

Lessons Learned on Quality (of) Standards

Rainer Gerlich, Ralf Gerlich

BSSE System and Software Engineering, Auf dem Ruhbuehl 181,

88090 Immenstaad, Germany, Phone +49/7545/91.12.58, Mobile +49/171/80.20.659, +49/178/76.06.129

Fax +49/7545/91.12.40, e-mail:Rainer.Gerlich@bsse.biz, Ralf.Gerlich@bsse.biz URL: http://www.bsse.biz

ABSTRACT:

Standards are used to describe and ensure the quality of

products, services and processes throughout almost all

branches of industry, including the field of software

engineering. Contractors and suppliers are obligated by

their customers and certification authorities to follow a

certain set of standards during development. For

example, a customer can easier actively participate in

and control the contractor’s process when enforcing a

standard process..

However, as with any requirement, a standard may also

impede the contractor or supplier in assuring actual

quality of the product in the sense of fitness for the

purpose intended by the customer.

This is the case when a standard defines specific quality

assurance activities requiring a considerable amount of

effort while other more efficient but equivalent or even

superior approaches are blocked. Then improvement of

the ratio between cost and quality exceeding miniscule

advances is heavily impeded.

While in some parts being too specific in defining the

mechanisms of the enforced process, standards are

sometimes too weak in defining the principles or goals

on control of product quality.

Therefore this paper addresses the following issues: (1)

Which conclusions can be drawn on the quality and

efficiency of a standard? (2) If and how is it possible to

improve or evolve a standard? (3) How well does a

standard guide a user towards high quality of the end

product?

One conclusion is that the analyzed standards do

interfere with technological innovation, though the

standards leave a lot of freedom for concretization and

are understood as technology-independent.

Another conclusion is that standards are not only a

matter of quality but also a matter of competitiveness of

the industry depending on resulting costs and time-to-

market. When the costs induced by a standard are not

adequate to the achievable quality, industry encounters a

significant disadvantage.

1 INTRODUCTION

1.1 Scope

Today, product assurance on software focuses on the

quality of the process rather than on the quality of the

end product. Related software standards such as DO-

178B or ECSS suggest “best practices” but while giving

much freedom for specialisation in a project, they may

be too restrictive regarding technological evolution.

While such freedom may be well appreciated from the

perspective of a project, the question may be raised on

how well the quality of the end product is driven by

such standards and use of new technology is supported

or even encouraged. Further, as standards adherence

imposes costs, another question may be raised on the

efficiency of the process.

The ultimate goal is to get an end product of high

quality at low costs. In the following sections this

potential conflict between costs and quality is discussed

in the context of experience gained with current

standards. The standards we have analyzed are: DO-

178B [1], ECSS E-40 [2] and Q-80 [3], EN9115 [4] and

the ESA ISVV Guide [5] and further ECSS standard

documents on project management.

DO-178B is a standard on “Software Considerations in

Airborne Systems and Equipment Certification”, E-40

on “Space Software Engineering”, Q-80 on “Software

product assurance“, and EN9115 on “Deliverable

Software“ as supplement to EN 9100 [6].

We did not make a full analysis of these standards but

limited the scope to requirements related to verification

and validation and project management and other

matters identified as relevant for our activities.

1.2 Assessment Issues

In order to minimize the impact on industry, standards

intend to define a minimum of activities required to

achieve a certain level of quality. It is evident, that the

higher the quality level is, the more activities have to be

performed. Such activities may be of purely manual

nature or automated based on tools. The share between

manual and automated activities impacts significantly

the costs, meaning the higher the degree of automation

mailto:Ralf.Gerlich@bsse.biz

is, the lower are the costs. Therefore it is extremely

important to which degree standards support reduction

of costs while demanding a high level of quality.

Currently, every domain where safety and dependability

is an issue has its own standards. As long as all

companies apply the same standards, they all produce

under the same conditions. Then the resulting price only

impacts the customers whether they are able or willing

to accept the price level imposed by the standards for

the desired level of quality.

However, if more than one set of standards is applied in

one domain the issue of competition comes in. When

another set of standards supports production at lower

costs and higher quality, such companies will have a

competitive advantage. Therefore, standards should be

considered as a matter of competitiveness in a global

market, and it should be an important issue to know

how efficient standards are in terms of imposed costs

for a given level of quality.

Consequently, standards should be evaluated on how

efficiently they impact quality and costs of the end

product (benchmarking of standards). In this context we

will consider how deterministically a certain standard

will ensure improved quality. E.g. we will analyze a

procedure aiming to increase quality by use of

independent tools (cf. 2.3.1.3).

The evaluation result is that it cannot be proven that the

use of two tools which fulfill the given definition of

“independency” will really lead to higher quality at the

end. There might be a chance but without a precise

definition of the term “independence” in the context of

product quality, an efficient use of tools is impossible.

In the definition of the analyzed standards

“independence” is defined in the context of tool

development but not in the context of quality criteria of

the end product. In this example, standards are based on

conclusions made some decades ago, but they do not

reflect recent findings which allow a clearer picture and

a more precise assessment on tool capabilities.

2 LESSONS LEARNED ON STANDARDS

2.1 Quality and Efficiency Issues

Only very little information is published about the

impact of standards on quality of the end product and

the efficiency of the production process. R. Feldt et al

[7] stated that according to their investigations about

17% of costs were spent on efforts to adhere to the

ECSS standard [8] which did not add any value to the

end product, neither by quality nor by increasing

confidence in the quality. In case of the two highest cost

contributors engineers concluded that about 50% is

adherence cost.

Refering to software engineering terminology “activities

not adding a value to the quality of the end product” can

be seen as similar to “dead code”.This is an issue

tackled by the standards in order to avoid it, with one of

the reasons being maintenance overhead. This raises the

question whether similar requirements of eliminating

“dead activities” should be applied to the standards as

the standards apply to the software development process

in context of a quality management system. If such

requirements are already addressed in the

standardization process, the results obtained by Feldt et

al indicate that a re-evaluation of the success of such

purging would be in order.

When standards impose activities on projects which do

not add a value, this implies wasting of costs and time.

Of course, when a customer makes standards applicable

and does accept to pay for it, the contractor should not

have a problem, especially if he is being paid in man-

hours spent to the project.

However, in a competitive market higher costs and

extended time-to-market may imply loss of contracts.

Therefore it should be worthwhile to think about the

efficiency of a quality management system, where in

our understanding the term “efficiency” means “quality

of the end product” in relation to “costs and time

required to achieve it” (cf. 3.75 in ECSS P-001 [9]).

2.1.1 Definition of Terms

Neither in DO-178B nor in ECSS E-40 and Q-80, ESA

ISVV Guide and EN9115 an explicit definition of the

term “quality” can be found.

In the basic document ISO 9000 [10] and also in 3.160

of P-001 the following definition is given for quality:

"degree to which a set of inherent characteristics

fulfills requirements",

where a requirement can be considered as a need or an

expectation.

Consequently, evaluation of quality requires an

identification of a set of relevant characteristics and a

metrics from which the “degree” can be evaluated. This

should be reflected in the standards, either inherently or

by imposing corresponding measures on the derived

assurance activities.

In P-001 the term “efficiency” is defined as

 “relationship between the result achieved and

the resources used”

which is consistent with our definition given above.

Further analysis will show what are the measures the

standards suggest for quality and efficiency.

2.1.2 Complexity and Understandability

An issue on readability is raised due to making

extensive references to other standards acting as a

supplement. In addition, such links are not visible in the

overall architecture of the respective documents.

Part 2 of the SPICe standard [11] is made applicable in

Q-80 Clause 5.7.2.2. As the whole document is

referenced it is to be assumed that the whole standard is

applicable. It is difficult to check whether requirements

of both documents are compliant and do not overlap.

However, we suppose that such a check has been

performed when the SPICe standard was introduced.

The same applies to Clause 5.2.6.1 on conformances

where ECSS Q-10-09 [12] is made applicable, a

document of roughly 10 pages regarding applicable

requirements.

In Q-80 Clause 5.4.1.1 on supplier selection, reference

is made to ECSS Q-20 [13]

Relationship to both documents is not explicitly shown

in the overall view on “Structure of this Standard”. This

makes it difficult to get an idea on what is really

applicable and where all the information comes from

when trying to understand a standard.

In EN 9115, mainly Sect. 5, many references to EN9100

can be found. This is a consequence of being a

supplement document specializing EN9100 towards

software. In other cases e.g. Sect. 7.2 clarifications for

software are added, but the basic contents is not visible

which is required to fully understand the requirement.

