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ABSTRACT: 

Various strategies for fault identification exist – e.g. 
based on formal analysis of code or on testing – of 
which each focuses on certain identification aspects and 
fault types. This paper characterises the strengths and 
weaknesses of methods – in theory and practice – 
focusing on application-independent identification 
strategies, and it suggests strategies to maximise the 
number of detected faults while minimising the related 
effort. Fault activation conditions are discussed in 
detail, resulting in an extended scope on stimulation 
needs. In particular, the contribution of automation in 
raising the activation probabilities is investigated. 
Various examples of fault activation mechanisms and 
statistics on fault types vs. identification methods are 
provided as observed in practice. An interesting result is 
the identification of application-dependent test cases by 
application-independent test strategies. 

1 INTRODUCTION 

The ultimate goal of fault identification as understood in 
this paper is to maximise the number of observable 
faults at minimum effort. This intention implies  
identification of faults even though they may be 
dormant under some conditions or in the current 
operational context of a software system (depending on 
a platform, mission configuration, etc.). In this respect, 
this goal is fully in-line with the goal of ISVV, 
Independent Software Verification and Validation. 

To succeed for this ultimate goal the mechanisms of 
fault activation and fault hiding must be known, so that 
measures can be taken to minimise the number of 
dormant faults. Once the required mechanisms are 
known, the efficiency and reliability of identification 
strategies have to be considered. A number of examples 
is provided to explain the identified mechanisms of fault 
hiding and how they are addressed by automation. 
Finally, statistics on observed fault types, their 
activation conditions and the efficiency of identification 
(fault presence vs. identification in practice) are 
presented. 

In Chapter 2 we introduce a terminology of faults and 
fault activation to get a baseline for the following 
discussions. In Chapter 3 we introduce the considered 
fault identification strategies and analyse for which fault 
types they are sensitive. In Chapter 4 we present 
representative examples for the various fault types and 

evaluate the sensitivity of a strategy. Finally, 
conclusions are provided in Chapter 5. 

Larger tables have been moved to the appendix (Chapter 
8).  

2 CLARIFICATION OF TERMS 

For understanding of the strategies a clarification is 
needed for the terms fault, error and failure as used in 
the context of software. Various definitions of these 
terms exist, e.g. by ISO/IEC [1], IEEE [2], DO178B [3], 
which are using the same term for different things or in 
a different interpretation. 

2.1 Application-Independent Fault 
Identification Strategies 

First of all, we introduce the term “application-
independent fault identification strategy”. In our 
understanding such a strategy allows to identify a fault 
without requiring specific knowledge on the application 
like a result of a calculation. Consequently, we are 
looking on strategies which are based on violation of 
syntactic, semantic or other rules or on occurrence of 
symptoms like exceptions raised when a fault is 
activated. 

2.2 Fault, Error, Failure 

While DO178B uses the sequence “error → fault → 
failure” to describe the source of an anomaly and its 
consequences, ISO/IEC and IEEE consider instead 
“fault → error → failure” to describe the same effects.  

The term anomaly is used here whenever we do not 
want to distinguish between fault, error and failure. 

In this respect our definition of these terms is: 

• a fault is related to violation of a certain rule, which 
may have an impact on the quality-of-service 
(QoS), 
example:  potential for index out-of-range 

• an error is the manifestation of a fault, i.e. when a 
violation of the rule does occur, which may have 
an  impact on the quality of service, 
example: the index actually is out-of-range 

• a failure is the manifestation of a  reduction of QoS. 
example: an exception caused by the error (like 
“access violation”) prevents execution of the 
service. 
example: out-of-range and result is really faulty. 



 
 

  

An anticipated fault is a fault for which the possibility 
of its occurrence is known in advance. A non-
anticipated fault is a fault which is raised unexpectedly. 

In order to understand the mechanisms by which faults 
may hide, more terms related to occurrence of faults 
need to be considered. 

2.3 Occurring vs.  Detected 

The terms occurring and detected address different 
points of fault identification. A fault may occur during 
execution of the code (at run-time), while a fault may be 
detected during execution at run-time or by analysis at 
pre-run-time or at post-run-time. Detection implies 
presence of a fault, and occurrence is a necessary, but 
not a sufficient condition for detection. 

2.4 Fix it or Forget It? 

We are taking the term occurring where usually 
detected is used. When a fault occurs, i.e. the violation 
of a rule actually occurs, it might not be detected, 
especially if it does not manifest as a failure. Even a 
failure might occur without being detected, because the 
QoS is not or cannot be checked in this situation.  

The essential question is whether we should only care 
about detected faults, errors or failures or about 
occurring ones and even such which do not occur at all 
under the actual conditions, but still have the potential 
to occur. Consequently, shall we adopt the following 
argument? “If nobody is able to detect an anomaly in 
terms of a reduced QoS, it is not a violation of a 
contract at all”. 

As we will see later, the decision, whether such a fault 
can be ignored, cannot be made before the activation 
condition of the fault is really known. Therefore deeper 
knowledge about the fault is required. However, from a 
rigorous point of view, any chance needs to be taken to 
identify faults. 

In consequence, our understanding is, that all shapes of 
a fault, “non-occurring, but having a potential to 
occur”, “occurring” and “detected” faults must be 
considered for fault identification. Therefore we will 
discuss in detail how faults can be activated and/or 
detected, which  

• may occur only, i.e. the violation of a rule happens, 
but they are not detected or detectable, or 

• even may or can not occur under typical conditions, 
but are present in the code and have a potential for 
activation. 

As an example, a quality check may be done, but the 
reduced quality may be not recognised  because the 
feedback to the test engineer is too complex to be 
properly interpreted. 

The answer to above question heavily impacts the 
strategies to be applied for fault identification. Our 
position is: an anomaly which may occur must be 
subject of an identification strategy aiming to fix it. 

Therefore it is not sufficient to look for errors or even 
failures only, but for faults as such. As detection of a 
fault is strongly related to fault activation, we will detail 
this discussion in the following section about activated 
and dormant faults. 

2.5 Dormant and Activated 

Apart from the definition of fault, error, failure another 
issue is related to the terms “dormant” and “activated” 
when being associated with fault and error. The use of 
these terms becomes even more complicated when the 
whole chain from higher abstraction level (model, 
programming language) down to execution of the binary 
code on a processor is considered. 

The common understanding is that  

• the terms activated and dormant are complementary 
to each other in the sense: a fault, which is not 
activated, is dormant. 

• a fault is activated when it manifests to an error. 

This is not very precise regarding the term “activation”. 
Activation requires a condition for activation, the 
“activation condition”. Following above understanding 
on dormant and activated, it remains unclear what an 
activation condition really is. If an index is actually out-
of-range, is this understood as the activation condition, 
even if there is no impact on QoS, at all? Therefore a 
deeper investigation on activation conditions is needed. 

We have observed curious situations like  

1. a fault in the source code is masked by a compiler 
or by the processor architecture (examples 2 and 3 
in Tab.  8-1 below),  

2. a fault is introduced by the transformation process 
(in case of models), a compiler, the processor’s 
architecture and/or resource utilisation (examples 
4 and 5, Tab.  8-1), 

3. a fault is masked in the execution context 
depending on memory or stack allocation or the 
status of the execution environment, in general 
(examples 6 – 8, Tab.  8-1). 

Depending on the scope considered for the anomaly, it 
may be concluded that  

• an anomaly is present or not, in the sense there is 
fault potential or not,  

• it is dormant (it cannot occur under given 
circumstances) or activated (then there is possibly a 
chance to detect it) depending on conditions 
unknown in most cases before the anomaly is 
detected. 



 
 

  

In cases 1 and 2 above we are talking about a “platform-
dependent anomaly” where platform is a synonym for 
model transformer, compiler, operating system, test 
conditions and/or hardware architecture, and in case 3 
about a “context-dependent anomaly” where context 
stands for any item impacting the activation conditions 
(at run-time) on a given platform. 

The term dependent indicates that the basic activation 
condition of a fault may be biased by another condition. 
The basic activation condition for an out-of-range fault 
is that the value is actually out-of-range. However – as 
we can see in example 6 of Tab.  8-1 – this is a 
necessary condition for fault activation, but may be not 
sufficient – because the QoS may be not compromised. 

When considering the source code only 

• in Case 1, ignoring the full scope down to execution 
of the binary format, a fault would be considered as 
present, while in the binary format or during 
execution it has vanished: no fault potential 
anymore. Such a fault we call dormant w.r.t. the 
platform or a platform-dependent fault (PDF), 
because the activation condition depends on the 
platform. 

• in Case 2, a fault is not present in the source code, 
but in the binary format and the service of the 
system could be affected. In consequence, such a 
fault cannot be detected by source code analysis 
only. It is a PDF, too: a fault is added by a 
platform and the engineer does not know about it. 

• in Case 3, a fault would be present, but would not 
compromise the service during any operational or 
test condition, unless the memory structure or the 
execution environment are modified e.g. during 
maintenance. Such a fault we call dormant w.r.t. 
the context or a context-dependent fault (CDF). In 
this sense missing a deadline would be classified as 
an CDF, i.e. the activation condition depends on 
the context “CPU-power” or “CPU-time 
consumption”. 

These two activation dependencies (PDF and CDF) 
have to be considered together with more basic 
activation conditions which we call – following the 
terminology of dependencies: 

• input-dependency 
i.e. a fault is related to incoming data, 
and the related fault type is an input-dependent fault 
(IDF) 
example: index out-of-range 

• resource-dependency 
i.e. a fault is related to lack of resources like 
memory, stack, CPU-power,  
and the related fault type is a resource-dependent 
fault (RDF), 

• event dependency 

i.e. a fault depends on external events like a 
hardware fault or it is raised by software, e.g. by a 
fault handling part or fault propagation, 
and the related fault type is event-dependent or an 
event-dependent fault (EDF). 

We take the term input here instead of data to 
distinguish between data which are essential to obtain a 
result, e.g. for execution of an algorithm – the input 
data, and data of the context, e.g. data which are not 
used during the calculation, but which may impact the 
activation condition. 

