One stmt expanded to two stmt (if, while) for (C) b 1 1

25{Unclear semantics, checks on  |Missing correlation between array and array s E i 3 3

correctness impossible length

26 Unchecked conversion of data s E i 1 1

27 Missing correlation of data s E i 1 1

28{Unreachable Code Code following endless loop T s K b 10 10

29 Combinations of return and break following T s b 47 47

each other

30 code following return (uncond.) T s b 2 2

31 code following break T s b 2 2

32 return following exit Ct s b 2 2

33 ; following } T L

34{Missing return for non-void Ct 18

35/Non-terminating recursive calls Function callslitse (s) K | 1 1

36 Recursion after a number of function calls (s) K I 1 1

37{Format %s and int Ct (s) e 1 1

38 Too many arguments Ct s 1

39 Too few arguments Ct s 1

40/Duplicate symbol Data declaration in h-file (LD 47

41 Multiple data declaration in c-file (L)yD 3

42/Incompatible types in assignment]  Inconsistent fongpointer T 3

43!Incompatible parameter lists and |Function return type Ct 6

function declaration
44 Parameter type mix (declaration and call) Ct 2
45 Mismatch of parameter count D 1




Static Analysis

Dynamic Analysis

Observed Faults

# Fault Type Fault Sub-Type _ _ Detection M ethod Stimulation |f|static | dynamic
Syntax | Semantic | Dataflow Symbolic Anomaly | Coverage Dat Oth .
Analysis | Analysis | Analysis | Execution Monitoring | Analysis aa e min | max

46/Missing includes Missing declarations C Ct I

47/Name overloading Struct and data name D 57

48!Decisions Too large list of decisions D 1

49{Total fault types 48

50 Total faults, observed 314 270 |44 | 122

51 without DCRTT contribution to static analyd 159 |44 | 122

52 abs, min 2 18 2 20

53/Total fault types covered abs. max 3 18 6 30 Gray cells in

'—|contribution from “classical” static — col. “min” above:

54 analysis tools, only %, min|fi 4,17 37.5 4,17 41,67 this fault type was

55 %, max 6,25 37,5 12,5 62,5 only covered by

56 abs, min 7 19 2 dynartmctfinalysis/
estin

157{Total fault types covered abs, max 7 21 10 9

icontribution from DCRTT, only %, min 14,58 39,58 4,17

59 %, max 14,58 42,86 20,83

160, abs, min 2 25 2 20 19 2 9 1 Gray numbers

611 Total fault types covered abs, max 3 25 6 30 21 10 represent valu_es

62jall contributions %, min(ll 417 | 5208 | 417 41,67 39,58 | 417 which are identical

s 0, Min ; ; ; ; ; ) with values in

63 %, max 6,25 51,02 12,5 62,5 42,86 20,83 previous lines.

164 abs, min 3 152 4 85

65, Total faults covered abs. max 4 152 9 121

—~~|contribution from “classical” static —

@analysis tools, only %, min 0,96 48,41 1,27 27,07

67 %, max 1,27 48,41 2,87 38,54

168, abs, min 111 41 3 27

69{Total faults covered abs, max 111 45 77 27

Econtribution from DCRTT, only %, min 35,35 13,06 0,96

71 %, max 35,35 14,33 24,52

72 abs, min 3 263 4 85 41 3 27

73{Total faults covered abs, max 4 263 9 121 45 77 27

74{all contributions %, min 0,96 83,76 1,27 27,07 13,06 0,96

75 %, max 1,27 83,76 2,87 38,54 14,33 24,52
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Fig. 8-1: Fault Coverage vs. Methods and Tools
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