

Tool-Guided Domain-Specific, Systematic Requirements Management

Rainer Gerlich, Ralf Gerlich

BSSE System and Software Engineering, Auf dem Ruhbuehl 181,
88090 Immenstaad, Germany, Phone +49/7545/91.12.58, Mobile +49/171/80.20.659, +49/178/76.06.129

Fax +49/7545/91.12.40, e-mail:Rainer.Gerlich@bsse.biz, Ralf.Gerlich@bsse.biz URL: http://www.bsse.biz

ABSTRACT:
The importance of the quality of requirements for
successful execution and completion of a project from a
technical and contractual point of view is being
recognized more and more. Many methods are targeted
to improve the support for collecting requirements
while still focusing on natural language. However, the
ambiguities in the semantics of natural language are the
biggest obstacles towards success. The approach
presented in this paper focuses on the elements of a
domain while keeping the expressiveness of natural
names and terms and introducing clear semantics. This
brings the advantage that immediate verification of the
human-provided inputs is possible, immediate
contributions to validation are available and
inconsistencies can be detected by a tool immediately.
This leads to guidance of an engineer by a tool towards
consistent, complete and correct requirements –
requirements of high quality – and eases maintenance
for the same reasons. As most of the complexity is
handled by the tool due to its good knowledge on the
domain, the approach is scalable towards large
specifications. Several examples of application domains
are described which illustrate the universality and
feasibility of the approach across domain boundaries.

1 INTRODUCTION
Historically, requirements were expressed in natural
language. In the perspective of the need of higher
quality and larger systems, the process of requirements
elicitation and collection was improved – while still
relying on natural language.

The HOOD group [1] proposes a project-specific
knowledge database for syntactic parts of the natural
language which shall enforce convergence of terms and
give hints on problem solution. R. Melchisedech [2]
applies rules to elements of natural language upon
which a tool can perform verification. The method and
tool from the SOPHIST group [3] introduce rules which
limit the syntax of natural language and shall avoid
typical problems in understanding and interpreting text.

DOORS [4] is a tool which manages textual
requirements provided in natural language. Support is
given to the generation of documentation, management
of dependencies between requirements, collaboration of
different teams at multiple sites. Polarion [5] provides a

similar, but web-based solution with extended
capabilities regarding administration of textual
requirements. Requisite Pro [6] and CaliberRM� are
also tools for management of requirements with similar
capabilities.

All these tools have overlapping and complementary
capabilities regarding requirements expressed in natural
language.

In order to overcome above issues of natural language,
some methods try to extend the degree of formality,
though replicating the approach of natural language
while aiming towards “universality” as main goal.

UML [8], the Unified Modelling Language, is also
applied to requirements management. In this case
requirements are expressed as UML models. To some
degree elements of UML language replace natural
language. But major parts may be still expressed in
natural language, e.g. as notes or documentation text –
and this is common practice. The Object Constraint
Language (being part of UML) applies higher order
logic to express formal constraints and thereby inherits
all the usability and decidability issues from this class of
logic languages.

SysML [9], the Systems Modelling Language, addresses
the specification of systems rather than software. Mostly
derived from UML, it contains new constructs for
modelling constraints and their interdependencies. Still,
proper support for formal specification of non-
functional requirements is missing, so that such
requirements are mostly described using natural
language. Dependencies and relations between the
requirements again have to be managed and maintained
manually, leading to possible inconsistency issues as the
specification evolves.

Simple text processing software such as Microsoft�
Word® also needs to be mentioned in the context of
collecting requirements. Here an engineer can – or is
required to – define own organisation schemes.

Structural markup and semantic preloading [10] can be
used to give plain text a structure allowing at least some
extraction of formal information. Still, the markup
needs to be manually inserted and maintained, which is
not a trivial task. It therefore can also deviate and even
distract from the actual formal content of the marked
plain text.

From a principal point of view classical methods of
requirements engineering focusing on natural language
can be divided into constructive and analytical methods.
Constructive methods constrain an engineer when
forming the textual requirements. Analytical methods
analyze textual requirements on conformance with
given rules. Hence, analytical methods bring in a first
attempt of verification and quality metrics.

Common to all above methods and tools is that they rely
on natural language and – thereby – support a large
scope of application domains. Latter intention is fully in
line with UML aiming to support the full spectrum of
application domains.