The following examples E1, E2, E3 and E4 discuss the 
fault potential of an IDF w.r.t. the information available 
to prove absence of an IDF, i.e. the scope considered for 
a proof: 

 

 

 

 

 

 

 

 

 

 

 

 

 

In E1 very clearly there is no fault in the code at all, 
regarding data corruption. The index is – usually – 
stored in a register, no way to activate the fault, except 
we do take into account a processor, compiler or 
assembler fault. 

In E2 the situation is similar – at first glance. However, 
from a rigorous point of view there is a fault potential 
by software: the contents of i and j could be destroyed at 
run-time. E.g. we have observed that even a base pointer 
– stored outside the scope of a function – may be 
corrupted, manifesting as a Heisenbug. 

In E3 – very clearly – there is fault potential, because it 
cannot be proven – in the scope of function myFunc –  
that the sum of i and j will really be in the range 0 .. 
499. 

The following cases are possible when the fault is 
activated by the basic condition (IDF) for E3: 

• an access violation occurs, the fault occurs and may 
be detected by a raised exception, 

E3: 
int myFunc(int i, int j) { 
 int arr[500]; 
 return arr[i+j];        } 
 

E4: 
int callee(int i, int j) { 
 int arr[500]; 
 return arr[i+j];        } 
 
void caller()            { 
 int i=5,j=7,k; 
 k=callee(i,j);          } 

E2: 
const int i=5,j=7; 
int arr[500]; 
k=arr[i+j];  

E1: 
int arr[500]; 
k=arr[5+7];  



 
 

  

• no address violation exception occurs, the address 
of arr[index out-of-range] may point to a value 
which is different from what is expected: the fault 
occurs and may be detected, 

• no address violation exception occurs, the address 
of arr[index out-of-range] may point to a value 
which is identical with what is expected: the fault 
remains undetected regarding QoS, no way to 
detect it due to a reduced QoS. However, it may be 
detected by dataflow analysis, considering a larger 
scope or by a changed data context. 

E4 is similar to E2 – in principle. Whether there is a 
fault potential in E4 depends on the scope. Considering 
the scope of the caller and the callee, there is no fault 
potential – apart from potential impacts by the context 
or the platform as discussed for E1 and E2. However, 
this – positive – conclusion is just a snapshot, because 
the proof is context-dependent: if by maintenance the 
situation in the caller changes, the proof may no longer 
hold. Therefore – from a rigorous point of view – there 
is a fault potential for callee – even when for the 
moment it can be ruled out. But it does exist regarding 
the full lifecycle of the software, and this cannot / must 
not be ignored. 

The essential fact is that the assumptions which a proof 
depends on are usually not known. A formal analyser, 
e.g., can detect an out-of-range condition as being 
impossible. However, it does not list the assumptions on 
which this decision is based, and therefore it remains 
unknown whether after maintenance the proof is still 
valid. Consequently, the analysis must be repeated after 
any – even the smallest – modification. This conclusion 
is also true for reuse. 

From a rigorous point of view, a proof on function-level 
by stimulation that an out-of-range will not cause a 
failure, is much safer and more rigorous than a proof on 
system level considering operational values, only. 

The behaviour of the code at run-time in E3 could be 
made deterministic, i.e. detectable, as shown in E3.1 – 
provided an error handler is implemented on the level of 
the caller. 

 

 

 

 

 

 

While for E3 it is unknown which value is returned 
when the fault is activated and – probably unknown – 
whether it is in the valid range or not, in E3.1 there is a 
convention to flag the error, so that it can be detected 

easily before it becomes critical (assuming that -1 does 
not overlap with any contents of arr). The activation 
condition is very clearly fixed, there is no platform- or 
context-dependency yielding a dormant fault or a non-
detectable error. 

Exceptions can be a better alternative in languages 
supporting them – such as Java, C++ or Ada – as they 
clearly occur outside of the normal function interface, 
while the error value might be ignored by a caller. 

3 FAULT IDENTIFICATION STRATEGIES 

To understand the required fault identification strategies 
we need knowledge about  

• the activation conditions of faults, 

• the principal strategies and their potential to detect 
faults – in theory and practice, and 

• the fault-detection efficiency of a strategy. 

These three aspects will be considered in this chapter. 

The selected examples have been collected from three 
projects (Tab.  3-1): 

• two Ada projects of Cat. A and C, after completion 
of normal tests and ISVV, 

• one C project of Cat. C, after operation. 

Lang. Cat. K Lines KLOC Functions 
Ada A 71 18 808 
Ada C 900 430 5500 
C C 48 40 765 

Tab.  3-1: Analysed Projects 

The examples are representative for the fault types only, 
the original code is not shown. 

The analysis and test of the code as reported in this 
paper were executed after all usual fault identification 
methods (analyses, test, reviews) had been performed. 

For the Ada projects examples on complex activation 
conditions only are given in Tab.  8-1 and Tab.  8-2, 
while more details will be presented for the C project in 
Chapter 4. 

3.1 Fault Activation Conditions 

Tab.  8-1 gives a number of examples for IDF, CDF and 
PDF activation conditions and their combinations 
collected from the three projects. The representative 
source code is provided as far as needed for 
understanding of the activation condition. The 
activation dependency is explained in the last column. 

3.2 Fault Identification Strategies 

Tab.  3-3 lists the considered strategies for fault 
identification and describes how a fault can be identified 
by a certain strategy. For each strategy examples of 

E3.1: 
#define ERROR  -1 
int myFunc(int i, int j) { 
int k,arr[500]; 
k=i+j; 
if (k<0 || k>499) 
  k= ERROR; 
else 
  k=arr[i+j]; 
return k;                } 



 
 

  

faults are provided which can be – theoretically – 
identified by it. 

The following strategies have been considered (for 
details see Ch. 3.3): 

• strategies based on static analysis 

• strategies based on symptoms and dynamic 
analysis. 

To increase the probability of fault detection, testing 
was combined with fault injection and platform 
diversification. 

For static analysis of the C code the gcc compiler 3.2.3 
and Cantata++ (cantpp) [4] were used. i.e. syntactic, 
semantic and dataflow analysis, but not symbolic 
execution which is supported e.g. by the PolySpace tool 
[5]. For dynamic analysis (auto-testing) the DARTT 
(Ada) [6] and the DCRTT (C) [7] tools were applied. 
Tab.  3-2 gives the mapping between the considered 
methods and applied tools. 

Detailed results are presented in Chapter 4 for the C 
project.

 

Tool  

Method  

Static Analysis  Dynamic Analysis  
Auto-Testing  

syntax  semantic  dataflow  
symbolic 
execution  

anomaly 
monitoring  

coverage 
evaluation  

static  

gcc compiler  ××××  ××××  ××××     

gcc linker  
 ××××      

Cantata++  
 ××××  ××××     

theoretically  
   ××××    

dynamic / 
auto-testing  

DCRTT  
 ××××    ××××  ××××  

Tab.  3-2: Coverage of Methods by Tools 
3.3 Assessment of Strategies 

Tab.  8-2 discusses the efficiency of each of the 
strategies for the collected examples and the observed 
fault types: 

• static analysis 
o syntactic analysis 
o semantic analysis 
o dataflow analysis 
o symbolic execution 

• dynamic, symptom-based analysis 
o analysis of run-time anomalies 

testing, possibly extended by fault injection and 
platform diversification 

o coverage analysis 

Symbolic execution was not applied, theoretical 
conclusions are made only. 

If a strategy is not listed for a certain fault type, the fault 
type cannot be detected by it. 

The following criteria are considered for the 
assessments: 

• the reliability to detect a fault, theoretically and in 
practice, 

• the manual and computational effort needed to 
detect and localize a fault. 

The two principal categories of fault identification as 
discussed in Ch. 3.2 are 

• execution-independent (incl. symbolic execution), 
mainly based on code analysis, and 

• execution-dependent, i.e. testing, fault injection, 
platform and context diversification incl. 
evaluation of results at post-run-time. 

Clearly, testing is not a method by which all faults can 
be identified [8]. 

Execution-independent methods are based on formal 
rules, an aspect which seems to make them superior to 
testing. However, this is the theoretical point of view. In 
practice, they may be less reliable than expected 
depending on the fault type in question for the following 
reasons: 

• the analysis cannot be completed due to lack of 
computation time and/or disk and/or memory 
resources, 

• a clear decision in the sense of green (no fault) and 
red (clearly a fault) cannot be derived, 

• the tool itself may be subject to faults to some 
degree and suggests a wrong decision. 

The first two reasons depend on the fault type and the 
complexity of the context: when information is needed 
across compilation units (files in C, packages in Ada) it 
may be difficult to derive a useful result in practice. To 
compensate the possibility of a fault in the tool, an 
independent tool should be used (tool diversification). 



 
 

  

This may also provide a clear or clearer hint on a “fault / 
no fault” suggestion. The probability that a fault in such 
a tool suggests a wrong conclusion increases with the 
complexity of the context it has to consider. 

Specific consideration is needed for automatic detection 
of a fault by testing. Testing can be divided into two 
principal test purposes: evaluation of test results based 
on 

• application-dependent information, 

• information for fault identification which is valid 
for every application. 

In the second case automated detection of an activated 
fault is possible when its manifestation by symptoms can 
be observed automatically at run-time or evaluated at 
post-run-time, like exceptions, aborts, deadlocks, 
livelocks or specific messages and insufficient 
coverage.  

Detection of faults by coverage analysis requires fixing 
of all other faults before being efficient. Otherwise, 
curious coverage figures may be a matter of exceptions, 
aborts etc. 

3.3.1 Required Manual Effort 

From the perspective of identification an essential point 
is the effort needed to find the critical location in the 
code and the raising condition. Execution-independent 
methods like semantic and dataflow analysis often 
immediately point to such a location and report the 
reason very clearly  due to the direct relationship 
between code and fault. When symptoms are observed 
the location of fault occurrence can be identified in most 
cases, but not the reason directly.  