Every user of EN9115 needs to merge both documents

to get a full view on what is made applicable.

It is acceptable to keep visibility on differences between

EN9115 and EN9100 by only placing full text in

EN9115 which differs from EN9100. However, in

context of word processing systems it should not be a

big issue to derive a synthesis and to provide it as a fully

filled-in standard together with the basic document.

Manual merging on the basis of a PDF-file means

duplicating of effort by imposing the synthesis on every

user.

In contrast, DO-178B is self-consistent and does not

make applicable other standards by reference.

In case of source code or software documentation such

references hiding the full context would be classified as

poorly readable and understandable according to the

quality requirements. Moreover, insufficiently

documented links are considered as making

maintenance of the standards difficult.

2.1.3 Control of Product Quality and Efficiency

In this section we analyze the requirements of the
standards regarding product quality and efficiency,
especially how strongly these goals are directly
demanded in the standards.

In the introduction of ECSS P-00 the goal of
standards is defined as:

“The goal of the ECSS Standardization System
is to minimize life cycle cost, while continually
improving the quality, functional integrity and
compatibility of all elements of a project, by
applying common standards for hardware,
software, information and activities in
projects.”

DO-178B states its purpose in Sect. 1.1:

“The purpose of this document is to provide

guidelines for the production of software for

airborne systems and equipment that performs its

intended function with a level of confidence in

safety that complies with airworthiness

requirements. These guidelines are in the form

of:

• Objectives for software life cycle processes.

• Descriptions of activities and design

considerations for achieving those objectives.

• Descriptions of the evidence that indicate

that the objectives have been satisfied.”

2.1.3.1 Product Quality

Clause 3.163 of P-001 defines “quality control” as

“part of quality management focused on fulfilling

quality requirements”

In this context it remains unclear whether control is

applied to product quality or process quality.

DO-178B states in Ch. 8 on the “Quality Assurance

Process”:

“The SQA process assesses the software life

cycle processes and their outputs to obtain

assurance that the objectives are satisfied, that

deficiencies are detected, evaluated, tracked and

resolved, [...]”

and further:

“The objectives of the SQA process are to obtain

assurance that:

a. Software development processes and integral

processes comply with approved software

plans and standards.“

Hence, the quality objectives of the first paragraph,

which are still focusing on the end product in terms of

“deficiencies”, are redirected to process quality by the

following paragraph on the objectives of the SQA

process

The following paragraph states as a further objective of

the SQA process, that

“The transition criteria for the software life

cycle processes are satisfied.”

This may look like a hook for actual product quality

requirements driving the process, as transition criteria

can be defined in such terms. However, transition

criteria in DO-178B are criteria guarding the entry into

parts of the software life cycle process. The examples

given in Sect. 3.3 for such criteria are purely process-

centric:

“[...] that the software verification process

reviews have been performed; the input is an

identified configuration item; and a traceability

analysis has been completed for the input.”

This casts doubts on the conjecture that the objectives of

the DO-178B SQA implicitly focus on or include the

quality of the product instead of the quality of the

process.

But no evidence is given why from “process quality”

directly the “quality of the end product” follows. Also,

no metrics are directly identified by which such

inheritance of quality properties shall be measured and

controlled. This control may happen e.g. on the level of

quality assurance planning but no explicit requirement

was found demanding such measurements on lower

levels regarding product characteristics and

requirements.

The only activities in the processes supporting

measurement of quality of the end product are the

verification and validation processes. However, the

metrics, which can be found in the standards and in

practice, are often related to conformance to standards

rather than to quality of the end product.

However, the ESA ISVV Guide directly focuses on this

goal by aiming to find faults in the end product thereby

complementing ECSS.

2.1.3.2 Efficiency

Only a few requirements to measure the efficiency of
standards can be found. For DO-178B no
requirements were found supporting measurement
of efficiency, at all. DO-178B, according to its own
purpose definition (Sect. 1.1) primarily focuses on
airworthiness requirements. It should be noted,
however, that higher efficiency in the software
development lifecycle may allow introduction of
more demanding safety goals without additional
cost, thus enhancing the airworthiness of systems.

In Sect. 6.2.5 of ECSS Q-80 we found process metrics

in terms of duration and costs.

However, apart from [7] we did not find more published

information on efficiency of standards in terms of

concrete figures. Even if more publications do exist, the

lack of found references may indicate that not many

may exist.

2.1.4 Summary

The standards focus on process quality while it is still

open whether conformance with the process will

inherently ensure similar quality of the end product.

The efficiency of the process in terms of effort and

duration vs. achieved quality of the end product is

insufficiently addressed in all standards analyzed.

Nearly no efficiency figures we did find, so that

conclusions on the degree of efficiency cannot be

drawn, at all, e.g. on how efficiency depends on size and

complexity of a product and how costs will evolve in

future, facing growing size and complexity of software

products.

2.2 Evolution vs. Restrictions

In this section we consider several examples where

improvement of standards may be desirable and discuss

if and how this can be established.

In the course of evolution two cases may arise regarding

evolution of standards from a principal point of view:

• new methods are in conflict with current

standards, or

• they may be considered as an extension /

enhancement of current standards.

There is a third case between both: new development

results may not be in conflict with the general standards

and be considered as an enhancement or a variation, but

they may be in conflict with customized standards on

lower level which have become de-facto standards.

In any of the cases above a software supplier will have a

problem with liability or contractual constraints. When

the production process deviates from the standard it is

up to the supplier to demonstrate that the modified

process is superior and will not become a source of

quality degradation. Obviously, this is an obstacle

preventing suppliers from modifications, even if quality

is enhanced by the improvement. This is especially an

issue when process requirements are driven by

certification authorities – as is the case in DO-178B.

Here, non-compliance – even without any negative

impact on the actual airworthiness – may lead to a risk

just by itself, namely the risk of failure of certification

and thus barred market entry for the product.

If a supplier is part of a supplier hierarchy, confirmation

is required on conformance with contractually imposed

standards already when submitting a proposal,

otherwise the supplier may not enter the evaluation

phase at all.

Therefore the question is how the conflict between the

goals of conformance and evolution can be solved,

especially, how the maturity of the proposed evolution

can be demonstrated representatively without applying

it in an actual project driven by conformance

requirements on the current process.

By two examples we will show what are the obstacles in

detail and how the related issues may be solved.

According to ECSS Q-80 process evolution is part of

the general process. Clause 5.7.3.1.a states:

“The results of the assessment shall be used as

feedback to improve as necessary the performed

processes, to recommend changes in the

direction of the project, and to determine

technology advancement needs.“

Clause 5.7.3.2.a states that the process improvement

shall be conducted according to a documented process.

In practice, this implies that the improvement should be

exercised in a separate activity and not in the course of a

project due to the constraining project schedule.

Such separate activities often take the form of a study of

reduced scope. The consequently reduced

representativity may lead (1) to acceptance of

modifications which have shown improvements in the

study but are not mature enough in practice, or (2) the

wrongful rejection of actual improvements due to non-

representative conditions leading to doubts in the results

of the study, even if those are positive.

DO-178B – like ECSS Q-80 – considers process

improvements as part of the Software Quality

Assurance Plan but defines only a form for

documentation of suggested – project specific or general

– improvements. In its wording DO178B takes “should”

instead of “shall” to indicate openness for

improvements. But in practice it may as difficult as in

case of Q-80 to apply improvements in a project,

because a documented process is required as well.

In the following we consider two suggested

improvements of the test process.

2.2.1 Modified Test Process: Compliant or Not?

This example refers to the test process as defined in

DO-178B and ECSS E-40.

2.2.1.1 Test Process of DO-178B

DO-178B states in Sect. 6.3.6.b about “Reviews and

Analyses of the Test Cases, Procedures and Results”:

“The objective is to verify that the test cases

were accurately developed into test procedures

and expected results.”

DO-178B suggests in Sect. 6.4.2

“Requirements-based testing is emphasized

because this strategy has been found to be the

most effective at revealing errors.”

Thus, according to DO-178B derivation of test-cases

from the specification is preferred over other methods.

However, no reference to data supporting the claim of

superior fault-detection effectiveness of specification-

based testing is provided, so that this assertion and its

reasons cannot be verified.

However, DO-178B also remarks in Sect. 6.4.4.2 on

“Structural Coverage Analysis”:

“The requirements-based test cases may not

have completely exercised the code structure, so

structural coverage analysis is performed and

additional verification produced to provide

structural coverage.”