However, the universality of these approaches
introduces or preserves problems of classical extraction,
computability and decidability, not allowing efficient or
even complete verification or derivation of
consequences. Universality therefore is in conflict with
verification goals – from the perspective of scalability
and automated quality assessments.

Also, these methods still need a lot of human
intervention, which leads to poor efficiency, low
scalability and high costs, which are specifically visible
when systems are becoming larger and more complex.
From the perspective of verification and validation such
classical tools do not contribute much.

The method described in this paper combines the
capabilities of constructive and analytical approaches
while fully supporting verification based on easily
computable metrics and – in consequence – automated
quality assessments which can be performed by an
automaton itself. This ensures scalability up to rather
large systems and high efficiency of the engineering
process including maintenance as well.

2 REQUIREMENTS MANAGEMENT

2.1 Definition
In our understanding “Requirements Management”
(RM) is the discipline which implies

• requirements engineering (RE) covering
o structuring,
o analysis,
o collection / elicitation,
o verification and validation of requirements

• administration of requirements
o tracing
o linking

• organisation of the cooperation of involved
engineers by support of collaboration
o multi-team capability
o multi-site capability

• contractual management including

o assignment of requirements to contractual
entities,

o tracing and control within and across
contractual boundaries,

o action item tracking.

2.2 Status
All of the methods and tools mentioned above mainly
concentrate on aspects of administration and
organisation. Collection of requirements is supported,
only, by provision of containers for text. For all other
features of RM, the engineer is left alone, especially for
the quality aspects. Though the quality of requirements
is – or should be – an important matter of RM, such
tools badly support this aspect. It is left to an engineer to
define appropriate methods on top of such a tool, though
in most cases it is hard to do in practice.

Once a set of requirements has been established, it has
to be maintained. This requires capabilities for
monitoring changes and efficient means for repeated
quality assessments.

Conventional tools well support tracing of changes per
requirement. However, as linking of requirements is a
manual task, links may become invalid. This has
consequences on consistency and on efficiency. Every
invalid link needs to be detected and updated manually
to obtain consistency.

Moreover, as the contents of a requirement – natural
text – cannot be checked by a tool, conflicting
requirements can only be detected by manual
inspection.

Several tools support collaboration. However, it is
questionable whether full visibility from everybody on
every requirement is really required. From an
organisational point of view, especially regarding
responsibilities, access should be limited depending on
the role of a team member. Hence, global visibility is
not a must, but dedicated access rights on higher-order
elements of a specification is recommended as being
more efficient due to reduction of interaction
possibilities not really needed.

Rarely supported by tools is contractual management,
an exception is e.g. the Polarion tool.

3 SYSTEMATIC REQUIREMENTS
MANAGEMENT
The method for Systematic Requirements Engineering
(SRM) is based on the following major objectives:

1. to focus on a certain domain,

2. to find and apply rules which can be checked
mechanically.

Due to objective 1, background information is available
which can be used to establish the rules satisfying the
needs of automation. This also has positive
consequences on maintenance: any change can
immediately be analysed and verified.

The applied rules contribute in twofold manner to
requirements engineering (RE):

• they guide an engineer during the construction
or update of requirements, and

• they allow to analyse the provided requirements
by an automaton.

Hence, the approach combines constructive and
analytical issues and allows to assign the issues of
quality assessment to a tool. Administration of
requirements could be fully automated, contractual
management can be supported and linked with technical
requirements. Collaboration is a matter of organisation
of the considered domain into proper entities.

An important general issue is the support of the full
application domain chosen and of the freedom to
introduce natural words and terms – while introducing a
formal approach based on a meta-model.

3.1 Universality or Specialisation?
Due its importance for the quality assessment and the
efficiency of the approach, the issue of specialisation is
explained in more detail.

3.1.1 Natural Languages
Natural language is most easily used for requirements
description, as it is pre-established and quite expressive
as it is a matter of daily life.

Its main disadvantages are, however, its ambiguity and
– partially a consequence thereof – its inaccessibility to
mechanical extraction of information. The ambiguity is
present both in syntactical and semantic structure –
pronouns, ambiguous references – but also in the
different meanings of words dependent on context or
reader’s background information.