Finding the reason requires usually manual analysis of 
the context. Symbolic execution also reports more on 
symptoms of a fault (range exceeded, division-by-zero) 
rather than on the source of a fault (where an extended 
range comes from). Therefore the identification effort of 
symbolic execution tends to be higher than for the other 
static analysis strategies and is comparable with 
identification effort of dynamic analysis strategies. 

Though some faults can be detected by both, execution-
dependent and execution-independent, methods, above 
conclusions suggest that it may be more efficient to start 
finding by execution-independent methods – as far as 
possible. 

Consequently, execution-independent method should be 
applied prior to execution-dependent methods (dynamic 
analysis, symbolic execution). This will decrease the 
manual effort required for fault fixing. 

3.3.2 Non-Anticipated Faults 

All static analysis methods apply rules to identify faults, 
which implies they only can detect anticipated fault 

types. Identification methods based on symptoms like 
exceptions do not need to know a certain fault type prior 
to its manifestation, i.e. they do cover non-anticipated 
faults. They are just looking for the consequences – 
provided they can be observed. Therefore there is a 
good chance to detect such faults by symptoms. Last, 
but not least, symptom-based strategies are the only 
ones which can identify PDF and CDF. 

The evaluation figures as provided in Chapter 4 do 
support these considerations. 

3.3.3 Enforcing Fault Activation 

Certain strategies – like fault injection, platform 
diversity and variation of the context – can increase the 
probability of fault activation which is only a matter of 
execution-dependent identification methods.  

When aiming to demonstrate correctness (per test case), 
a representative (execution) environment is required. 
However,  such an environment is not a pre-condition 
for fault identification.  In latter case everything is 
allowed which helps to catch a fault. Consequently, all 
strategies useful to activate a fault are allowed and 
strongly recommended: fault injection, platform 
diversification, variation of the context. Several fault 
identification strategies may be combined like fault 
injection with platform diversification. We have 
experienced that porting the code to another platform 
and running it under changed conditions like emulation 
of hardware or another operating system is rather useful 
to detect – specifically non-anticipated – faults which 
cannot be detected at all on the original platform. 

Automation – either to support platform diversification 
by auto-porting of the code or to stimulate the software-
under-test over a – possibly huge – valid and invalid 
input domain – turned out as a pre-condition to 
efficiently raise the activation probabilities to a level 
which make the symptoms observable within a 
reasonable period of (execution / test) time. 

3.3.4 Automatic Identification of Test Cases 

The combination of automatic stimulation and 
automatic evaluation of test coverage (block and 
decision coverage/ MC/DC) allows the identification of 
application-dependent test cases by application-
independent test and analysis methods. 

 



 
 

  

 
Fault Ident. Strat. Activity for Detection or Activation Fault Manifestation Source of Fault (non-exhaustive list) 

Syntactic Analysis Code analysis based on syntactic rules. Rules may 
extend beyond normal language syntax scope. 

error or warning, compilation abort syntax error, multiple data declaration 
= instead of == in condition, which usually is not a syntax error  

Semantic Analysis Code analysis based on local semantic consistency rules. 
Rules may extend beyond normal language semantic 
scope. 

error or warning message, compilation 
abort 

assignment to constant field (warning or error) 
invalid types in assignment (warning or error) 
missing variable declaration (error) 
inconsistent interfaces (error) 
inconsistent declarations (error) 
types too small/big for used range (warning) 

Dataflow Analysis Code analysis detecting relations between definitions of 
data items and their reached uses. Can be combined with 
constant value propagation. 

warning message unused assignment 
missing initialisation/assignment 
use of wrong source/target variables 

Symbolic Execution State transition equations are constructed based on 
control flow. Presence and/or absence of some types of 
faults can be deduced for some or all possible states. 

error or warning message out-of-range 
dead code 
critical casts 
de-referenced NULL pointer 
numerical exceptions 
memory access outside allocated range 
memory leak 

Stimulation variation of parameter und heap data within valid range 
only 

exception, abort, lock uninitialized data 
deadlocks and livelocks 
out-of-range 
critical casts 
de-referenced NULL pointer 
numerical  exceptions 

Stimulation 
+ 
Fault Injection 

variation of Parameter and Heap-Data within valid and 
invalid range 

exception, abort, lock missing protection against invalid data (out-of-range) 
faults in fault handling code 

corruption of return values exception, abort, lock missing protection against invalid data (out-of-range) 
missing check on returned NULL-pointer 
critical casts 
out-of-range 
faults in fault handling code  
missing protection against fault propagation 

Range Checks type range monitoring (DCRTT support) DCRTT msg. out-of-range 
Checks on memory 
corruption 

Check on corruption of mallocated memory DCRTT msg. change of data outside the portion of allocated memory 

Platform 
diversification 

variation of OS, processor, compiler or memory 
allocation 

exceptions,  
compiler messages, DCRTT msg. 

unused variables 
uninitialized data 
data corruption without raising an exception 
unsupported exceptions (like suppressed FPE) 

Coverage Analysis of identified functions with coverage<100% 
and manual analysis of function code 

coverage figures<100%  and red-coloured 
parts in graphics (DCRTT) 

dead code 
faults in logical expressions, undetected by pre-run-time tools 

Tab.  3-3: Fault Identification Strategies vs. Fault Types



 
 

  

The mechanism applied by DCRTT (called “Test Case 
Filtering”) is straightforward once the capabilities of 
automatic stimulation and coverage evaluation at run-
time are available: 

1. define an upper limit on the number of 
executions after which an item is considered as 
“covered” (usually 1), 

2. whenever a non-covered item (block or 
decision item) is entered in accordance with (1) 
above, record the corresponding inputs, outputs 
and other relevant data, 

3. generate test drivers from such data for later 
regressions tests or tests on a target with 
resource constraints, which 

a. stimulate the function-under-test with 
test inputs, 

b. compare the recorded against the 
actual outputs. 

4. confirm manually the correspondence between 
filtered inputs and outputs (proof of 
correctness) and thereby upgrade the 
automatically recorded inputs to test cases. If 
an output is faulty, correct the code and repeat 
the automatic stimulation until the outputs are 
correct. 

Usually, test cases are derived from the specification. 
Therefore the approach described above seems to be 
non-compliant with standards – on the first glance. 
However, upgrading from test inputs to test cases 
implies a check against the specification. Consequently, 
the verification procedure is changed, while the 
verification result is the same: 

• while usually the correct result (together with 
test inputs) is derived from the specification 
and is considered as reference for the 
correctness of the test output,  

• in case of test case filtering the recorded input 
comes first, and the derivation of the correct 
output for the given input from the 
specification comes after, including checking 
of the coverage of the specification by the 
automatically identified test cases. 

Another advantage of test case filtering is that it already 
considers the code, and provides test cases which never 
can be explicitly derived from a specification, because 
they are a matter of non-functional requirements on 
quality, safety, reliability etc. Such requirements 
otherwise would have to be applied to each piece of the 
code manually, then leading to additional code and test 
cases e.g. to check on proper fault handling. While such 
manual identification of test cases is rather tedious and 
error-prone, it is straightforward for automatic 
stimulation and does not require any manual effort. 

Moreover, the filtered test cases are application-
dependent, but were detected by an application-
independent identification strategy. 

3.3.5 Explanation of Assessment Terms 

The following terms are used to characterise the 
identification capability of a strategy for a certain fault 
type in Tab.  8-2. 

 (as symbolic execution was not applied, only 
theoretical considerations are possible in this case): 

• Scope of analysis 
� CU 

compilation unit + interface files 

� SC 
required source code down to given level of call 
hierarchy 

� FS 
required (full) scope over all levels + execution 
environment, from function-under-test incl. all 
further callees 

• identification reliability 

o theoretical 
assessment based on theoretical considerations 
�  medium, high, sure and capability to identify a 

CDF or PDF. 

CDF and/or PDF require support for fault 
activation. A strategy not providing this support 
will most probably not identify this fault. 

� medium 
the fault may be detected 

� high 
good chance to detect the fault 

� sure 
the fault will be detected in any case 

o observed 
assessment based on practical observations 

� n/a 
not applied in practice 

� yes 
the strategy identified such a fault type once, at 
least 

� no 
the strategy did not identify such a fault type 
although present and identification was 
expected 

• identification effort 
o manual 

the effort needed to identify the source of the 
fault 

� low 
the issued message directly points to the source 
of the fault 

� medium 



 
 

  

the message points to a location in the source 
code, and the context has to be analysed 
manually 

� high 
the message points to a location in the source 
code. Detailed manual analysis is required, 
possibly across boundaries of functions and 
compilation units 

o computational 

the computational time needed until a tool reports 
a fault or a symptom 
� very low 

range of seconds or lower 
� low 

range of minutes 

� medium 
range of hours 

� high 
range of dozens of hours or days. 

3.3.6 Assessment Conclusions 

The following compile options were used for the static 
analysis tools: 

� gcc 
-Wall -Wunreachable-code -Wmissing-noreturn      
-Wfloat-equal -Wpointer-arith -Wsign-compare 
Remark: -Wall does not imply:  

“switch on all warnings” 

� Cantata++ 
--comp x86-Win32-gcc3.2.3 --ci:-ids --keepmod     
--no_link --parse:--c <path>\gcc.exe -c 

All static analysis strategies do not consider the real 
execution context and its potential impact either by fault 
masking or platform dependent fault generation. Such 
conditions can only be covered with dynamic analysis / 
testing. 

Version 3.2.3 (and higher) of gcc shows a significantly 
increased capability to detect semantic faults. Many 
faults which previously could only be detected by 
specific static analysis tools can be found today by a 
compiler like gcc. 

With DARTT the faults as listed in Tab.  8-1, examples 
1-5 (non-exhaustive list) were found. With DCRTT the 
examples for C in Tab.  8-1 (examples 6-11, non-
exhaustive list) and Tab.  8-2 were found. 

The following conclusions consider the practical results 
of syntactic, semantic, dataflow analysis and of dynamic 
analysis, but not of symbolic execution, because this 
strategy was not applied. 

The examples 4,6,7,14,20 as given in Tab.  8-2 confirm 
that not every fault, which should be detected for sure 
by static analysis tools, will be detected in practice. For 

these cases dynamic analysis was the only strategy 
which detected the fault. 