This is refined in Sect. 6.4.4.3 on “Structural Coverage

Analysis Resolution”:

“Structural coverage analysis may reveal code

structure that was not exercised during testing.

Resolution would require additional software

verification process activity.”

The root of the problem here is that the specification by

definition applies a higher level of abstraction than the

final implementation, and therefore the specification

may lack distinctions which need to be applied in the

code. For this reason the test cases derived from the

specification may not be sufficient to provide the

required coverage on code level and additional test

cases need to be defined.

Similarly, the code may be faulty in the form that it does

not cover all the cases defined in the specification. Such

deficiencies could not be revealed by testing to code

coverage only without checking coverage of the

specification.

So DO-178B and other standards requiring this two-fold

approach acknowledging that test cases need to be

designed to cover both the specification and the code.

The question remains why the emphasis is laid on

deriving test cases from the specification. Contrary to

what is said in DO-178B, our experience from

representative experiments indicates that a code-based

test approach can result in both higher fault-detection

effectiveness and reduced effort than in specification-

based testing (see also the discussion in Sect. 2.3.1).

We refer to our fully automated test cycle as described

in [13] where the test cases are derived from

automatically generated test stimuli based on code

coverage criteria. What has to be done manually in this

case is the consolidation of observed and expected

results as defined by the specification.

Assuming that coverage of the specification is analyzed

during confirmation of test-cases and counter-measures

such as correction of insufficient distinction in the code

or additional test-cases are taken afterwards, the

procedure provides both code- and specification-

coverage. It is therefore functionally equivalent to the

procedure suggested in DO-178B.

However, the alternative procedure emphasizes code-

based selection of test-stimuli and -cases, which is

formally non-compliant with DO-178B or at least does

counter the suggestion by the standard.

2.2.1.2 ECSS Test Process

Similarly to DO-178B, ECSS E-40 requests provision of

test cases before the test campaign is started in Sect.

4.2.6, para 5 on the “Software Validation Process”:

This process can include a test readiness review

(TRR) to verify that all test facilities and test

cases and procedures are available before each

significant test campaign, and under

configuration control.

Although application of the code-based test-procedure

effectively leads to the test-cases being available after

the actual test run – by comparing the observed to

expected results instead of preparing the expected

results first – the test-run could also be re-declared as a

test-generation process, which together with the

consolidation with the specification leads to the test

cases.

Thus before TRR, test cases could be derived from the

results of the automatically executed tests and their

approval in context of the specification, which then

could be presented on the TRR together with the

automatically generated test environment. This is a

procedure usually executed on a host environment.

After TRR the suggested test cases and the

automatically generated test drivers would be

automatically re-executed after TRR on the target

environment, declared as the actual test. Further, as the

results of the tests are already known before TRR, the

outcome of the tests is predictable and analysis can be

completely based on the material prepared during the

test-generation phase prior to TRR.

From this point of view the improved process would be

fully compliant with E-40, except that tests are already

executed before TRR. When interpreting the “test

campaign” as “the test campaign on target” the new

process would be fully compliant.

The E-40 approach is further detailed in the following

clauses:

Clause 5.5.2.9 on “Definition and documentation of the

software unit test requirements and plan” states:

The supplier shall define and document ..., test

design and test case specification for testing

software units.

This may be easily fulfilled with the automated

approach, just making a reference to the test tool and the

automatically generated documentation.

Clause 5.5.3.1 on “Development and documentation of

the software units” states:

The supplier shall develop and document the

following:

...; the build procedures to compile and link

software units;

So both these tasks are executed automatically and may

be compliant when the tool is accepted as producer of

the test specification and the test environment.

Clause 5.5.3.2 on “Software unit testing” states:

a. The supplier shall develop and document the

test procedures and data for testing each

software unit.

b. The supplier shall test each software unit

ensuring that it satisfies its requirements and

document the test results.

The same conclusions can be drawn as for 5.5.2.9 and

5.5.3.1.

Clause 5.6.3.1 on “Development and documentation of a

software validation specification with respect to the

technical specification” states:

The supplier shall develop and document, for

each requirement of the software item in TS

(including ICD), a set of tests, test cases (inputs,

outputs, test criteria) and test procedures

including: [...]

The test procedures are those applied by the testing tool

itself. Therefore these requirements can be fulfilled if

the documentation of the tool and further documentation

of the adaptations are accepted as test procedure

documentation, and the obligation of the supplier to

provide developed test cases and documentation is not

interpreted as a manual task to be performed by

engineers.

2.2.1.3 1Finding a Non-anticipated Fault by an

Automaton

Fig. 2-1 lists a function which includes a non-

anticipated fault found by the automaton of the fully

automated test cycle mentioned above. We assume

further that the function corresponds to the following

requirement:

The algorithm tbd shall be executed in a loop

starting from a lower value until the higher value

is reached. The number of loop cycles shall not

exceed 100 cycles.

Before we explain, where the fault is, we encourage the

reader to answer the following question:

Assuming that a loop cycles takes on 1 ms, what is the

upper bound for the execution time? Obviuously, it is

100 ms because the ‘if’ before the loop ensures that not

more than 100 cycles can be executed. However, this is

wrong. The Worst Case Executiuon Time (WCET) is

about 1.3 years or 4294967295 ms. Why?

Fig. 2-1: A Function Including a Non-anticipated Fault

To understand what may happen consider the following

inputs shown in Fig. 2-2:

Fig. 2-2: Inputs Activating the Non-Anticipated Fault

As soon as the difference between iu and il exceeds the

maximum positive value possible for a signed integer, it

is interpreted as a negative number by the processor.

Therefore the check fails and more than 100 cycles will

be executed up to 4294967295.

This fault is hard to detect or can even not be detected

when applying all of the usual test requirements:

1. To achieve simple statement coverage and MC/DC

(Modified Conditional Decision Coverage) two test

cases are sufficient, e.g. iu=50 and il=0 and iu=200

and il=0. To exercise one loop cycle only as further

singular case, iu=1 and il=0 could be added. There is

no need to think about above fault activation.

2. Derivation of test cases from the specification also

would not activate the fault, It is likely that the same

testcases as in (1) would be selected.

3. Also, it is likely that it will not be detected during a

review because a reviewer will apply the

mathematics from a logical point of view and does

not recognise the limited representation capabilities

of the computer.

Actually, the fault was detected by a different fault

identification method, which is simple but helps a lot:

the fault was flagged by a timeout set as upper limit for

test execution, in order to prevent a single test to block

thousands of following tests over night.

The automaton which built the stimulation environment

is advised to apply the full range of the input domain

including the minimum and maximum value. Thererfore

it was very easy to activate the fault condition.

A critical reader may argue that such exceptional

conditions may not really occur under nominal

operational conditions. That may be reasonable.

However, it is essential to know that a condition may

occur which violates the requirement on the upper

bound of the execution time.

Moreover, this fault instructs us to be more caeful with

types, because the results may not be as could be

expected from the point of view of mathematics. It is

just the difference between theory and practice, what we

have learned about.

2.2.1.4 Summary

When applying an extensive interpretation of the

requirements, the fully automated test approach of [13]

may be considered as compliant. In case of DO-178B

reference may be made to alternative process steps

inherently proposed in the standard (Sect. 1.4 and Sect.

3 of Annex A), but leaving it open how such

alternatives may be approved.

For ECSS, firstly, it is a matter of interpretation on how

the supplier shall provide the required material on

suggested modifications and maturity. Secondly, in the

considered case there is an obvious conflict with Sect.

4.2.6, which, is more a matter of strict adherence to the

standard, without having any impact on the quality of

the end product.

However, in any case the standardisation bodies and the

customer need to be contacted and to agree in advance.

2.2.2 Extended Test Process

This example discusses an extension of the test process

aiming to efficiently detect faults which require high

void myFunc(int il, int iu)

{

 int ii;

 if ((iu-il)>100)

 return;

 for (ii=il;ii<iu;ii++)

 ; // tbd algorithm

 return;

}

il =-2147483648

iu = 2147483647

iu-il =-1

iu-il>100=false

effort for detection or may remain hidden in the

traditional test process. The discussion focuses on the

interpretation of current standards whether they have to

be considered exhaustively and thereby exclude

extensions, or non-exhaustively in which case an

extension would be part of customization.

The point of discussion is related to the test

environment. So far testing is requested on the target

platform or a representative platform. As a matter of

fact, budget limits currently constrain testing on other

platforms, as this – at first glance – would only

introduce additional cost. However, in the context of an

alternative test process costs may be even saved when

adding tests on a non-representative platform, in

contrast to the current understanding.