Already flexion of words, plural and singular, irregular
verbs, and other basic lexical characteristics of natural
language introduce nearly insurmountable problems for
parsing and lexical analysis.

Even though there are what in modern modelling
terminology would be called universal meta-meta-
models of natural language[11] establishing a formal
theory of the logical meaning of language, no concrete
and at the same time universal instantiation of such a
meta-meta-model for a given language is known to the
authors.

Experiments in the area of computer game development
have shown that semi-natural formalised language can
be used to describe facts and relationships used to
generate interactive text adventures[12]. However, the
complexity of such analysis tools indicates that the
effort is probably not affordable, not for a specialised
and certainly not for a universal approach.

The main advantage against structured models, as used
in UML, SysML, AADL [13] and other formal
languages, would be the ease of use due to the natural
feeling, a specification language based on text has.
Engineers would be able to use the specification form
seemingly without training.

In order to achieve such a natural feel, highly
sophisticated parsers need to be developed. Further, the
presumption on the lack of necessity of training does
not hold in practice. Even though the language feels
natural, there still is a computer system behind which
formally processes the language. Without an
understanding of the formal meaning of the language
and without proper self-discipline in the use and
introduction of new terms, the quality of specifications
cannot be raised, similar to the need for glossaries in
other natural-language-based specification methods.

All methods based on natural language imply
universality regarding the supported application
domain: everything can – unsurprisingly – be well
expressed in natural language. The problem of
extracting what is expressed in a formal way, however,
remains unsolved.

In fact, what was considered above as a major
advantage of natural specification languages – no need
to learn the language – is more than compensated in
practice by the big disadvantage of needing much
additional support and training on how to apply the
language for a specification in order to achieve high
quality.

3.1.2 Modelling Languages
There are some modelling languages, such as UML or
SysML, which target formalisation and universality at
the same time.

At first sight universality of a formalised language bears
the advantage that a single language and toolset can
support all possible application domains, leading to the
expectation of lower investment for tools and training,
as well as implicit standardisation of the industry.

In contrast, domain-specific languages are expected to
be costly in design and maintenance of both the
language itself and the toolset required to support it, and
to lead to fragmentation, as every supplier is expected to
have its own language.

Looking deeper, neither is the case. In order to enable a
tool to analyse, verify, simulate or support to validate a
model or a set of requirements, i.e. to well support
quality issues, all the necessary information must

1. be automatically extractable from the model,

2. be available in such a way that correctness is
decidable and relevant consequences are
computable with algorithms of low runtime
and implementation complexity, and

3. actually be used by a tool.

Therefore the information must be either explicitly
present in the model or accessible by static analysis,
which in turn is based on the semantics as defined by
the meta-model.

A universal meta-model provides no specific
information about any application area, so the
information about the domain must be made explicit by
the engineer. This increases the workload, the size and
complexity of the model – as seen by the engineer – and
the probability for inconsistencies or incompleteness in
areas which are not governed by the meta-model and
therefore cannot be found or hinted at by the tool. In
summary, the level of abstraction – as representative for
an application domain – is not raised, as the
specification either has to be spelt out in detail, not
much different from programming, or remains
incomplete.

Often, profiling is considered an appropriate solution for
this dilemma.

But even then, the tool is not prepared for the relevant
issues of the application domain and must be adapted,
leading to additional development and maintenance
effort and costs.

Further, for universal languages like UML or SysML –
though superior to natural language regarding formality
– training costs and effort are rather high. The
specifications of either language are sized at several
hundreds of pages explaining complex structures and
their interdependencies – a consequence of the demand
for universality. For the largest part these semantics are
not formal but rather presented in plain text, oriented
around known formal concepts but not completely
adopting them [14].

The size and complexity are consequences of the need
for universality. The requirements of all relevant
application domains need to be met, even if these needs
are merely overlapping.

Reasonable means to simplify the use of a universal
language is tailoring or customizing. However, still for
each application all the language elements need to be
analysed and understood before a decision can be made

which aspects need to be taken care of and which can be
ignored for the relevant domain.

This adds to the cost and effort required to devise and
train the methods for expressing the needs of the target
domain in a universal language framework not designed
for such a task. Consequently, domain experts are
forced to learn a “foreign” language to express their
needs, increasing the overall complexity.