Observation of run-time anomalies was the only 
strategy which identified the faults of examples 
9,10,11,12,13,15,16,17, and in nearly all cases – except 
for 16 – the fault was detected due to fault injection. 

Coverage analysis was the only strategy by which the 
faults of examples 1,5,6 could be detected. 

Consequently, pure static analysis – syntactic, semantic 
and dataflow analysis – is not sufficient to detect all 
faults, as the presented results demonstrate. Whether 
symbolic execution can also cover faults detected with 
observation of run-time anomalies and coverage is an 
open issue, in practice. However, the theoretical 
conclusions in Tab.  8-3 suggest, that symbolic 
execution cannot cover the observed fault types 2-6, 8, 
18-22 from a principal point of view (see also Ch. 4.2). 
For fault types 1, 11, and 13 it strongly depends on the 
context whether they could be covered in practice. 

Fault types 5, 6, 20 can only be covered by dynamic 
analysis, and it is likely that this conclusion is also valid 
for fault types 1, 11, 13.   

Semantic analysis was the only strategy which can 
identify an inconsistency as described in example 22. 

Regarding computation time, syntactic, semantic and 
dataflow analysis are the fastest strategies (very low – 
low) due to the limited context of a compilation unit. 
For these strategies the manual effort to identify the 
source of a fault can be expected low to medium and – 
in general – to be lower than for the other strategies due 
to the strong correlation of analysis and messages 
flagging the fault. In the other cases a message must be 
correlated manually with the source of the fault in the 
code. 

3.3.7 Tool Operation 

The installation procedures are straight forward for all 
tools and complete within about 15 minutes or even less 
time. 

Specific preparation of the tools (gcc, Cantata++, 
DCRTT) for analysis and test execution was not 
required. The execution of gcc and Cantata++ was an 
integral part of DCRTT test automation. DCRTT itself 
only requires provision of the set of source files in a 
directory and configuration of test conditions like fault 
injection, scope of stimulation etc.. The only pre-
condition to be fulfilled for DCRTT (and DARTT) is 
that the source files should be compilable and linkable 
free of errors. 

All relevant diagnostic messages from compiler, 
Cantata++ and DCRTT are filtered and collected in 
separate files by the DCRTT run-time support. In case 
of Cantata++ only the features of static analysis were 



 
 

  

used, but not the features for test set up, because this is 
inherently supported by the DCRTT feature for test 
driver generation (see also Ch. 4.6, test case filtering). 

DCRTT filters test cases according to coverage criteria 
when scanning a function-under-test over the input 
domain (parameters and static/global data including 
fault injection). Once the input-output relationship has 
been confirmed as being correct, such test cases will 
serve as further reference, e.g. when re-executing tests. 
Such test drivers can be re-executed on the development 
and target environment, even under memory limitations 
such as 64KB, e.g. together with a lean operating 
system like KEIL. 

If desired, DCRTT will also generate these test drivers 
in a format compatible with Cantata++, so that manual 
definition of test cases is no longer required. 

4 EVALUATION OF RESULTS 

In this chapter evaluation figures for static and dynamic 
strategies will be presented for the C software (40 
KLOC) already mentioned in chapter 3.  

During the development of this software a gcc 2.x 
version was used to detect faults by static analysis. 
Therefore many warnings were shown now by gcc 3.2.3 
and Cantata++, indicating the progress made for static 
analysis. 

Only such faults will be discussed here which have a 
reasonable and obvious fault potential. 

Violation of rules such as standards on readability of 
source code, errors in source code which will cause 
compilation errors, or messages on unused data  are not 
considered as a “fault” in the context of this paper. 
Unused data were detected, but not tracked as their 
amount would have compromised the figures for the 
more “serious” faults. 

Compilation errors are of relevance here because of the 
long history of the source code under inspection. Due to 
evolution of compilers some violation of syntactic rules 
will be recognised as an “error” today, while it was not 
flagged as an error in an earlier compiler version. 

The number of all these faults is estimated as high based 
on observation of corresponding compiler messages and 
analysed source code, probably being in a range of the 
number of recorded faults, but possibly up to multiples 
of this amount. 

Also, anomalies due to lack of robustness (non-
defensive programming style, missing protection against 
invalid data) are not considered as faults here. For a 
discussion on robustness issues see Ch. 4.3. The number 
of reported anomalies related to robustness issues is in 
the range of 200. 

4.1 Detected Faults 

Tab.  4-1 gives the number of faults detected by testing. 
All faults which were detected by static analysis are 
listed in the related column. As DCRTT also 
contributed to static analysis (see Tab.  8-3) the 
contribution from “classical” static analysis methods is 
shown in separate gray-shadowed lines.  

Item 

Identification Strategy 

Total 
static 

dynamic 

min max 

faults 
abs.  

with 
DCRTT 

270 44 122 314 

without 159 0 0 159 

faults        
%  

with 86.0 14.0 74.2 100.0 

without 50.6    

faults/ 
KLOC 

with 6.8 1.1 5.8 7.9 

without 4.0 0.0 0.0 4.0 

Tab.  4-1: Identified Faults 

For dynamic analysis a minimum and a maximum value 
are provided:  

• minimum 
faults are counted, only (see Ch. 3.3.1), which could 
or cannot identified at pre-run-time by static 
analysis, because e.g.  

o the fault is platform- or context-dependent, 

o the identification at pre-run-time is too 
complex, impossible or the tool did not identify 
it though it should have been possible, in 
principle. 

This figure is complementary to the one of static 
analysis regarding the total number of detected 
faults. 

• maximum 

all identified faults are counted which could have 
been detected by symptoms or dynamic fault 
analysis, also such ones which are covered by 
“classical” static analysis. 

 
Fig. 4-1: Fault Coverage vs. Analysis Mode 

Fig. 4-1 visualises the fault identification potential 
regarding the impact by auto-testing / DCRTT. 



 
 

  

Tab.  4-2 correlates the faults detected by symptoms to 
the identification methods and when the method was 
applied: at run-time or  post-run-time. Fig. 4-2 shows 
the graphical equivalent of the percentage figures. 

As an important result, the figures of Tab.  4-1 indicate 
that neither static nor dynamic analysis strategies can 
fully cover the spectrum of (observed) faults. Though 
this conclusion is related to the observed faults of the 
reference application, it is valid in general. 

Another major result derived from Tab.  4-2  is that 27 
(fault injection) + 1 (platform diversification) =28 out of 
44 faults (63.6%) (rows 2 and 3) could only be detected 
by enforcing activation conditions raising the 
probability for fault occurrence, e.g. due to 

• flagging lack of memory (heap, stack) by a 
modified return code (NULL), 

• modified return codes indicating a fault like -1 or 
NULL in other cases, 

• invalid input data (out-of-range), 

• faults activating the fault handling parts, 

• conditions activating platform-dependent faults. 
Only about 30% of faults (row 1 of  Tab.  4-2 were 
detected by stimulation with valid data.   

Consequently, (automated) fault injection is a “must” to 
maximise fault identification. A minor, though non-
negligible part of one event only is related to platform 
diversification, which identified a serious, but dormant 

fault related to non-activated data corruption on its 
intended platform. 

Finally, three faults were detected by coverage analysis 
in parts where the coverage figures were sufficiently 
high and not corrupted by occurrence of exceptions. 
Possibly, more such faults could have been detected if 
the sources of exceptions would have been removed. 

 

Fig. 4-2: Fault Coverage vs. DCRTT Identification 
Strategies 

 

 

Symptom-based 
Fault Identification Method 

Applied 
at 

# 
Faults 

% Comment 

Recording of exceptions, aborts, 
deadlocks, livelocks and more run-time 
checks during stimulation under nominal 
conditions and run-time anomalies 

run-time 13 29,55 The phrase “more run-time checks” means: these are 
specific checks to identify malloc- and file-usage and 
corruption of mallocated memory supported by the test 
environment. 

As above + fault injection run-time 27 61,36 Stimulation under nominal and non-nominal conditions 
including enforced faults for return values. 
If types are not properly defined (e.g. int instead of enum) 
or the range is not checked, valid values, i.e. values in the 
specified type range, will be invalid, in fact, because they 
are not in the intended range. 

As above + platform diversification run-time 1 2,27 This specific fault was detected by corruption of 
mallocated memory: the test environment allocated 
function parameters by malloc, while in the operational 
environment they were allocated on the stack. This allowed 
the automated detection at run-time immediately after 
memory corruption. 

Coverage analysis post-run-
time 

3 6,82 Coverage analysis requires stimulation under nominal and 
non-nominal conditions to reach a maximum of branches 
incl. such ones for fault handling. 
To be efficient a high coverage figure should be achieved 
which requires fixing of all faults which cause exceptions 
and aborts. 

Total  44 100  

Tab.  4-2: Results of Symptom-based Fault Detection 



 
 

  

4.2 Fault Coverage and Potential of Strategies 

Details on observed fault types, the most efficient 
identification strategy and the distribution of observed 
faults and fault types are shown in Tab.  8-3 and in Fig. 
8-1 and Fig. 8-2, respectively. Tab.  4-3 explains the 
acronyms as used in Tab.  8-3. 
Acronym Description 

B Block Coverage 
b detection possible by coverage analysis 
C Compiler 
D DCRTT specific add-on’s 
E Exception 
I invalid Input (in parameter, static data) 
i invalid input is in valid / specified range 
K Lock (deadlock or livelock) 
L Linker 
M Decision Coverage (MC/DC) 
m detection possible by MC/DC 
O invalid Output (return value, out parameter) 
P detected due to platform diversity 
p possibly depending on platform 
R Run-time message issued by DCRTT 
s feature could be covered by symbolic execution 
T Tool, Cantata++ 
t could also be identified by a static analysis tool 
x feature could be covered by analysis method, 

but was not observed in practice 
( ) could possibly be covered, but theoretically 

incomplete 
small 
letters 

theoretical assessment, not applied or observed 
in practice 

Tab.  4-3: Acronyms as used in Tab.  8-3 

A capital letter always (except for i and s) means that 
the referenced strategy is the most efficient strategy in 
terms of procurement costs and fault identification 
capability, if several ones may successfully be applied. 
Rounded brackets express a principal capability of a 
strategy to identify a fault type, but it is not sure if 
identification is really supported or even fully possible. 
An “x” indicates that identification should have been 
possible by a certain strategy, but was not observed. 
Further, an “s” indicates that symbolic execution should 
be capable to identify a fault type, without saying 
anything about practical results. Finally, an “i” indicates 
that invalid input was received though the value was in 
the valid / specified range. This is a matter of imprecise 
use of types, which is – in part –  a consequence of the 
type concept of C. Therefore DCRTT offers an option to 
precisely specify a limited range. If more than one 
capital letter occurs in a row, no clear decision on the 
optimum strategy is possible. 