Costs may be saved firstly due to limitation of the

number of manual activities when taking an automated

approach including platform porting, and secondly by

reduction of false alarms and the related overhead due

to a sophisticated strategy. Thirdly, use of non-

representative platforms may be possible earlier in the

development cycle – before the complete target

environment is available – and allow detection of faults

which are difficult to find on the target.

Finding bugs easier leads to reduced cost for detection,

and finding bugs earlier leads to reduced cost for fixing

them. Enhanced visibility of dormant faults may also

help to reduce maintenance risks and costs and thereby

improve maintainability.

If organized properly, e.g. by auto-porting, the benefits

of non-target testing may be achieved with only low

additional cost for this additional test step but yield an

overall reduction of effort in the whole development

cycle. This is an experience made in the past.

The keyword for the point of discussion is “platform

diversification” as described in [13] and [14]. This

experience has demonstrated that a non-representative

environment, i.e. an independent one regarding platform

characteristics, can have higher efficiency in finding

some of the faults than a representative one. This is

especially true for dormant faults.

Variation of the following basic platform characteristics

was found helpful: operating system, processor

architecture, compiler. They are extended by specific

characteristic of the test environment, e.g. in adding

more checking capabilities than available on the target

platform.

The reason for the added value of platform

diversification is that testing can only prove the

presence but not the absence of bugs, which results in a

major difference between acceptance testing and testing

for defect detection. While acceptance testing relies

strongly on a representative environment to be

convincing – after all, detecting no defects does not

mean that no defects are present. Therefore any defect

found and confirmed by any method is convincing by

itself.

Therefore all methods which help to find defects are

allowed, even if they do not rely on a representative

environment. Of course, false positives may be

introduced by the non-representativity of the platform,

but at the same time, additional true positives may be

made visible which would stay invisible in traditional

testing.

As long as the effort for filtering the false positives is

lower than the effort for finding the additional true

positives in traditional testing plus the costs saved due

to the reasons laid out above, platform diversification is

beneficial.

Further, a higher fault-detection probability of any given

method also increases the confidence in the results of a

passed acceptance test.

In the following we discuss possible conflicts of such an

approach with DO-178B and ECSS standards.

2.2.2.1 DO-178B

DO-178B states in Sect. 6.3.1.c “Compatibility with the

target computer”:

The objective is to ensure that no conflicts exist

between the high-level requirements and the

hardware/software features of the target

computer, especially, system response times and

input/output hardware.

and in Sect. 6.4 on “Hardware/software integration

testing”:

To verify correct operation of the software in the

target computer environment.

And further as an refinement thereof in Sect. 6.4.1 “Test

Environment”:

More than one test environment may be needed

to satisfy the objectives for software testing. An

excellent test environment includes the software

loaded into the target computer and tested in a

high fidelity simulation of the target computer

environment.

Selected tests should be performed in the

integrated target computer environment, since

some errors are only detected in this

environment.

Obviously, 6.4.1 only requires the test on the target

system with a representative (here: “high fidelity”)

environmental simulation. The potential of testing on

other platforms regarding improved fault identification

capabilities is not acknowledged and its application is

not requested. Further, the declaration of the target with

environment simulation as an “excellent test

environment” may be read to imply that other

environments are inferior to this configuration –

contrary to what the experience laid out in Sect. 2.2.2

indicates.

As a matter of fact, the quality assurance requirements

of DO-178B are already perceived as very costly and

thus any activity not imposed by the standard and thus

solely left to the discretion of the supplier is likely to be

excluded for cost reasons.

2.2.2.2 ECSS

ECSS Q-80 states in Clause 7.3.6 on “Testing on

different platforms”:

a. Where the components developed for reuse are

developed to be reusable on different platforms,

the testing of the software shall be performed on

all those platforms.

This could leave the door open for testing on different

platforms for other cases than reusable software.

Similarly, ECSS-E-ST-10-02 [15] states in sect. 5.2.2.1

on “Verification methods”:

c. Verification of software shall include testing in

the target hardware environment.

The wording “shall include” may not exclude testing on

another environment, so an extension may be possible

in the context of customization. However, again the use

of other platforms for testing is left to the discretion of

the supplier.

2.2.2.3 Summary

The background of the requirements referenced above is

obviously the acceptance test aiming to demonstrate

compliance of the end product to the specification. As

testing in principle can only reveal the presence of

faults, the value of acceptance testing relies on

achievement of sufficiently small doubt in its results.

One of the required preconditions for this is the use of a

representative test environment – typically the actual

target computer – for acceptance testing.

However, the text of the standards may be interpreted

such that the best selection for testing in general is the

target environment. In consequence, testing on any

other environment might be considered inferior from a

“best practices” point of view.

Due to the high efforts of testing and the costly

requirement to test on the target computer, in practice

only the target computer or a representative emulation

thereof is considered as relevant test environment.

Still, the optimization of the test process through

platform diversification may be an achievable goal for

such standards.

2.2.3 Risk Reduction in Project Management

This example deals with already rather detailed

standards on project management issues in ECSS,

which, however, block an overall optimization due to

separation of parts of project management into different

documents without defining an interface between them

which would allow to get an integrated and harmonized

view on all matters of project management.

ECSS standards on project management define

requirements on planning (document ECSS M-10 [16]),

cost and schedule (document ECSS M-60 [17]).

Document ECSS M-80 [18] defines the process for risk

management.

Unfortunately M-10 and M-60 introduce data structures

which are not compliant to each other and prevent

tracing of dependencies between planning, costs and

schedule thereby inherently increasing the risks which

shall be tackled by the process defined in M-80.

Hence, the conclusion is: a more systematic structure of

data could remove risks related to project management.

This optimization is blocked for the following reasons:

• The project management issues have been

broken down into two parts, which deemed to be

independent according to traditional processes

and organizational structures.

• The M-10, M-60 and M-80 documents are

maintained by different and independent teams.

• Dependencies are dealt with informally and

manually.

Due to separation of concerns – which is reasonable

from an architectural point of view – an integrated

handling of all management aspects is not supported.

Such an approach would have several advantages, such

as:

• Planning and cost figures could be collected

bottom-up from the location where they are

originating to the upper level.

• Metrics could be applied to check consistency of

schedule and resource utilization.

• In case of changes their impact and potential

inconsistencies can be identified immediately on

all issues of project management.

• In summary, this will lead to a significant

reduction of project management risks.

This optimization potential was recognized when BSSE

defined a tool [SPM] to cover all the management issues

in an integrated manner, based on ESA’s principal

approach.

This is the current situation:

The Cost Breakdown Structure (CBS) as defined in

App. A2 of M-60 is incompatible with the Work

Breakdown Structure (WBS) and the Work Package

Description (WPD) as defined in App. C.2 and D.2 of

M-10. Mainly, this is a matter of incompleteness of the

WPD template. These are some examples:

• A definition of the required and provided dates is

missing for the inputs and outputs. This may lead

to inconsistencies between (man-power)

resources, scheduling of the work package itself

and the availability of deliverables. Also, the

costs of a delivery cannot be associated with a

delivery itself at its origin.

• A consideration of meetings and travels as well

of related costs is missing to be covered in the

work package.

• A consideration of usage of facilities is missing,

the related availability and the number of

instances.

In consequence, there is no link possible in such a way,

that the costs can be collected from their source in the

WPDs and immediately be transferred into the CBS.

However, the required extensions would not be in

conflict with current standards.

2.3 Guidance towards Quality

This section puts the focus on the guidance of a

developer towards high quality when applying a given

standard. Such guidance requires precise metrics

providng a feedback on the actual quality. We discuss

such guidance in the context of requirements on the test

processes.

Here the relevant point of discussion is how well the

standards guide a developer to be sufficiently efficient

in finding faults.

We will explore the standards regarding their

contribution to fault identification. This issue is twofold:

firstly, the question is how well the standards enforce

identification of faults, secondly, what they demand to

achieve sufficient confidence in the verification results.

The understanding of the different mechanisms

contributing to fault identification is fundamental to find

a high number of faults. This should be reflected in the

standards or supplements thereof. We will discuss how

current standards do support or interfere with the

exploitation of such mechanisms.

As was stated in Sect. 2.2.1 the test approach as

currently defined in the standards is specification-based.

For more critical software the verification objective is to

find faults as stated in the ESA ISVV Guide Sect. 2.1

on “Objectives of ISVV”:

“As with any verification and validation activity,

the objective of ISVV is to find faults and to raise

confidence in the software subject to the ISVV

process.”

which also draws attention to fault identification as an

objective of the standard test process.