All this does not even take into account that the UML is
known to be incomplete[14] and inconsistent [15], both
intentionally – in the so-called Semantic Variability
Points – and by accident. Therefore the underlying
theory of correct systems is neither sound nor complete,
introducing an insurmountable barrier for verification or
validation by derivation of consequences (“ex
contradictione quodlibet”).

Most of these inconsistencies are non-trivial and require
detailed insight and research into the specification and
its consequences. However, if ignored, they can lead to
serious misinterpretations of the specification.
Additionally, some of the semantics – such as “run-to-
completion”-semantics or “zero execution time” – are
difficult to implement or far from reality, thereby
masking actual issues of a specification and risks
inherent in or introduced for the further phases of a
project based on such a specification.

The tool support for UML2 in most cases does not even
reach OMG compliance Level 0 [16], the lowest level of
support, and no currently known tool supports the
UML2 completely. Selecting a tool supporting the
portions relevant for a given project or domain is a
complex task. The level of support for verification by
the available tools is not known – as this feature still
does not seem to be of major interest, but can be
assumed to be insufficient both due to the universality
of the language and practical experience [17]. The lack
of support can mostly be attributed to the complexity
and size of the specification, for which full support is
not affordable.

In contrast, a domain-specific language does not have to
contain elements which are not needed in the domain.
Further, the domain experts already know the elements
of their domain and will easily recognize them in the
language, especially when the language is designed to
meet the culture of the addressed engineers.
Consequently, design, documentation and training costs
can be much lower than for universal languages
respectively profiles, and the complexity of such a
specialised language does not even by far reach that of a
universal language.

While being less complex in total, the meta-model of a
domain-specific language may implicitly contain a large
amount of additional information about the domain
itself, which can be used by tools for verification,

simulation and support for validation, e.g. by automatic
construction of different views on the specification and
visualisation of hidden information, implicitly included
but needed for validation. Due to the specialisation,
previously non-decidable verification problems can
become decidable and non-trivially computable issues
can become much easier to compute.

In addition, today there is a vast set of tools available as
Open Source Software specifically for designing and
implementing domain-specific languages, ranging from
the Eclipse Modelling Facility (EMF) via the Graph
Editing Framework (GEF), the Graph Modelling
Framework (GMF) or transformation utilities such as
ATL to parser generators such as ANTLR and code
generation engines such as Java Emitter Templates
(JET), and many more.

After all, the decision for a domain-specific language
does not mean that users have to bear the costs each on
their own or that fragmentation of an industry ensues.
The similarities between suppliers in the same domain
can lead to a common domain-specific effort just the
same as it can lead to the design of common UML or
SysML profiles.

3.2 The Benefits of an SRM Meta-Model
A meta-model for Systematic Requirements
Management (SRM) is based on the rules and
characteristic elements as identified for the chosen
domain from what engineers are using. In consequence,
such characteristic elements are represented in first-
class types of the meta-model, and the rules become
statically or dynamically checked constraints on the
elements of a model.

3.2.1 Organisation
An important consequence – especially regarding
efficiency – is that the rules are inherently relating such
types and all instances of these types automatically to
each other – where the instances are introduced by an
engineer in the context of requirements elicitation. This
saves a lot of effort compared to classical approaches,
where such dependencies need to be established and
maintained manually for every new element and for
each update.

The problem of constraining the allowed syntax,
semantics and terms as known from use of natural
language is solved by introducing a cleanly structured
form of input, not involving any natural language at all,
as well as specialised element types. Each such type
may have attributes, some of which are optional, others
are mandatory to be specified, and yet others may be
optional depending on the context established by the
ruleset.

Dictionaries and databases – to be maintained manually
– are also no longer needed, because the meta-model
allows the tool to manage and check the requirements –
silently if no error is reported, and noisily if an error is
introduced thereby guiding the engineer. The tool itself
can establish and maintain the database in accordance
with the inputs from an engineer, based on the
information on relations from the meta-model.

An engineer is not constrained regarding the terms (s)he
wants to apply, but (s)he is constrained regarding the
rules which ensure correctness, completeness and
consistency. Metrics on the quality can be defined based
on the rules and their potential violation. This way an
engineer is guided to requirements of high quality while
not being constrained in size and complexity.

In practice, it was observed that flagging errors due to
violation of such rules enforces engineers to think about
what they did. In many cases their attention was drawn
to weaknesses of their inputs which cannot be detected
by any formal method as this is a matter of requirements
validation.