The main parts of  Tab.  8-3 are: 
• the fault types, which are described in Col. 2 - 3, 
• the strategies of static analysis in Col. 4 – 7, 

• the strategies of dynamic analysis in Col. 8 and 9 
followed by applied stimulation methods (data 
stimulation, platform diversification), 

• the observed number of faults in Col. 12-14 

The following conclusions depend on the specific fault 
distribution profile as given in Tab.  8-3, but are still 
valid in general – apart from the quantities. The 
discussion below refers to the bottom lines of Tab.  8-3, 
where summary figures are provided.  

A detailed view is required for the figures for static 
analysis, which include contributions from “classical” 
static analysis tools and an additional  contribution from 
DCRTT (dynamic analysis, testing), identified by 
specific analysis directly related to the preparation of 
the test environment. Therefore three sets of summary 
figures are provided: the first set counting the 
contribution from classical static analysis, the second set 
considering the contribution from dynamic analysis / 
DCRTT,  and the third set showing all contributions.  

While in total 25 fault types (51%) and 270 faults (86%) 
were covered by static analysis,  “classical” tools 
without DCRTT did only cover 18 fault types (37%) 
and 159 faults (51%). 

For dynamic analysis a minimum and maximum value 
is provided for the number of observed faults (cf. Tab.  
4-1). The minimum refers to the faults which cannot be 
detected by static analysis at all, the maximum number 
to the amount which can be detected by dynamic 
analysis, at most. 

The contribution of strategies to fault coverage is shown 
in Fig. 4-3. 192 faults could be covered by static 
analysis, 44 faults by dynamic analysis, and 78 faults 
could have been covered either by static or dynamic 
analysis, where preference should be given to static 
analysis as discussed in Ch. 3.3.1.  

 

Fig. 4-3: Fault Coverage by Strategies 

Dynamic analysis did cover 21 fault types (43%) and 44 
faults (14%)  at least, i.e. what was not covered by 
classical static analysis, and could cover 31 fault types 
(64%) and 122 faults (39%) at most. To these figures 
the related contribution from DCRTT static analysis 
should be considered, in addition: 7 fault types (14%) 



 
 

  

and 111 faults (35%), which yields in total for the 
minimum 57% fault types and 111+44=155 faults 
(49%). 

Regarding the comparison classical analysis vs. DCRTT 
the figures are (Fig. 4-4): 81 by classical analysis, 155 
by DCRTT and 78 by both. 

 

Fig. 4-4: Fault Coverage by Tools 

Today, compilers (together with linker) can already 
detect a lot of fault types as indicated by ‘C’ in column 
“semantic analysis”: 9 out of 49 (~18%). When 
combining all four static analysis strategies (incl. 
symbolic execution) and considering their maximum 
potential for fault identification, only 3 out of 49 fault 
types would be not covered. Taking a more realistic 
view, eight fault types may not be covered. 

The largest contribution in the area of static analysis 
comes from semantic analysis supporting detection of 
about 51% of these fault types. 

Symbolic execution may cover 40-63% of the fault 
types and 27-39% of the faults. Unfortunately, no 
practical results could be derived due to lack of a tool. 
The practical aspect is whether the full potential will 
really be available in practice due to a potentially high 
effort and/or high number of false alarms for which no 
clear decision on fault occurrence can be derived. 

Anomaly monitoring supports detection of 39-43% of 
fault types and 13-50% of faults. Actually, coverage 
analysis contributed with about 4%, and has a potential 
for about 21% for identification of observed fault types, 
and 1-25% in case of faults. 

4.3 Robustness 

One of the challenging issues of testing based on 
function prototypes/specifications – as DARTT and 
DCRTT do – is the compliance between a prototype and 
its (function) body. It is common practice to rely on 
valid data in the body, without checking on the valid 
range of data coming in through the interface (see 
remarks for Example E3.1 in sect. 3.1). 

Run-time anomalies (exceptions, aborts, locks) caused 
by such discrepancies between prototype / specification 
and a body are not included in the figures of Tab.  4-1. 
As in all such cases the specification allows a broader 

range than allowed, provision of data in the valid range 
(according to the specification) implies fault injection. 

The following number of such anomalies were found 
during testing for the three projects of Tab.  3-1: 

• Ada, Cat. A 

anomalies were found during module testing. By 
detailed manual analysis it was proven that the 
conditions raising the anomalies cannot occur in the 
overall system context – actually. 

• Ada, Cat. C 

o About 700 anomalies were observed. Most of 
them were related to the fact that operands of 
arithmetic operations like +,-,*,/ and the result 
cannot have the same type, which is usually a 
problem if the range of the type is rather small: 
i:=i+1; will always lead to an exception when on 
the right side the full range of i is applied (even 
for the full range of type Integer). 

o Apart from these – more or less – “uncritical” 
anomalies, a few cases were found – after 
completion of usual test and ISVV activities – 
which were critical. 

• C 

About 200 anomalies were reported. Most of them 
were related to out-of-range conditions, e.g. for an 
index into an array because the index is of type int 
while the array size is of limited range and no range 
check was implemented. 

Consequently, by dynamic testing, especially when fault 
injection is applied in addition, an immediate decision is 
possible  – as confirmed in practice –  on whether a 
defensive programming style was applied or not. A non-
defensive style has consequences on detection 
probability based on code execution, because such 
anomalies will create an undesired change of control 
flow due to exceptions, aborts, deadlocks, livelocks. 
Therefore 

• at run-time 
more faults may be hidden, 

• at post-run-time 
faults in logical expressions (bad branching, 
deadcode) are more difficult to detect because the 
coverage figures are becoming too low, so that 
critical cases with a small contribution to coverage 
cannot be distinguished easily from those resulting 
from an undesired interruption of the control flow. 

Consequently, the maximum number of faults can only 
be detected by dynamic analysis when all “obstacles” 
raising exceptions are immediately removed when 
detected. 



 
 

  

4.4 Variation of Test Conditions 

To achieve maximum coverage figures and fault 
identification, stimulation conditions should be varied. 
This may require a number of runs of DCRTT/DARTT 
with different configuration options. 

The following principal configuration options and the 
described sequence of execution and result evaluation 
turned out as rather useful:  

1. stimulation of function parameters in valid 
range only 
fix all anomalies before proceeding to next step 

2. stimulation of parameters in valid and invalid 
range 
fix all anomalies before proceeding to next step 

3. extend stimulation to global/static data as 
performed in steps 1 and 2 
fix all anomalies before proceeding to next step 

4. activate fault injection and repeat steps 1-3 
fix all anomalies before proceeding to next step 

5. evaluate coverage figures and identify faults 
related to erroneous conditions (wrong 
conditions, missing brackets after conditional 
expressions) or other dead code. 

It strongly depends on the quality of the application 
whether all steps have to be executed sequentially as 
described above  – possibly several times – or a 
shortened sequence is possible. However, as each step 
only requires to change a few  configuration parameters 
and the tests are executed in background without 
requiring any human intervention, the manual effort 
reduces to evaluation of test results, only.  

Consequently, this effort is a matter of the quality of the 
software under test: the better, the less. 

4.5 Test Duration 

The test duration of automated stimulation strongly 
depends on the complexity of the application, the size of 
the input domain and the execution time of a function-
under-test. 

Many symbols in an application will increase the time 
needed for linking. If linking is in the range of minutes 
and the number of functions is in the range of 
thousands, this may already require dozens of hours or 
days (1 minute x 1000 ≈ 16:30 hours).  

A huge input domain (incl. invalid data) may require a 
high number of stimulation steps to achieve a sufficient 
high density of test samples. However, experience 
shows that a few thousands of test samples are sufficient 
to achieve maximum coverage. The number of auto-
generated samples was about 6,500 on the average for 
the 765 functions tested, when suggesting 3,000 by test 
configuration, yielding a total of about 5x106 test 
samples for all functions. 

Deadlocks and livelocks also may significantly increase 
the test duration. This is a matter of the upper limit on 
execution time per function. If it is 15 minutes and 50 
functions will run into a lock, this will waste about half 
a day of test time. 

Consequently, a high test duration – though not 
requiring human resources, but impacting the turn-
around time – may be an indication for the poor quality 
of the software under test, especially of its poor 
testability. As a rule of thumb: the higher it is, the 
poorer is the quality. 

Finally, there is no need to test all functions together. A 
sub-set always can be tested, based on what is included 
in the provided files. This may speed up the overall 
duration in case tests need to be repeated. 

4.6 Test Input Filtering 

The identification of “interesting test inputs” by 
coverage criteria (extended by inputs causing 
anomalies) reduces the huge number (like 5x106 test 
inputs) to an amount which can be evaluated manually 
and – when the results have been confirmed to be 
correct – be upgraded to reference test cases for 
regression testing and testing on the target. 

Roughly, about 5,000 “interesting” test cases have to be 
considered for full coverage  which yields the following 
average figures to achieve full coverage (executing each 
block or logical decision once at least): 

• ~1 test case per 8 LOC 
• ~7 test cases per function 
• ~1 test case per 1,000 stimulation inputs. 

Though the high reduction ratio of about 1,000 seems to 
indicate a rather inefficient stimulation approach, it 
actually visualizes the broad coverage of the samples in 
the input domain which is mapped onto a much smaller 
number of equivalence classes representative for the 
code-under-test. 