The following section 2.3.1 introduces in the issues

discussed in sections 2.3.3 - 2.3.5 later.

2.3.1 Issues of Fault Identification

Fault identification is a matter of verification and

validation. Verification is subdivided in the context of

code verification into static and dynamic analysis, the

latter of which is mainly implemented by testing. For

both areas methods and tools exist aiming to detect

faults in the end product, where a fault is considered as

a non-compliance between expected and observed

characteristics of the end product.

In this context we consider code as the end product of

the software development cycle (apart from other results

such as Operations Manual etc.).

2.3.1.1 Verification through Analysis and Test

Static analysis includes methods which do not require

execution of the code. Instead the code is inspected or

executed symbolically and the results are checked for

compliance with a set of given rules addressing desired

or undesired characteristics of the end product. Any

non-compliance is considered as a fault.

Dynamic analysis is based on execution of the code on a

given platform. Therefore the code is exposed to

additional, different conditions compared to static

analysis. The results of testing are the outputs of the test

subject and additional – undesired – detected anomalies.

Outputs are checked against the specification.

Anomalies flag unexpected events through e.g.

exceptions or error messages.

All rule- and specification-based checks focus on

anticipated faults, because introduction of a rule

requires knowledge about a fault or fault type. Rule-

based checks can often identify the location of a fault

directly. Anomalies and generic output-based checks

indicate existence of a fault without necessarily pointing

to its origin in the code or identifying its type.

Anomalies may flag a non-anticipated fault.

Static analysis methods and tools – at first sight – seem

to be superior to testing because in theory they can

assess the fault-potential in the whole set of possible

states of the code, while testing has to focus on samples

from this set. However, theory and practice for static

analysis may differ considerably because tools may be

faulty or resource limitation may prevent actual

exhaustive assessment of the state set for a fault-type

supposed to be supported. Abstractions are safe

approximations which may enhance performance or

even turn an undecidable problem into a decidable one,

but they may also lead to false positives.

Moreover, static analysis does not support detection of

non-anticipated faults and platform aspects not

modelled in the underlying theory. Specifically, the

latter are a very difficult problem, for example timing,

behaviour of hardware drivers or of operating system

primitives. In consequence, static analysis and test

complement each other. As was shown in [13] this is

also true for different analysis methods and tools and

test stimulation and evaluation methods.

2.3.1.2 Coverage of Fault Types

For testing we classify faults into two major non-

overlapping categories: product-dependent (or

application-dependent) and product-independent faults.

Product-dependent faults are a consequence of

discrepancies between expected and observed

charcteristics of a product in the functional or non-

functional domain. Product-independent faults are

caused by violations of generic quality requirements,

possibly also providing narrow indication for the

presence of product-dependent faults.

Product-independent faults can be classified into a

known set of fault types, where the real, full (super-)set

of fault types is not necessarily known. However, the set

of known types can be extended over time based on

findings during testing thereby approaching

incrementally the superset. However, systematic

detection of faults based on testing for a subset of

known fault types relevant for a product is a valuable

goal compared to not knowing which fault types can be

found at all in the current testing environment.

Due to the finite number of (known) fault types an

assessment of methods and tools is possible regarding

their sensitivity to identify certain fault types (cf. [13]]).

Although not all fault types may be known, it is of

extreme importance to know which spectrum of fault

types is actually supported. If the evaluation yields

incomplete support of (known) fault types, this helps to

improve the set of verification methods and tools

towards full coverage.

Classification of methods and tools according to the

supported spectrum of faults is a quality criterion

complementing the criterion on the quality of a test set

as used in context of mutation testing.

2.3.1.3 Independent, Equivalent and

Complementary Methods and Tools

The goal of using independent tools is to increase

confidence in the verification process based on the

assumption that independent tools supporting the same

verification method will not fail all together to identify

the same fault type.

The goal of using complementary methods and tools is

to achieve full coverage of known fault types. However,

if the coverage of fault types is not known for a tool,

nothing can be said about the increase in confidence

when adding another tool to the test environment.

When two methods support identification of the same

set of fault types, they are equivalent regarding the fault

types. Similarly, two tools are equivalent if they are

supporting identification of the same set of fault types.

Independence in case of equivalence can be used to

increase the chance that at least one of both tools will

detect a fault out of the same set of fault types ought to

be supported.

When two methods are complementary, they are

supporting identification of different fault types.

Therefore they are independent per se. Independence in

case of complementarity means that both tools extend

the set of supported fault types and thereby increase the

confidence in product quality once the product passes

all the analysis without any relevant faults being

detected.

Of course, mixed forms of equivalent and

complementary methods and tools may exist in practice.

In any case, it is extremely important to know about

their sensitivity on fault types. This is similar to how a

hardware engineer needs to know about the capabilities

and the accuracy of the measuring equipment applied.

Hence, the usefulness of being “independent” can only

be assessed in context of knowing details about

equivalence and complementarity, but not on its own.

2.3.1.4 Metrics

Metrics represent the focal point to assess and to

improve quality. The classification of fault types and the

assessment of methods and tools regarding their

sensitivity is one example to measure to which degree

quality in terms of a high fault removal rate can be

achieved.

Metrics may be applied to a process or to the end

product. When applied to the process, the dependency

between process quality and quality of the end product

needs to be proven in the sense that high quality of the

process – according to measured process properties –

implies high quality of the end product – according to

measured product properties. Until this proof is

delivered the added value of a standard based on

process quality remains rather doubtful.

In current practice, most metrics focus on the quality of

the source code in terms of readability and

understandability assuming that an improvement in

these areas will increase the fault detection rate during

reviews and manual code inspections.

2.3.1.5 Summary

The understanding of the different mechanisms

contributing to fault identification as described above is

fundamental to find a high number of faults. This should

be reflected in the standards or supplements thereof. In

the following section we will discuss how current

standards do support or interfere such mechanisms.

2.3.2 DO-178B

Regarding independence DO-178B states in Sect.

12.3.3.4 on dissimilar software tools and their

qualification that

• “each tool is to be obtained from a different

developer,

• tool designs have to be dissimilar”.

Regarding fault identification Sect. 2.3.3 on “Safety

Monitoring” states on “System Fault Coverage”:

Assessment of the system fault coverage of a

monitor ensures that the monitor's design and

implementation are such that the faults which it

is intended to detect will be detected under all

necessary conditions.

This addresses operational capabilities of a product and

is not directly applicable to fault identification, but

expresses the same idea. Therefore an extension

requiring similar analysis for the tools applied as

expressed in Sect. 2.3.1.2 should not raise a principal

conflict.

Sect. 4.4.1 on the “Software Development Environment”

demands:

b. The use of qualified tools or combinations of

tools and parts of the software development

environment should be chosen to achieve the

necessary level of confidence that an error

introduced by one part would be detected by

another. An acceptable environment is produced

when both parts are consistently used together.

Here the basic idea of fault detection capability analysis

is expressed in a general manner. Such a requirement

should be flanked by common activities establishing the

information required for this assessment.

DO-178B requests for verification tools in Sect. 12.2:

Tools that cannot introduce errors, but may fail

to detect them. For example, a static analyzer,

that automates a software verification process

activity, should be qualified if the function that it

performs is not verified by another activity. Type

checkers, analysis tools and test tools are other

examples

This requirement acknowledges that tools themselves

may be faulty in that their function may in principle be

able to detect a fault, but they may not be properly

implemented.

Similarly, Sect. 12.2.2 on “Qualification Criteria for

Software Verification Tools” requires that tools are

verified according to their own specification:

The qualification criteria for software

verification tools should be achieved by

demonstration that the tool complies with its

Tool Operational Requirements under normal

operational conditions.

whereas Sect. 12.2.3.2 defines “Tool Operational

Requirements”:

Tool Operational Requirements describe the

tool's operational functionality. This data should

include:

a. A description of the tool's functions and

technical features.

Demonstration of compliance with requirements,

however, is subject to the same doubts as any other

verification activity and thus is not sufficient in its own

right, but rather must be complemented with safety

provisions as required in Sect. 12.2.And in Sect. 12.2.4

on “Tool Qualification Agreement”:

The certification authority gives its agreement to

the use of a tool in two steps:

• […] For software verification tools, agreement

with the Plan for Software Aspects of

Certification of the airborne software.

• […] For software verification tools, agreement

with the Software Accomplishment Summary of

the airborne software.

This requires certification of the tool according to

general rules, but does not request demonstration of

fault identification capabilities. Also, DO-178B opens

the door through Sect. 12.3 on “Alternative Methods”.