For these cases detection of weaknesses in formal parts
lead to an improvement of the quality in areas not
assessable by a tool. In fact, this is compliant with the
well-known rule: “when there is one error detected, in
most cases there will be more errors”. Hence, when
increasing the number of detected errors by a formal
approach, the chance to detect more errors is very high.

3.2.2 User Interface
The meta-model represents a unique, unambiguous
description of the functionality of a domain. In
consequence, the requested information is not
constrained to a certain format. As an SRM meta-model
is a formal model, any input notation compliant with the
meta-model can be used. To allow an engineer to
express the requirements as instances of the elements
types, usually templates are provided. Templates may
relate several types with each other or request the
attributes of a an instance of a type.

This brings a big advantage compared to the classical
approaches. They urge a user to apply a format suitable
for the tool, but possibly – in most cases clearly – not
suitable for the user: (s)he needs to learn the notation of
the tool which implies increased effort and a risk of
misunderstanding what is specified.

Quite differently, an SRM tool may adapt to the user’s
world at little effort. Only the templates need to be
changed when adapting, and a transformation of the
specific notation to the standard one is required.

The essential advantage is: not the engineer has to
transform ideas from his/her world into the (internal)
notation of the tool manually, but the tool does it. This

saves a lot of effort, decreases significantly the
complexity, the risk to fail and the time-to-completion.

3.3 SRM Tools
For every intended application domain a meta-model
and a tool-chain need to be established. This looks like
big effort, but it is not in practice. As the ordering
principle of a meta-model is similar for different
application domains, major parts of the software can be
reused when the next meta-model needs to be
implemented in a tool-chain.

On a technical level, the advent of Eclipse and its
modelling tools – most notably EMF and ATL – have
lead to a standardisation of meta-model data structure
and interchange formats.

The code for implementation of the data model,
serialisation and notification are provided nearly for free
after the data structures have been specified. Constraints
can be declared in the data model itself and stubs for
verification procedures are provided automatically,
neatly integrating the verification process in a known
environment. Reflection on the data model structure
allows easy integration with transformation and code
generation utilities like ATL and JET.

All of these mechanism remain mainly transparent to
any application using the data model, thereby allowing a
bus of applications working on an interwoven and
integrated set of models, providing a consistent tool-
chain, possibly supplied by different vendors or industry
members. Specialisation towards the needs of an
individual supplier can be as simple as adding another
application to the bus.

4 APPLICATIONS
The approach has been applied to several application
domains and will be applied to more in near future.
Some examples are described below.

4.1 Domain of Communicating Systems and
Processes: System Operations
As domain of “communicating systems and processes”
the large domain of distributed systems is understood
covering e.g. the subdomains of real-time systems,
client-server systems, embedded systems, IT processing
systems. The focal point for modelling is consideration
of system operations.

4.1.1 Modelling Elements
The principal elements needed to express requirements
in this domain are: processes, processors,
communication channels and protocols, messages,
states, resource utilization, user roles, actions,

reliability, availability, safety and security constraints,
etc.

In this domain the main part of requirements can be
grouped around activities which can be expressed as
Input ⇒ Processing ⇒ Output, which is the (general)
IPO principle. It is a generic approach which explains
that a wide spectrum of subdomains can be supported.

Above elements allow an engineer to spawn every
system from this domain. The tool guides the engineer
in which pieces of information need to be provided and
gives a feedback on the achieved quality. Due to the
meta-model the tool can conclude on completeness,
consistency and correctness and report on any non-
conformance.

4.1.2 Provided Information
According to the users’ world and criteria templates
were expressed in spreadsheets which also well support
the needs of collaboration.

Templates are provided for

• the activities, allowing to express a sequence of
activities, either at the whole or in parts, possibly
spread over several sheets and sub-sheets
(tables),

• data, allowing to express basic or structured data
and the related types and numerical
representations,

• access rights and roles,

• the other types listed above and their attributes,

• the requested deliverables like documents and
their providers,

• applicable and reference entities.

4.1.3 Reporting
The inputs are checked on conformance with the rules
and reports are generated.

Errors are reported according to the severity level. For
each error an explanation and the location in the input
sheets is given. Also, an error is marked in red in the
sheet and the explanation is displayed when the cursor
is in the input field.