4.7 Lifecycle Impacts 

When anomalies are detected after completion of the 
coding phase, more effort is required for fixing. 
Therefore, it is highly recommended to apply auto-
testing as soon as first pieces of code are compilable and 
linkable.  

4.8 Identification Strategies and FMECA 

In the past, testing consumed much manual time and 
effort for test preparation, execution and evaluation of 
results. Therefore FMECA (Failure Mode, Effects and 
Criticality Analysis) was considered as an instrument 
for reduction of analysis and test effort by guiding the 
engineers towards the most relevant/critical parts of a 
system. This procedure implied to neglect other parts 



 
 

  

which were identified as non-critical, but which still 
could be faulty. 

Today, due to full automation of testing as supported by 
DCRTT, manual effort is only needed for test 
evaluation and configuration of test modes (see Ch. 
4.4). Due to automated stimulation over the input 
domain, all parts of the software can be covered at little 
expenses. The budget required for auto-testing is mainly 
driven by the quality of the software, as poor quality 
will increase the size of automatically generated reports, 
the related effort for manual evaluation, and the degree 
of re-execution of tests as described in Ch. 4.4. 

Consequently, concentrating the effort on parts, to 
which FMECA guides to, is no longer indispensable. 
Due to  these extended capabilities, quality analysis is  
no longer limited by budget constraints as in the past. 

5 CONCLUSIONS 

In this paper principal considerations were drawn on 
how application-independent faults can be identified 
and how sensitive a certain strategy is w.r.t. to certain 
fault types. As an unexpected benefit of the practical 
exercises it was found that also application-dependent 
test cases can be identified by a generic, application-
independent strategy. 

A major conclusion is that platforms and context may 
impact the activation conditions of faults and even may 
add or remove faults. In most cases these faults are non-
anticipated and cannot be detected by static analysis 
methods, but only by dynamic analysis based on 
monitoring of symptoms. 

The detailed conclusions on the analyses presented in 
this paper are divided into the following topics: 

• principal problems of fault identification, 

• suggested strategies for fault identification, 

• aspects of project and lifecycle management, 

• the role of automation. 

5.1 Principal Problems 

Above discussion yields that faults may be hidden for 
the following reasons: 

• during testing 
o fault activation is masked by context- or 

platform-dependent conditions, 
o a fault is not activated, 
o a fault is not recorded due to a fault in the tool, 

• during static analysis or symbolic execution of the 
code 
o the fault cannot be identified as its activation 

depends on the platform 

o the fault cannot be identified due to practical 
resource limitations, unsupported features or 
faults in a tool. 

In some cases for which fault identification by static 
analysis was theoretically expected, one counter 
example at least was found that the fault was not 
detected for the software-under-test. As a consequence, 
even supported anticipated faults may remain hidden, 
while unsupported anticipated faults will remain hidden 
for this strategy, for sure. 

Some examples were given for cases where faults can 
be added or removed silently  during transformation of 
the source code into executable code. 

Finally, only anticipated faults can be identified by 
analysis strategies including requirements-based testing, 
symbolic execution and FMECA, while automated 
dynamic analysis in general has the potential to identify 
non-anticipated faults as well. 

5.2 Suggested Strategy 

Above  considerations strongly suggest diversification 
of tools in general and a combination of possibly 
orthogonal or  independent tools regarding principal 
fault coverage of a strategy, its  tool implementation and 
its complexity: 

• to apply static analysis at pre-run-time for detection 
of anticipated faults with medium to high 
complexity of tool implementation, and 

• dynamic, symptom-based analysis for detection of 
anticipated and non-anticipated faults derived from 
test results incl. coverage analysis, requiring low 
complexity of the strategy and little to medium 
complexity of tool implementation. 

High complexity of a strategy implies increased 
probability of a fault in the tool, and the same is true for 
definition of the rules which form the base of static 
analysis. For these reasons rule-based static analysis 
cannot be considered as perfect, while it was considered 
as perfect in the past. Of course, testing is also not a 
perfect strategy. However,   a combination of such – 
possibly non-perfect – independent methods and tool 
implementations gives a higher chance to detect faults. 
If not being combined, not all types of faults can be 
detected as the contents of  Tab.  4-1 and Tab.  8-3 does 
prove. 

As far as a fault is not identified, its potential impact 
and hazard potential remains unknown. Therefore test 
effort must not be reduced at the cost of fault detection, 
and projects should put forward the ambition of 
detecting as many faults as possible, whether anticipated 
or non-anticipated, having a potential to be activated or 
not under given conditions. Symptom-based analysis 
requires removal of faults as soon as they are detected. 



 
 

  

Otherwise faults may remain undetected due to code 
unreachable by the raised anomalies. 

The results presented in Chapter 4 prove that static 
analysis is not sufficient to detect all faults, even when 
combining all strategies of this fault identification 
domain. Vice versa, this is also true for dynamic 
analysis. 

The analyses as given in this paper demonstrate that the 
potential of fault identification needs to be considered 
for each of the strategies to be sure that all types of 
faults can really be caught. Consequently, this leads to 
an assessment of the “quality of the fault identification 
potential” of a strategy, similarly to mutation testing 
which evaluates the “quality of a test set”. 

5.3 Management Aspects 

According to the discussion in Ch. 5.1 and 5.2 principal 
decisions need to be made on fault identification 
strategies in order to achieve a high coverage of fault 
types by the chosen fault identification strategies. 

Testing was already considered as a key strategy in the 
past complementing static analysis. However, due to the 
rather high effort needed to prepare the test environment 
and to evaluate the results, testing was limited to parts 
of the code – more or less – aiming an optimum mix 
between costs and fault identification probability.  

Full automation of testing – only requiring delivery of 
the source code – significantly helps to reduce the effort 
while widening the scope to stimulation and monitoring 
of the whole code, thereby overcoming constraints 

imposed by budget and schedule. As described in Ch. 
4.6 relevant test cases can be automatically derived in a 
rather comfortable way just by provision of the source 
code. 

However, this way of full auto-testing requires to fix 
faults immediately when they are identified. Therefore 
auto-testing should be applied as soon as pieces of code 
are ready for linking. 

From this perspective late start of auto-testing 
unnecessarily increases costs and effort.  

5.4 Role of Automation 

Automation turned out as a pre-condition to identify 
faults which may be hidden or occur very rarely, 
otherwise.  

Automatic porting of the code, i.e. automatic adaptation 
of platform-dependent code to make it executable on 
another platform, and automatic stimulation over the 
full valid input domain extended to invalid inputs and 
fault injection, significantly increases the chance to 
meet the conditions of fault activation, which otherwise 
could not be raised due to limited budget and schedule. 
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8 APPENDIX 

Tab.  8-1: Examples on Activation Conditions 

Id Dep. Lang Example Comment 

1 

IDF 
+ 

PDF 

Ada 

 

var1:unsigned_byte; 
var2:unsigned_byte; 
var3:Integer; 
 
-- Assignment for  
-- var1, var2, var3 
 
var3:=Integer(var1*var2); 

There is a fault in line 4 because the result of the product is also of type unsigned_byte, but it may exceed 255. An error does 
not occur if the result is less than 256. It is considered as activated for a result >255, because then an exception should be 
thrown. 
Observation 1: On an Intel-CISC-Architecture the result is handled modulo 256, but no exception is thrown. Moreover, the 
final result as assigned to var3 may be negative. 
Explanation 1: The CISC-Processor allows byte-operations and therefore the result is modulo 256. Obviously, the status of the 
overflow flag was not evaluated. This leads to an error. 
Observation 2: On a Sparc-RISC-Architecture the correct result is obtained, but no exception is thrown. 
Explanation 2: The RISC-Architecture always performs 32-bit operations, therefore no overflow will occur. The constrained 
range must be checked on software level, but obviously such a check is not implemented. The correct result of the product is 
delivered, but due to the cast it remains unknown whether this is an error or not. From this perspective, a cast always should 
be considered as a potential fault. 

2 

PDF Ada 

type T_INT8  is  
range -128 .. 127; 
for T_INT8’SIZE use 8; 
type T_INT16  is  
range -32768 ..32767; 
for T_INT16’SIZE use 16; 
DIM1   :constant:= 80; 
DIM2   :constant:= 10; 
subtype T_NB is T_INT8 range  
0..DIM2-1; 
type T_DESC is record 
  NB  : T_NB; 
end record; 
M_DESC : T_DESC; 
M_DESC.NB:=0; 
  T_NB (M_DESC.NB * DIM1)    
M_DESC.NB:=9; 
  T_NB (M_DESC.NB * DIM1)    

The essential lines are the 4 last lines. The result of the product M_DESC.NB * C_SUBFRAMES is platform-dependent. On 
an ERC32/Sparc RISC architecture and Aonix compiler the results are fully correct in both cases, while on an Intel CISC 
architecture and GNAT V3.15p compiler the second result is -48, i.e. 720 mod 256 as signed number: 720=0x2d0, -48=0xd0 
as T_INT8. The critical point is the universal integer in the constant definition. According to the standard a universal integer 
will be converted to the type of the other operand, which is T_INT8. Therefore the result should also be T_INT8.  
On the Intel processor no exception was raised. Therefore either the multiplication operated on type Integer with later masking 
of the result to one byte, only, or it was performed as byte-operation, but the overflow bit was ignored. 
As the Sparc always applies 32-bit operations, no overflow did occur. The required handling on types would have to be done 
on software level. Whether this was done remains open. As a matter of fact, the source code was not improved to make it 
clear. 

3 
PDF Ada same example as above In case of the Intel-processor and GNAT compiler the cast to T_NB of M_DESC.NB * DIM1 raised an out-of-range exception 

when the result is -48, while the previous overflow was not flagged. 
4 

PDF Ada T‘size  
delivers different values depending on compiler: as occupied or needed w.r.t. to memory alignment, Ada (83,95) standard 
allows different understanding 

5 
PDF Ada 

Alignment clause at .. range in 
a record 

The Ada standard does not require to make this feature independent of the hardware architecture, this will cause problems 
when porting between Little/Big Endian architectures. 