Though a final set of such methods is discussed as

known at the time the standard was established, it seems

that other alternative methods are not excluded from a

principal point of view.

The only metric regarding quality of the end product we

found in DO-178B is the metric on coverage as

described in Sect. 6.4.4. Coverage is not a direct

measure for this quality, but of course finding a defect

by testing necessarily requires that the erroneous code is

actually executed. In addition, the defect must be

activated by the conditions under which the code is

executed, the fault must become visible and must be

noticed.

In this context it is worth noting that while full path

coverage of the code is impossible in principle and thus

the required levels of test coverage are always an issue

of balance between effort and value, not even the

coverage criteria required for the highest criticality

levels in these standards are sufficient to capture the

basic complexity of the code. None of the criteria can

distinguish a loop from a branching statement: Both can

be covered using the same test cases.

More metrics may be defined in the Software Quality

Assurance Plan which is made applicable through Sect.

11.5.

Regarding quality of the process we found traceability

matrix in Sect. 5.5 and 6.2, and report tracking in Sect.

7.2.3.

Examples for known fault types can be found in Sect.

6.4.3.

2.3.3 ECSS and ESA ISVV Guide

Regarding independence ECSS Q-80 states in Clause

5.6.1.1a on “Methods and Tools”:

Methods and tools to be used […](including […]

validation, testing, […]) shall be identified by

the supplier and agreed by the customer.

The ESA ISVV Guide refers to IEEE Standard 1012

[19] which defines the “technical independence for

software tools” as

“For software tools, technical independence

means that the IV&V effort uses or develops its

own set of test and analysis tools separate from

the developer's tools”.

In consequence, this gives full degree of freedom to the

top-level customer, at least. The good point is that

customized, more precise criteria can be added without

being in conflict with the standard. The weak point is

that a more qualified approach is not enforced.

Clause 5.6.1.2.a of Q-80 states:

The choice of development methods and tools

shall be justified by demonstrating through

testing or documented assessment that:[…]

2. the tools and methods are appropriate for

the functional and operational characteristics

of the product,

Fault identification capabilities are not explicitly listed.

However, Clause 5.6.1.3.a states:

The correct use of methods and tools shall be

verified and reported.

From this perspective the support of the complete set of

fault types should follow, in principle. However, as fault

types are not introduced in the document, this aspect is

out of scope in this context.

Again, the good point is that extension towards

guidance is not a conflict, at all, but the document lacks

guidance at this point.

We found product metrics in Sect. 6.2.5 and 7.1.5 of Q-

80. In E-40 code quality metrics are requested for the

Software Reuse File in Annex N.2.

Metrics on the overall product quality are defined in

Clause 6.2.5.4.a of Q-80 (number of faults detected) and

in 6.2.7.4.a.12 (requesting a figure on code quality), but

not stating what this figure actually shall be.

Note that the number of faults detected is in principle

neither a valid metric for the quality of the product nor

for the quality of the process. A low number of faults

detected may lead to the assumption that the product is

of high quality, while another reason may be a low fault

sensitivity of the process applied to find faults.

Vice versa, a high number of faults detected may inspire

both confidence into the fault sensitivity of the process

and into the assumption that most of the faults should

have been identified already. However, a high number

of faults detected could just as well be an indication of a

bad codebase, which could by itself imply a high

number of faults. The assumption, that the high number

of faults detected implies a low number of faults

remaining may be fallacious. In contrast, a bad codebase

could as well imply introduction of new faults by fixing

detected faults.

A more plausible, although still not completely valid

metric would be the development of the number of

faults detected over time. A high fault detection rate at

the beginning of V&V activities declining over the time

could be seen as indication that a high number of faults

has been detected and the number of remaining faults is

small. However, this does not exclude the possibility of

the remaining faults simply being difficult to find with

the method applied, without any reassurance of the

remaining faults being irrelevant or even non-critical.

Clause 7.1.5.a of Q-80 suggests as elements of basic

metrics: size and complexity of code, the number of

faults detected and fault density, code coverage. Note

that specifically fault density may be affected by fault

detection effort varying over the set of modules and by

numeric errors introduced by different module sizes.

Similar to measurements in nature sciences, these

sources of measurement errors have to be taken into

consideration when interpreting derived data.

The ESA ISVV Guide lists metrics explicitly in Sub

Task MAN.VV.T4.S4: the cyclomatic complexity and

the number of references to a unit. Definition of further

metrics is requested in the ISVV Plan, sect. 6.1.5 and

traceability in Annex F.11.

2.3.4 EN9115

Regarding verification tools EN9115 states in Sect. 6.3

on “Infrastructure”:

The organization shall determine, provide, and

maintain an infrastructure, as appropriate, to

support the software life cycle.

Organization infrastructure includes, as

applicable: […]

b) software verification tools and utilities,

including test equipment and test software;

There are no specific quality requirements imposed on

verification tools other that such tools shall be applied.

Sect. 7.1 on “Product Realization” reads:

Software planning shall address software related

activities from project planning through product

delivery and maintenance, including the

following, as appropriate:

a) quality objectives and requirements expressed

in measurable terms, including critical items

and key characteristics;

b) the software life cycle;

d) evaluation, qualification, verification, and

approval of non-developmental and support

software;

f) monitoring, evaluation, and audit of software

and related activities;

g) the level of criticality for software, as based

upon the contribution of software to

potential failure conditions;

h) safety and security requirements for the

product and data;

i) standards (e.g., design and coding standards),

rules, practices, conventions, techniques,

and methodologies for development and test;

which just defines a mandatory corridor within which

the projects can define what they find appropriate for

the purpose.

In Sect. 7.3.6.1 on “Design and development

verification and validation testing” the required process

steps are identified while the contents have to be filled

in by the projects:

The test environment shall be documented and

controlled to ensure repeatability.

NOTE 1 Verification and validation testing

should be appropriate to the size, criticality, and

scope of the product.

NOTE 2 An approach for regression testing

should be documented for retesting software

aggregates that have been changed. Regression

testing should be appropriate to the size,

criticality, and scope of the change.

Here the general requirement is quite unspecific. The

expression of further specializations as notes instead of

a proper requirement makes the latter stand out as non-

normative. Still, even these specializations do not

specify further how the appropriateness of the desired

activities should be assessed in detail.

In Sect. 7.6 on “Control of monitoring and measuring

equipment”:

The organization shall determine and document

how test equipment used for validation,

verification, or acceptance of deliverable

software product is developed, maintained, and

controlled.

Again, only general requirements on documentation are

introduced, but no rigorous methodology is defined by

which the adequacy of the measures is to be assessed.

The appropriate determination and discussion –

exceeding the requirement of documentation – of, e.g.,

fault detection capabilities is not required.

2.3.5 Summary

In general, DO-178B and ECSS lack guidance towards

optimization of identification of fault types regarding

the product-independent faults and provision of relevant

metrics. The optimization is left to an engineer or a

project, a fact which is dissatisfying because a

systematic approach will significantly increase the

probability of fault identification. Especially, the

knowledge on incomplete coverage of such fault types

by a toolset will be extremely useful, because then it

becomes obvious that a number of faults cannot be

detected at all. In consequence, the project gets a chance

to improve this uncomfortable situation.

DO-178B, ECSS and ESA ISVV Guide all rely on

independency of tools while the term “independence” is

not precisely defined. This is in part a matter of IEEE

1012, which is used as a reference. It remains unknown

whether “independent” refers to the same set of fault

types or to complementary fault types. The current

standards just suggest to take another, similar tool

without applying any metrics to measure whether such a

combination can increase the confidence.

Further, as fault types are not considered in these

standards it cannot be decided whether tools are really

independent, because the only criteria on independence

used are “tool supplier” and “design” in general. It

seems that the expectation is to meet both,

independence regarding the same subset of fault types

and complementarity regarding support of the full set.

A few metrics are defined in the standards, which are

not sufficient to control the quality of the product.

Primarily, definition of metrics is considered as a matter

of the projects. From this it follows directly that these

standards do not have the capability to ensure a certain

level of quality.

The systematics of fault identification described in sect.

0 can be considered as an extension of current standards

without an obvious conflict. It may even be possible to

put such an extension in a separate document to which

can be referred to explicitly.

Regarding the definitions on “dissimilar software tools”

and “independence” in the standards an update is

required, because in the current shape the added value to

the verification process cannot be measured.