Different views on the system are generated – in detail
and in summary, as tables, text or graphics – such as
(non-exhaustive list):

• a behavioural view showing the communication
between processes,

• a database view showing the data structures,

• filtered information focusing on a certain aspect
like de-facto process interfaces as derived from
the process description,

• basic information on the attributes of an
instance.

An important benefit is the derivation of “hidden”
information, which is information included in the inputs
but not really visible for an engineer. As an example
consider performance figures: from the specified
occurrence of a message the occurrence of following
messages can be derived, from the occurrences, the size
of data and the used channel the channel load can be
calculated and so on.

This is important because constraints (limits) may be
specified, which are not directly compatible with the
figures specified – as it is for the channel load. The
great benefit of a sound and specialised meta-model is
that it allows to derive such information immediately
when requested for every item needed.

4.1.4 Link to Project Management
As an extension to the technical domain, the meta-
model supports a link to project management:

1. For every requirement an action, e.g. for
maintenance, an actor, a deadline, the status of
progress and the related work package can be
given.

2. Every requirement can be

a. classified as being part of the basic version,
an extension or a certain release.

b. marked as an assumption, not being
confirmed yet.

c. marked as needing principal clarification.

Reports on the aspects of project management are
generated according to a number of criteria.

An example for a simple quality gate rules imposed on a
specification are: no assumptions may be present any
more and no error may be present.

4.1.5 Support of Concepts
As activities are expressed via the IPO-formalism, the
organisation of requirements easily allows an
implementation of SOA services (SOA = Service-
Oriented Architecture): every exchanged message is a
candidate for a SOA service.

Also, modularisation (componentization) and object-
orientation of the requirements is inherently enforced by
the applied organization principle.

4.1.6 Derivation of Test Cases
Due to the IPO-approach test cases for system level
tests can be derived very easily – as this can be done
automatically by the tool.

Every input initiating a sequence of actions identifies
such a test case. Consequently, the tool can list all such
cases together with the needed and produced data,
involved processes, processors and (human) roles.

4.1.7 Examples of Application
Practical results from real projects are given below
(non-exhaustive list).

4.1.7.1 Quality Assessment 1 (QA2)
The quality of requirements expressed in MS-Word had
to be assessed based on the metrics provided by the
SRM tool from BSSE.

About 30 documents amounting to about 1500 pages in
total were provided. The requirements were expressed
in text, mainly, and to a small part in tables. About 100
man-months (estimated to about 14000 man-hours)
were spent.

The customer asked for a feedback on the quality
because evaluation of the text was impossible in
practice. The contents of the documents was analysed
manually and converted into an input to the SRM tool.
This yielded about

• 1000 (formal) requirements (SRM entities)

• 300 textual requirements which could not be
converted due to unclear text

• 585 errors in total (according to severity: 330
low , 70 medium, 185 high)

In a cross-check of a sample of these errors the related
deficiencies were also found in the original documents.
The conclusion given to the customer was: the quality is
very poor. Due to the high number of errors
(requirements / errors ≈ 2) and open questions (300) no
real conclusion on the degree of completeness could be
made at all. As the project was aborted, no further data
could be derived.

4.1.7.2 Quality Assessment 2 (QA2)
A customer asked for a quality assessment of a
specification of an inteded SOA system expressed in a
UML model. It consisted of more than 5600 elements
(UML entities), an outcome of a project which
consumed about 150 man-years (estimated to about
200.000 man-hours). Probably, more elements were
included, but the XMI-file could not be read completely,
possibly due to incompatibilities of XMI-syntax or non-
conformances with UML syntax in the model.

Modelling focused on Activity Diagrams to express the
functionality / behaviour of the system. About 255
activities of business processes were described.

The model contents on inspection indicated lack of
understanding on the semantic of UML2 activities, as
for example alternative entries into activity chains were
described in such a way that UML2 semantic dictates
them to be in fact parallel thereby in conflict with what
was intended.

Further, no use was made to express the logic flow, so
that the distribution of responsibility was unclear and
communication requirements could not be derived. As a
consequence, the identification of service candidates for
a SOA design would have required high additional
effort, as the natural separation of concerns due to
inherent responsibility borders could not be considered
automatically.