 
 

  

Id Dep. Lang Example Comment 

6 
CDF 

+ 
PDF 

C 

const char cstr[]=”123”; 
typedef enum {false,true} 
 Boolean; 
void func() { 
  char var[3]; 
  Boolean bool; 
  strcpy(vstr,cstr); } 

Obviously, in the declaration of vstr the terminating 0 of cstr was not considered. Therefore the terminating 0 overrides the 
following byte of bool. As bool only takes the values 0 or 1 (true, false) (as defined by the context), in case of Big-Endian 0 
would be replaced by 0. Consequently, no error ever will occur on this platform. If false would be changed to “! True” = 
0xffffffff, than an error would occur. Similarly, it is when porting the code to a Little-Endian platform. Then the leading byte 
of bool would be corrupted in case of true or if false==0xffffffff (as vstr is of length 4, bool would directly follow without 
insertion of alignment bytes). 

7 

CDF 
or 

PDF 
C 

char *str; 
str=malloc(100); 
str=0;//should be *str=0; 
... strcat(str,”xyz”); 

The pointer is initialised instead of the area it is pointing to. Although it seems to be fully independent in the sense that it will 
lead to a failure in any case, it will be dormant if no exception is raised. This has been observed for VxWorks 5.3 / gcc 2.6 on 
an Intel X86 platform, while it was raised for the same versions on the ERC32 target. Apart from that there is another fault: 
missing checking of the pointer returned from malloc. 
It may be context-dependent for the following conditions: a value could be successfully stored and retrieved from address 
zero, then it would be dormant. If this value would be destroyed before reading by another illegal access to NULL, it could be 
activated. 

8 
PDF C 

register short a=20000,b=2000,c; 
c=a * b; 
if (c>10){ } else { } 

The result depends on the platform. On a Sparc (32-bit) it will be correct, on an Intel it may incorrect depending on the 
assembler instructions generated by the compiler. 

9 
IDF 
+ 

CDF 
C 

#define SIZE 500 
int i,j,arr[SIZE],result; 
for (i=0;i<SIZE;i++) 
  for (j=0;j<SIZE;j++) 
    result=arr[i+j]; 

In this case it is obvious that an out-of-range condition will occur. However, whether the fault is really activated still depends 
on what is returned for arr[out-of-range]. Firstly, an access violation exception may occur, leading to an error and a failure due 
to a branch in the control flow. Secondly, the expected value could be returned if the context provides such a value, then the 
fault is not activated. Thirdly, an unexpected value could be returned, which may manifest as an error and a failure. 

10 IDF C 
int func(int i, int j) { 
  return i+j;} //should be * A wrong operator is applied: ‘+’ instead of ‘*’. In case of i=j=2 the fault is dormant, in all other cases it is activated. 

11 inde
pend
ent 

C 
errCode=SUCCESS; 
 // TEST !!!! 
if (errCode==ERROR) 

A statement inserted for test purposes was not removed. This prevents that the error handling branch is entered. 

 

 

 

 

 

 

 

 

 



 
 

  

Tab.  8-2: Assessment of Fault Identification Strategies 

Id Example Identification 
Strategy 

Scope Identification 
Reliability 

Identification Effort Description 

theory observed manual computation 

1 
if (myfunc(para)==0) ... 
else ... 

Cov. Anal. FS sure yes Med. / high 
depends on 

myfunc 

low 
myfunc(para) may return an invariant value, leading to 
either the then- or the else-branch never being executed. Symb. Exec. SC 

depends on 
myfunc 

n/a high 

2 
if (myfunc==0) ... 
else ... 

Cov. Anal. FS sure yes low low myfunc is the address of a function and therefore constant 
and not NULL, leading to the then-branch never being 
executed. Sem. Anal. CU sure yes low very low 

3 
if (x=1 || x=2) ... 
else ... 

Cov. Anal. FS sure yes medium low x is always assigned 1 leading to the else-branch never 
being executed. The second part of the disjunction is never 
evaluated. Synt. Anal. CU sure yes low very low 

4 
#define FILE_PATH “disk:/dir/” 
if   (FILE_PATH == NULL) { } 
else                     { } 

Cov. Anal. FS sure yes low low FILE_PATH is a constant pointer, but  
analysis tools did not detect this fault: else-branch is never 
reached (deadcode). It seems that this a matter of pointers, 
because a comparison of constant scalars is detected. 

Sem. Anal. / 
Constant 

Propagation 
CU sure no  � low very low 

5 

char *fn; 
void myfunc() { 
 if ((fd = fopen(fn,”a”)) == NULL) 
 {}           } 

Cov. Anal. FS 
high / PDF 

+ CDF 
yes medium low 

Missing initialization of fn did not cause an exception, this 
became only visible by missing coverage. 

6 

ret_value=SUCCESS; //TEST!! 
If(ret_value == ERROR) 
{ // then-branch  } 
else  
{ // else-branch  } 

Cov. Anal. FS sure yes medium low 

A test statement is not removed and prevents branching. Dataflow Anal. / 
Const. Prop. 

CU sure no  � medium very low 

Symb. Exec. SC sure n/a medium high 

7 
char *str=malloc(100); 
str=0;//should be *str=0; 
strcat(str,”xyz”); 

Dataflow Anal. CU sure 
cantpp 

n/a medium very low strcat() copies into a string at address 0 (null-pointer), 
potentially leading to a memory access fault. The allocated 
memory is leaked. A run-time exception related to access 
of address 0 is platform-dependent. 

Gcc no  
Symb. Exec. SC sure n/a medium high 
RT anomaly FS sure / PDF yes medium low 

8 

UINT32  itemUsed[..],cc; 
INT32   fc; 
int setItem(UINT32 cc); 
fc = setItem(cc); 
itemUsed[cc] = fc; 
for(i=1;i<itemUsed[cc];i++) 

RT anomaly + 
Fault Inj. 

FS 
depends on 

setItem 
yes medium low 

Critical cast between signed and unsigned if setItem 
returns -1, if e.g. the value of cc is invalid. Then the upper 
limit of the loop is 0xffffffff instead of -1 which generates 
a quasi-endless loop. Can be detected by fault injection 
either for cc or the return value, increasing the probability 
for a negative value. 

Sem. Anal. / 
Type Checking 

CU 
sure yes medium very low 



 
 

  

Id Example Identification 
Strategy 

Scope Identification 
Reliability 

Identification Effort Description 

theory observed manual computation 

9 

File ctrlInit.c 
int ctrlArr[4]={1,1,1,0}; 
 
File ctrlVal.c 
funcCreatePtr 
(char **ptr, int ind) { 
  if (ctrlArr [ind]) 
  { *ptr=getStrPtr(); 
    return SUCCESS; 
  } else return SUCCESS;      } 
 
File ctrlExec.c 
char *ptr=NULL; 
if (ERR==funcCreatePtr(&ptr,3)) 
  exit(99); 
else strcpy(ptr,”xxx”); 

RT anomaly + 
Fault Inj. 

FS 
sure / CDF 

+ PDF 
yes medium low Several faults exist in this example which are difficult 

detect because the dependencies spawn across file 
boundaries. 
 
Firstly, always SUCCESS is returned from funcCreatePtr 
preventing branching in file ctrlExec.c. 
 
Secondly, if the value 3 is passed, ptr remains undefined 
causing an exception in ctrlExec.c: conditional 
initialization across file boundaries. 
 

Cov. Anal. FS high yes medium low 

Symb. Exec SC low / CDF n/a medium high 

10 

void flash(int id) {  
 char str[100],msg[1000]; 
 switch (id) { 
  case XXX: strcpy(str,“defined”); 
  default: // nothing } 
 20nitia(msg,”msg=%s”,str); } 

RT anomaly + 
Fault Inj. 

FS 
high / CDF 

+ PDF yes medium low 
If the value of id is invalid, str is undefined: conditional 
initialization within a function. 
 

Symb. Exec. SC 
high 

n/a medium high 

11 

void resetTime(int sub,  
int   status, int activity) { 
  switch (sub) { 
  case XXX:execTime[activity] 
.tv_sec = 0;}} 

RT anomaly + 
Fault Inj. 

FS 
medium / 

CDF yes medium low 

An invalid value of activity leads to an out-of-range 
condition. A check is missing. 

Symb. Exec. SC 

depends on 
decl. / def. 

of 
execTime 

n/a medium high 

12 

void fullName(char *path, 
char *fn, char *ffn){ 
 if (path == NULL) 
 20nitia(ffn,”%s”,fn); 
 else 
   20nitia(ffn,”%s/%s”,path,fn);} 

RT anomaly + 
Fault Inj. 

FS 
high / CDF 

+ PDF yes medium low 
The case fn==NULL is not considered, though it is not 
guaranteed. 

Symb. Exec. SC 
high 

n/a medium 
depends on 

callers 

13 
void loadDB(int tbl, int id) { 
elem1[id]=elem2[tbl];} 

RT anomaly + 
Fault Inj. 

FS 
high / CDF 

+ PDF 
yes medium low 

An invalid value of id may cause memory corruption. An 
invalid value of id may cause an access violation 
exception. Symb. Exec. SC 

depends on 
decl. / def. 
of elem1 

n/a medium 
depends on 

decl. / def. of 
elem1 and 



 
 

  

Id Example Identification 
Strategy 

Scope Identification 
Reliability 

Identification Effort Description 

theory observed manual computation 
and elem2 elem2 

14 

long size,*getSize = NULL; 
if (readBuf(fd,offset, 
(void*)getSize,sizeof(long))  
    == ERROR)   { … } 
else{ size=*getSize;} 

RT anomaly + 
Fault Inj. 

FS 
high / CDF 

+ PDF 
yes medium low getSize is initialized with NULL, this value is passed to 

readBuf, but it cannot be changed. If  ERROR is not 
returned, the else-branch will crash. 
 

Dataflow Anal. / 
Const. Prop. 