3 CONCLUSIONS

Above considerations show that current standards

• bear some weaknesses in supporting an

efficient lifecycle, and do not sufficiently

encourage measurement of process efficiency

and identification of the need and possibility

for potential process improvements,

• lack completeness and precision regarding

metrics for measurement of product quality,

• may block innovative and more efficient

approaches, even if compliance can be

achieved by “creative” interpretation of the

standards,

• lack support and requirements of systematic

fault identification.

It seems that more benchmarking on the effects of

standards and the achieved efficiency is required to

identify more reasonable potentials for improvement of

standards. The traditional, manual development process

implies a lot of human communication and intervention

which is reflected in the standards and which thereby

preserves a process structure based on outdated and

partly inefficient technology, although the standards

intend to be technology-independent.

The future issue should be to benchmark the standards

as much as possible, to publish results and to open the

door for more efficient technologies based on precisely

defined and mature modification procedures enabling

improvements in a short- and mid-term perspective.

More specific conclusions are sub-divided and given in

the following sections.

3.1 Quality focus of standards

The analyzed standards focus on quality of the process

and leave it up to the projects how they want to control

the quality of the product. If at all, they prescribe that

quality of the product is to be verified and controlled,

but without providing specific guidance and

standardization in this regard.

3.2 Evolution of Standards

Part of the processes is the adaptation of standards

according to project needs. Specifically, ECSS gives

detailed support on this subject. Extensions aiming to

optimize efficiency of the process and/or guidance

towards better product quality are possible in some

cases but then require “creative” interpretation of the

standards to be not in a conflict. In other cases a conflict

cannot be avoided and modification or permission for

deviation has to be asked for formally.

3.3 Non-conformance to Standards

A specific problem in improving standards is their

embedding in a top-down supplier chain. As standards

are (usually) made applicable already in tender

conditions, it is practically impossible to suggest non-

conforming improvements in the context of a

competitive bidder process

The supplier-chain is not the right place for bottom-up

propagation of feedback and improvements. By passing

standards top-down within a legal context it is unlikely

that improvements of standards are introduced. Only,

when negotiations on contract conditions are possible or

significant parts of standards can be established by the

contractor, local evolution is possible or even may reach

bottom-up the level where changes can be put in effect.

Another opportunity to introduce improvements – more

reasonable – is through activities in parallel to projects,

e.g. in evaluation studies, and active participation to the

standardization process. This implies consideration of

innovation in a mid- to long-term perspective, in

addition to the time to be considered for solution of the

primary technical problems.

3.4 Complexity

In the ECSS documents references to other standards

(e.g. from Q-80 to SPICe) were found through which a

large number of additional standards are made

applicable. Referencing is an efficient approach to avoid

redundancy and to ease maintenance, however the

understandability of the reader suffers and it is difficult

to get a full view on what is applicable.

Similarly, excessive referencing was found in EN9115.

DO-178B seems to be more concise in this respect. No

such references were found.

Such weakness normally is marked as poor by the

standards when being applied in the context of quality

measurement. This raises the question why the

standards themselves should not be subject of the same

quality control issues as they impose on.

3.5 Efficiency Issues

The current standards focus on a manually-driven

process for historical reasons. Consideration of

efficiency issues of a process we found only addressed

in ECSS Q-80 with metrics related to duration and

effort. However, here the intention of metrics collection

is only the comparison with the planning. Comparison

between different development and quality models and

investigation whether effort found in later phases is

induced by previous phases, also as a matter of

insufficient guidance by the standards, e.g. due to late

fault identification, is not addressed at all.

According to Feldt et al [7] there is a non-neglible

portion of standards currently applicable which

according to the opinion of interviewed engineers do not

contribute to the quality of the product. Such non-

contributing activities are similar to “dead code” in

software products and should be found and removed.

3.6 Standards and Competitiveness

If standards binding a whole industry – such as the

European Space Industry – inhibit by their nature the

enhancement of efficiency, this also has a negative

impact on the competitiveness of the branch.

Today, developers of new technologies not only have

the – reasonable – burden of showing the applicability,

practicability and soundness of their new methods as a

principal matter, but in presence of technology-

dependent standards they also have to either prove

adherence to these standards or they have to initiate and

advocate the changing of these standards.

In addition to the cost of development and the cost of

proof of fitness, any development now includes the cost

and effort of standardization. In tightly standardized

industry branches like the European space industry or

the aviation industry, these are additional costs and thus

risks of investment before any financial gain can be

achieved by selling or applying the technologies in

projects.

This clearly raises the bar of entry for new technologies

for mainly formal reasons and thus may deter

introduction or even development of such new

technologies in the first place.

In other branches, the standardization process has also

become a strategic tool for companies to control the

market, as can be seen, e.g., in the conflict about XML-

based standards for office applications.

As a consequence companies which can afford the cost

and effort of participation in the standardization process

may gain a competitive advantage just be working

towards having their principal practices fortified in the

standards, independent of whether they participate in the

development of new technologies in the area addressed

by the standards they contribute to. Additionally, a

customer may also bear the disadvantage of loss of

competitiveness imposed by the reliance on standards

with such effects. It should therefore be in the best

interest of a customer to benchmark the standards and to

avoid such standards with such implied negative effects.

A similar situation exists regarding competition between

industry working on the same subject, but applying

different standards. Then one branch may have

competitive advantages or disadvantages due to

imposed standards. Therefore standards are not only a

matter of quality but of competition, too, which is a

matter of efficiency impacting costs, flexibility and

time-to-market.

3.7 Technology Independence

The standards considered do not precisely define the

development and quality assessment activities. The

intent is to leave a sufficient degree of freedom up to the

projects to identify the optimum approach for the actual

case. This may lead to divergence of lower-level de-

facto standards which, however, is contrary to the intent

of standardization.

In their present shape standards are only organizing

definition of further standards in the form of assurance

plans which may heavily vary depending on the domain

and the project team.

ECSS supports the concept of tailoring, meaning that

sub-sets are derived from a super-set as part of a

standard, thereby avoiding divergence at lower levels.

However, there is still a lot of freedom to define own

standards as far as these are compliant with the overall

process corridor.

Though being unspecific to the extent possible, aiming

to cover a broad area of methods and to be open for

technical evolution, full technological independence

was not found. The essential point is that the overall

process corridor is based on manual execution of tasks,

which implies a certain structure not compatible with

newer technologies like automation of the lifecycle, for

which a different structure is required to be fully

efficient.

Examples are the separation of tools into two classes of

development and verification tools and a traditional

understanding of fault identification mechanisms as

discussed in the following section.

3.8 Tooling

In the considered standards two types of tools are

considered: development and verification tools. While

for development tools the same standards apply as for

the software they are supporting, verification tools are

subject of tool qualification and certification, which

may be as costly as the development of application

software.

The insufficient understanding of (in DO-178B

terminology) “dissimilar software” leads to inefficient

use of tools regarding fault identification and high costs

for certification and qualification. Once the mechanism

is understood the use of equivalent and complementary

tools could really increase the confidence at lower costs

because additional manual checks complementing the

tool results are no longer needed.

Also, the separation into two different classes of tools,

development and verification, may be misunderstood

and may exclude performing development and

verification activities in the same tool, which does

increase quality and efficiency rather than

compromising quality of the end product. This

improvement is currently discussed in context of

Model-Driven Development.

In contrast, the traditional approach is based on

primarily manual activities, possibly to be performed by

two independent teams, which implies the separation.

However, today more powerful tools can be more

efficient in terms of cost and time as well as of fault

identification.

These are examples where restructuring – or

reconsideration at least – of the imposed process is

required.

3.9 Guidance towards Product Quality

As the main focus is set on process quality and the

assessment of product quality, e.g. through metrics, is

left to projects, only a small part of the requirements in

the standards considered deal with product quality.

Product quality is a matter of comparison of observed

results against the values derived from the specification,

code analysis and code coverage.

A systematic approach to classification of fault types

and related sophisticated detection methods in

combination of methods increasing the fault

identification rate and related metrics is missing in all

standards.

3.10 Organization of Standards

As discussed for the ECSS standards on project

management matters in Sect. 2.2.3 above, partitioning

of standards into a number of documents may have an

impact on harmonization of interfaces between different

subsets of standards, especially if the documents are

maintained by different teams. In the referenced case an

integrated view is not possible because different parts

were isolated from each other, though they are related to

each other. This makes it impossible to identify

inconsistencies in a formal manner.

3.11 Metrics

Definition of metrics is not a central topic in either of

the standards. This may imply that metrics diverge and

evaluation of results does not drive improvements.