It is to be noted that the modellers were previously
thoroughly trained in multi-week courses by the vendor
of the UML2 tool, not only regarding the tool but also
regarding the application of the UML2. Necessary
tailoring of the modelling environment and applicable
rules did not take place.

4.1.7.3 PLM Application
A PLM (Product Lifecycle Management) application
was specified with the SRM tool. All processes needed
to be defined for product definition (technical and
commercial aspects, manufacturing), shop portal and
control of the delivery (including fulfilment and
complaint management).

In a first iteration, about 1000 requirements were
collected at an effort of about 1000 man-hours.

4.1.7.4 Shop / Portal Application
The application covered the operations of an Internet
portal from selection and configuration of a (set of)
product(s), purchase order, billing, and delivery to
payment at the end. About 300 requirements were
collected with the SRM tool at an effort of about 100
man-hours.

4.1.7.5 Bank Transfer
All operations needed to complete a bank transfer were
specified with the SRM tool: ~400 requirements at an
effort of about 50 man-hours.

4.1.7.6 Embedded System
A rather complex real-time system of about 35
processors spread over 2 processors was specified by an
SRM tool supporting “executable specifications”. From
this specification binary code was automatically
generated by the tool. The system passed ESA
acceptance tests in 2003 and is now successfully
operated on-board of ISS.

About 5000 requirements were expressed in the model
at an estimated effort of about 1000 man-hours.

4.1.8 Efficiency Considerations
The following table Tab. 4-1 shows efficiency figures
for the examples described above.

The figures should be interpreted as an indication of a
trend, not as figures of high precision, because the effort
estimation was not exactly tracked but was a matter of a
rough estimation.

From a principal point of view the size of the project
impacts the efficiency. Therefore for small sets of
requirements the efficiency is higher, though the
efficiency itself also depends on the type of the
application and the experience and knowledge of the
engineers.

Example Tool # RQs
Effort
/ m-h

Efficiency
/ (RQ / m-h)

QA1 Word 1000 14000 0.07
QA2 UML ~5600 200000 ~ 0.028
PLM SRM 1000 1000 1
Shop SRM 300 100 3
Bank Trf. SRM 400 50 8
Embedded SRM 5000 1000 5

Tab. 4-1: Efficiency Figures

4.2 Cross-System Engineering: System
Synthesis
The approach described in Sect. 4.1 applies to the
operational part of a system specification. However,
more properties of a system need to be specified such as
its mechanical structure, (electronic/electric) hardware,
thermal properties, interfaces to its environment etc.

For a mechanical structure its geometrical properties,
maximum weight, surface properties, stiffness etc. need
to be specified. As thermal properties the heat load, the
maximum load or the heat conductance need to be
given, and so on.

Moreover, dependencies, for example, between
structural and thermal properties or between structural
components may exist. It is of high importance to
achieve consistent requirements for all these aspects,
and even more important, to keep them consistent when
requirements evolve and during maintenance.

Domain-specific meta-models can take care of the needs
of the structural and thermal (and other) domains and
can establish dependencies across domain boundaries.
Another meta-model can connect the meta-models of
the subsystem domains on system-level. This allows to
deal with the different domains in an integrated manner

such that a tool automatically can assess on the quality
of the whole set of requirements or, as far as validation
is concerned, provide proper support for such an
assessment.

4.3 Mission Definition
High-level requirements such as defining a mission
require a different meta-model although they are
addressing aspects described in Sect. 4.1 and 4.2.
However, at this stage the intention is not to specify
system operations or system decomposition completely,
but only to some part. Hence, a check on completeness
like in above cases would fail.

More likely, the requirements at this stage will
implicitly address requirements of the domains
mentioned above, and possibly one requirement will
address several requirements of one or more sub-
domains. This leads to the issue of tracking whether a
high-level requirement is considered later by sub-
domain requirements – in a consistent manner.

This issue can also be solved by an appropriate meta-
model, relating an early phase with later phases of a
project, while allowing a tool to take over tracing of
requirements which are not expressed by an engineer,
but are derived by the tool accordingly.

On each dedicated level of system decomposition the
relevant figures can be provided immediately, such as
budgets which need to be derived from sub-budgets and
have to be compared with limits.

4.4 Project Management
Though project management is quite different from the
(technical) applications described above, it also may be
supported by a meta-model to check project planning.
Instead of technical requirements work packages and
their contents and dependencies are the elements of
modelling, verification and validation.