CU sure no  � medium very low 

Symb. Exec. SC sure n/a medium medium 

15 

int Day(time_t zeit_t) 
{ struct tm *zeit; 
  zeit = (struct tm *)localtime  
((const time_t *)(&zeit_t)); 
  if(zeit==NULL)  
    printf(“no conversion\n”); 
  return zeit->tm_mday; } 

RT anomaly + 
Fault Inj. 

FS 
high / CDF 

+ PDF 
yes medium low 

If localtime returns NULL in case of lack of memory or an 
invalid input, a crash will occur when executing the return. 
This can be enforced by fault injection. 

Symb. Exec. SC sure n/a medium medium 

16 

File fault.h 
void verifyFault(int ind);  
void handleFault(int ind); 
 
File verify.c 
#include <fault.h> 
void verifyFault(int ind) { 
  switch (ind) { ……. 
    Default: handleFault(ind);} } 
 
File verify.c 
#include <fault.h> 
void handleFault(int ind) { 
  switch (ind) { ……. 
    Default: verifyFault(ind);} 

RT anomaly + 
Fault Inj. 

FS sure yes medium low 

Recursive call of handleFault across file boundaries. 
Rarely execution of fault handling part. Enforced 
execution by fault injection for ind as parameter of 
handleFault. 

Symb. Exec. SC high n/a medium high 

17 

typedef struct TyMsg { 
  int  msgLen; 
  char msgData[100]; } 
TyMsg Msg; char buf[100]; 
getMsg(&Msg); 
memcpy(buf,Msg.&msgData[1], 
Msg.msgData[0]); 

RT anomaly + 
Fault Inj. 

FS 
high / CDF 

+ PDF 
yes medium low Implicit correlation of contents of msgData[0] and the 

actual length of msgData assuming that both are 
compliant,but may not. Enforcing non-compliance by fault 
injection. Symb. Exec. SC medium n/a medium high 

18 
int i,j; 
printf(“Bit:%d\n”,DB[i].Id[j].Bit)
; 

Dataflow. Anal. CU sure yes medium very low Used before defined  
Variable undefined when being used, possibly initialized to 
0 RT anomaly FS 

high / CDF 
+ PDF 

yes medium low 



 
 

  

Id Example Identification 
Strategy 

Scope Identification 
Reliability 

Identification Effort Description 

theory observed manual computation 

19 

typedef enum {EMPTY,FULL}STATE; 
int create(int flag, STATE state); 
int id; 
id=create(EMPTY,0xff00ff00); 

Sem. Anal. / 
Type Checking 

CU sure yes low low 

enumerated type mixed with another type 
args turned around 
Wrong literal 

20 

File myFile1.c 
int multiDecl; 
File myFile2.c 
int multiDecl; 
 

Linker Checks 

FS 
sure 

 

no  � 

high low 

Link error: multiple symbols 
The C standard tolerates multiple declaration of data when 
they are not initialized. In this case all symbols are mapped 
onto the same address. 
When initialization is combined with the declaration at one 
location at least, the compiler flags an error. 
In case of uninitialized declarations a missing static key 
word – though intended – is difficult to detect. This may 
cause undesired interference of presumably independent 
data and unpredictable results. 
Such a potential fault is flagged during automatic 
generation of the test environment by DCRTT. 

DCRTT analysis yes 

21 

File myFile1.c 
int multiDecl=0; 
File myFile2.c 
int multiDecl; 
 

Linker Checks yes 

DCRTT analysis yes 

22 int actl[4] = {0,1,0,0,1,1}; Sem. Anal. CU sure yes low very low 
Inconsistency between data declaration and its 
22nitialization. 

 
Tab.  8-3: Fault Types vs. Optimum Strategy and Faults Found 

# Fault Type Fault Sub-Type 
Static Analysis Dynamic Analysis Observed Faults 

Detection Method Stimulation static dynamic 
Syntax 

Analysis 
Semantic 
Analysis 

Dataflow 
Analysis 

Symbolic 
Execution 

Anomaly 
Monitoring 

Coverage 
Analysis Data Other 

 
min max 

1. Uninitialized data Index   T s e    3  3 
2.  Branch-dependent initialization    s E     3 3 
3.  Missing initialization of strings + pointer   x s E     1 1 
4.  Missing initialization of static data    (s) E     1 1 
5. Range exceeded String (terminating 0 not counted for length)    (s) R   P  1 1 
6.  Index/pointer out-of-range after loop    s E     1 1 
7.  Index out-of-range    s E  i   13 13 
8. Malformed logical expressions Assignment instead of comparison  (C) T  (s)  b m   9  9 
9.  Logical expression of scalars is constant   T s  b m   1  1 
10.  Logical expression of pointers is constant   x s  B M    2 2 
11. De-referenced illegal ptr NULL-ptr, ptr->elem after function returning 

NULL 
   (s) E  O   6 6 

12.  NULL assignment and dereference in branches   x s E     1 1 



 
 

  

# Fault Type Fault Sub-Type 
Static Analysis Dynamic Analysis Observed Faults 

Detection Method Stimulation static dynamic 
Syntax 

Analysis 
Semantic 
Analysis 

Dataflow 
Analysis 

Symbolic 
Execution 

Anomaly 
Monitoring 

Coverage 
Analysis Data Other 

 
min max 

13.  Corrupted or non-initialized pointer (!=NULL)    (s) E     1 1 
14.  NULL dereference    (s) E     1 1 
15. Pointer arithmetic arithmetic on void or function pointer  T       29   
16.  Cast between ptr and int over a number of stages   (x) (s) E     1 1 
17. Data declarations Inconsistency between declaration and extern  D       2   
18. Data consistency Missing range check    s E  I   1 1 
19.  Missing type in data declaration C        2   
20. Mixed type expression Wrong enum literal out of different set  T       3   
21.  Mixing signed and unsigned by a cast  T  s     14   
22.  Implicit mixed signed and unsigned expression  D   E     3 3 
23. Test code not removed       B M    1 1 
24. Macro One stmt expanded to two stmt (if, while, for) (C)     b   1  1 
25. Unclear semantics, checks on 

correctness impossible 
Missing correlation between array and array 
length 

   s E  i   3 3 

26.  Unchecked conversion of data    s E  i   1 1 
27.  Missing correlation of data    s E  i   1 1 
28. Unreachable Code Code following endless loop  T  s K b   10  10 
29.  Combinations of return and break following 

each other 
 T  s  b   47  47 

30.  code following return (uncond.)  T  s  b   2  2 
31.  code following break  T  s  b   2  2 
32.  return following exit  C t  s  b   2  2 
33.  ; following }  T       1   
34. Missing return for non-void   C t       18   
35. Non-terminating recursive calls Function calls itself    (s) K  I   1 1 
36.  Recursion after a number of function calls    (s) K  I   1 1 
37. Format %s and int  C t  (s) e    1  1 
38.  Too many arguments  C t  s     1   
39.  Too few arguments  C t  s     1   
40. Duplicate symbol Data declaration in h-file  (L) D       47   
41.  Multiple data declaration in c-file  (L) D       3   
42. Incompatible types in assignment Inconsistent function pointer  T       3   
43. Incompatible parameter lists and 

function declaration 
Function return type  C t       6   

44.  Parameter type mix (declaration and call)  C t       2   
45.  Mismatch of parameter count  D       1   



 
 

  

# Fault Type Fault Sub-Type 
Static Analysis Dynamic Analysis Observed Faults 

Detection Method Stimulation static dynamic 
Syntax 

Analysis 
Semantic 
Analysis 

Dataflow 
Analysis 

Symbolic 
Execution 

Anomaly 
Monitoring 

Coverage 
Analysis Data Other 

 
min max 

46. Missing includes Missing declarations C C t       1   
47. Name overloading Struct and data name  D       57   
48. Decisions Too large list of decisions  D       1   
49. Total fault types 48            

50. Total faults, observed 314   270 44 122 
51. without DCRTT contribution to static analysis 159 44 122 
52. 

Total fault types covered  
contribution from “classical” static 
analysis tools, only 

abs, min   2 18 2 20     
Gray cells in 

col. “min” above: 
this fault type was 
only covered by 

dynamic analysis / 
testing 

 

Gray numbers 
represent values 

which are identical 
with values in 
previous lines. 

53. abs, max 3 18 6 30     

54. %, min 4,17 37,5 4,17 41,67    

55. %, max 6,25 37,5 12,5 62,5   

56. 

Total fault types covered  
contribution from DCRTT, only 

abs, min    7   19 2 9 1 

57. abs, max  7   21 10 9 1 

58. %, min  14,58   39,58 4,17 
 

59. %, max  14,58   42,86 20,83 

60. 

Total fault types covered  
all contributions 

abs, min   2 25 2 20 19 2 9 1 

61. abs, max 3 25 6 30 21 10 9 1 

62. %, min 4,17 52,08 4,17 41,67 39,58 4,17  

63. %, max 6,25 51,02 12,5 62,5 42,86 20,83 

64. 
Total faults covered  
contribution from “classical” static 
analysis tools, only 

abs, min   3 152 4 85     

65. abs, max 4 152 9 121     

66. %, min 0,96 48,41 1,27 27,07    

67. %, max 1,27 48,41 2,87 38,54   

68. 

Total faults covered 
contribution from DCRTT, only 

abs, min    111   41 3 27 1 

69. abs, max  111   45 77 27 1 

70. %, min  35,35   13,06 0,96  

71. %, max  35,35   14,33 24,52 

72. 

Total faults covered 
all contributions 

abs, min   3 263 4 85 41 3 27 1 

73. abs, max 4 263 9 121 45 77 27 1 

74. %, min 0,96 83,76 1,27 27,07 13,06 0,96  

75. %, max 1,27 83,76 2,87 38,54 14,33 24,52 



 

contribution 
from 

classical 
static 

analysis, 
not counting 

symbolic 
execution 

 

contribution 
from 

DCRTT 
 

contribution 
from all 

strategies, 
not counting 

symbolic 
execution 

 

Fig. 
  

 

  

Fig. 8-1: Fault Coverage vs. Methods and Tools 
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-2: Fault Type Coverage vs. Methods and Tools 

 