3.12 Quality of Standards

The analyzed standards mainly focus on the quality of

the process aiming to ensure that further refinements

based on these standards achieve a sufficient quality

regarding the process implemented by the projects’

responsible. This is completely in-line with the ideas of

ISO9000/9001 of which EN9115 is a further refinement

towards “deliverable software”, but still remains on the

level of a corridor. DO-178B and ECSS go a step

further and refine the principal process deeper but

without reaching the level required for accurate control

of quality of a product by metrics at reasonable budgets.

All these processes are fully in-line with ISO 9001

regarding the control of the production process in the

sense that they can identify nonconformances regarding

the process allowing an organization to improve the

degree of conformance. However, DO-178B and ECSS

lack advice regarding process improvement itself. The

requirements on identification of process efficiency are

scarce and without obligation. It even remains

undefined what efficiency means. What can be found in

ECSS Q-80 is a definition of efficiency by compliance

of planned and achieved duration and effort. But

efficiency in the sense of achieved quality of the end

product vs. consumed effort is not addressed.

This leads to frozen processes where the aim is to

increase quality by spending more effort on verification

and validation of the code rather than to improve quality

during generation of the code and to reduce the manual

effort required to achieve the desired quality level

efficiently (cf. the discussion in Sect. 3.8 above).

The current process as supported in the standards still

represents the traditional structure induced by manual

development. ECSS E-40 considers auto-coding but

lacks an integrated approach to the overall process at a

higher level of automation. For example, reviews of the

models are still required (Clause 5.3.2.4.a), which

induce manual effort and increase the verification costs,

while integrated automatic code-generation and testing

would allow a development cycle with low turn-around

time and provide a way of validating the results of what

is defined in the model in a concrete manner.

This is to a certain degree a matter of doubts in the

automation tools due to insufficient capabilities to

control their quality, i.e. the quality of the product (in

this case the tool itself), which in turn is a matter of the

current processes mainly focusing on the quality of a

process.

From an overall perspective the current standards do not

define or enforce a process by which the efficiency can

be measured and quality of the end product and

efficiency of the process subsequently can be improved.

They admit insufficient efficiency by compromising

quality goals to keep the effort and budgets within

acceptable limits.

The analysis indicates that standards add only poorly to

checking the actual quality of the end product, not only

in the sense of “fitness for the purpose”, but also

regarding the compliance of specification and product.

If the focus of our analysis is put on pure process

quality, then the quality is reasonable apart from

weaknesses as discussed above.

EN9115 has the highest abstraction level of all four

standard documents analyzed. It appears more as a

check list and a guide to establish concrete standards. Its

basic intention is to provide a harmonized baseline for

standardization of processes in the area of aerospace. It

describes a mature, abstract process for software

products, but nothing more.

Above considerations already address weaknesses of

quality as observed in the standards. An important

aspect for understanding the scope of standards is the

intention to leave as much as possible to projects and to

introduce a basic corridor which ensures a long-term

stability.

However, there are valid aspects of specific topics

which could be included while not violating this goal.

Such a topic is the extension of fault identification from

purely specification-based testing towards a systematic

approach as explained in Sect. 2.3.1.2 above. Guidance

w.r.t. fault identification based on classification of fault

types and metrics should be considered as an important

matter of a standard because this addresses directly the

product quality.

Moving the focus from the quality of the process to the

quality of the product could also lend more freedom to

suppliers in applying new and possibly more efficient

technology, without compromising in terms of quality.

Use of metrics on product quality would make it easier

to decide whether an extension is acceptable or not

without enforcing much bureaucracy.

Standards could define systematic cornerstones to

ensure that conclusions are backed by proper

observations – such as proof or hypothesis and

contradiction by experiment as well as the assessment of

measurements in terms of conclusiveness and accuracy

– and define concrete benchmarks to be achieved,

without actually defining the concrete process by which

these results should be achieved. Concretizations for

specific application domains would be necessary in any

case, just like required safe load factors for fixed-wing

aeroplanes.

4 PANEL DISCUSSION

Parts of this paper addressing evolution of standards

were presented during the panel session on “Quality of

Standards”. The example of sect. 2.2.1.3 was used to

explain why the current identification methods as

suggested by the standards ECSS and DO178B are not

sufficient. Then three cases were discussed regarding

compliance with standards and evolution:

1. The modified process of the fully automated test

cycle [13] which does not derive test cases from a

specification but from the code (sect. 2.2.1.

2. The potential of platform diversification (sect. 2.2.2)

based on automated porting.

3. The potential of a database for known fault types and

metrics on the capabilities of tools regarding fault

identification (sect. 2.3.1).

In a summary the following obstacles regarding

evolution were mentioned:

a. The process of getting an agreement from

standardization bodies is an open issue. The

discussion was limited to ECSS.

b. Compliance with the standards can be considered as

a “safe harbor” for a contractor, as compliance is

sufficient to get rid of any liability and legal aspects.

This leads to missing motivation to spent effort to

achieve higher product quality by evolving standards.

c. There is lack of guidance towards higher efficiency

in terms of more quality per €.

d. Standards should be subject of benchmarking.

The ESA position can be summarized as:

I. The modified test process (fully automated test cycle)

was declared as compliant with ECSS E-40 and Q-

80.

II. The potential of platform diversification was

doubted. Software suppliers expressed their concern

that the effort for porting of code and the number of

false alarms due to a non-representative platform

would be expected as too high. Therefore ESA stated

not to discuss this approach.

III. The use of knowledge about known fault types for

assessment of fault identification capabilities of tools

to forecast which of the fault types can be identified

at all is considered as unfeasible.

First concern is that tool vendors will not support this

issue.

Second concern is that the exchange of information

between software supplier and ISVV contractor is not

allowed. This would imply that none of both can

receive information on the capabilities of the

respective tool of the other one. Therefore no

conclusion on equivalent or complementary

capabilities can be made.

The position of ESA on the issue to know whether

the verification and test toolset completely covers the

known fault types is left open.

IV. The process of evolution of standards was not

explained because (1) is considered as compliant and

(2) and (3) are considered as out of scope – so no

need for such a process to be explained.

V. To give more guidance the handbook for E-40

(which is in preparation) was considered in context

of the fully automated test cycle.

VI. The issue on benchmarking of standards was not

discussed.

VII. ESA declared that concerns of software suppliers

have to be respected which consequently limits the

evolution of standards (see also II and IIIabove).

5 REFERENCES

[1] Software Considerations in Airborne Systems and

Equipment Specification, DO-178B

[2] Space Engineering, Software, ECSS-E-ST-40

[3] Space Product Assurance, Software Product

Assurance, ECSS-Q-ST-80

[4] Quality Management Systems, Requirements for

Aviation, Space and Defense Organisations,

Deliverable Software, EN9115 (Supplement to

EN9100)

[5] ESA Guide for Independent Software verification

and Validation, ESA ISVV Guide

[6] Quality Management Systems, Requirements for

Aviation, Space and Defense Organisations,

Construction, Development, Production,

Assembly and Maintenance, EN9100

[7] R.Feldt, N.Torstensson, E.Hult, L. Green:

“Analyzing the Cost of Complying to the ECSS

Standards for Software Development”, presented

on DASIA’10, Data Systems in Aerospace,

managed by Eurospace, June 2010, Budapest,

Hungary, but not included in the proceedings

[8] ECSS Standardization Policy, ECSS-P-00

[9] ECSS Glossary of Terms, ECSS-P-001

[10] ISO 9000:2005, “Quality management Systems -

Fundamentals and Vocabulary”

[11] SPICe, “Software Process Improvement and

Capability Determination” ISO 15504

[12] Space Product Assurance – Nonconformance

Control System, ECSS-Q-ST-10-09

[13] R.Gerlich, R.Gerlich: “Fault Identification

Strategies”, presented on DASIA’09, Data

Systems in Aerospace, managed by Eurospace,

June 2009, Istanbul, Turkey

[14] R.Gerlich, R.Gerlich, Th.Boll, K.Ludwig,

Ph.Chevalley, N.Langmead: "Software Diversity

by Automation", DASIA'05 "Data Systems in

Aerospace", 30 May – 2 June, 2005, Edinburgh,

Scotland

[15] Space Engineering, Verification, ECSS-E-ST-10-

02

[16] Space Project Management, Project Planning and

Implementation, ECSS-M-ST-10

[17] Space Project Management, Cost and Schedule

Management, ECSS-M-ST-60

[18] Space Project Management, Risk Management,

ECSS-M-ST-80

[19] IEEE 1012:1998: Software Verification and

Validation

Copyright notice: the contents of this paper is property

of the authors. © BSSE 2011 All rights reserved.