Work packages and their scheduling may become
complex rather soon due to explicit or implicit
dependencies between work packages and on (human,
technical or organisational) resources.

Implicit dependencies arise from needed inputs and
produced outputs and their deadlines, allocated /
estimated effort, availability of resources.

Element types of the meta-model would be the elements
already mentioned, and in addition (non-exhaustive list)
costs, hourly rates of personnel, rates of technical
resources, internal tasks of a work package,
organisational units and so on.

As a result, all the dependencies and constraints can be
checked. Derived information is e.g.: costs and cost
distribution, work load of personnel, statistics on

complexity of planning, and an input for a conventional
planning tool like Microsoft� Project®.

As an example, the following quantities were
successfully processed:

• 36 work packages including 171 activities,

• 26 employees involved,

• 178 deliverables or contributions to them,
recorded as an output from a work package.

The effort to define the contents of the planning and to
get it free of errors, amounts to approximately 200 man-
hours which yields about 6 hours per work package to
get a consistent and complex work plan.

5 EXAMPLE INPUT AND OUTPUT
To be provided in the full paper

6 CONCLUSIONS
The discussion and the presented examples and figures
show that the quality of a specification and the
efficiency to establish it can be significantly improved
when applying a systematic approach to requirements
management. The achieved improvements are a
consequence of applying a domain-specific approach
which allows to benefit from domain-specific
knowledge and to go beyond pure administration and
content management of requirements.

Though limited to a certain domain there exists an
infinite number of applications which makes it
reasonable to establish specific tools and not to rely on
universal tools. Building a new domain-specific tool
once another tool is already available is much cheaper
than doing it the first time because the mechanisms to
be implemented are quite similar for different domains
as the examples on IT applications and project
management demonstrate.

7 REFERENCES
[1] HOOD, DESIRe®,Dynamic Expert System for

Improving Requirements, http://www.hood-
group.com/

[2] ADMIRE, Advanced Management of Informal
Requirements, http://www.melchisedech.net

[3] SOPHISTGmbH, http://www.sophist.de/

[4] DOORS, http://www-
01.ibm.com/software/awdtools/doors/

[5] Polarion® Requirements™,
http://www.polarion.com

[6] Requisite Pro, IBM, http://www-
01.ibm.com/software/awdtools/reqpro/

[7] CaliberRM™, Borland,
http://www.borland.com/us/products/caliber/index
.html

[8] UML, Unified Modelling Language, OMG,
http://www.uml.org/

[9] SysML, Systems Modelling Language, OMG,
http://www.omgsysml.org/

[10] M. Kohlhase: Using LaTeX as a Semantic Markup
Format; pp. 279–304 in Mathematics in Computer
Science; Birkhäuser 2008

[11] G. Frege: Funktion - Begriff – Bedeutung. Mark
Textor (ed.), Göttingen: Vandenhoeck &
Ruprecht, 2002.

[12] G. Nelson: Natural Language, Semantic Analysis
and Interactive Fiction, 2005. Available at
http://inform7.com/learn/documents/WhitePaper.p
df, last revised April 10th, 2006.

[13] AADL, Architecture Analysis and Design
Language, SAE (Society of Automotive
Engineers), http://www.aadl.info/

[14] T. Schattkowsky and A. Forster: On the Pitfalls of
UML 2 Activity Modeling. In Proceedings of the
international Workshop on Modeling in Software
Engineering (May 20 - 26, 2007). International
Conference on Software Engineering. IEEE
Computer Society, Washington, DC

[15] H. Störrle and J.H. Hausmann: Towards a Formal
Semantics of UML 2.0 Activities. In Proc.
Software Engineering 2005, 2005.

[16] H. Eichelberger, Y. Eldogan and K. Schmid: A
Comprehensive Survey of UML Compliance in
Current Modelling Tools. In Proc. Software
Engineering 2009, 2009.

[17] R.Gerlich, D.Sigg, R.Gerlich: Model
Transformation in Practice. In Proc. DASIA’07,
Data Systems in Aerospace, managed by
Eurospace, May 2007, Naples, Italy, ESA SP-638

Copyright notice: the contents of this paper is property
of the authors. © 2010 All rights reserved.

