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ABSTRACT 

We give an overview over the principles of constraint-

based test data generation, discuss its limitations and 

potentials and touch some of the domains which may be 

interesting to combine with constraint-based testing 

techniques. Automated generation of test data is an 

example where this technique can be applied and 

significantly increase the degree of automation, but it is 

not limited to. This paper is intended to give interested 

readers a quick entry into the methods and applications 

to allow a deeper understanding and an informed verdict 

about the actual capabilities and potential future 

directions. 

1. INTRODUCTION 

In software test, automation of the test procedures itself 

can be considered solved. Automation toolkits such as 

JUnit for Java or its numerous counterparts for Ada, 

C/C++, Python, PHP and even Perl, for example, cover 

the relevant languages of almost all application 

domains. 

The limits of automation can be stretched further by 

parameterising test cases and using hand-written test 

data generators to allow statistically relevant test case 

counts. 

For two major problems of software testing, however, 

current practice does not or only very restrictively apply 

automatic approaches: 

 test data generation, and 

 generation of verdicts - also known as the 

"oracle problem" [1]. 

Constraint-based test-data generation (CBTDG)[2] 

contributes to the solution of the first of these issues. 

CBTDG can deliver test inputs that fulfil formal test 

objectives. These include generic coverage testing as 

well as specification-based approaches. Theory-testing, 

which explores the input space for possible violations of 

axiomatic properties of a functional unit, can also be 

supported by CBTDG. 

With this paper we want to give an overview over the 

domain of CBTDG for practitioners and introduce 

limitations and potentials of this technique. The paper 

shall also be a starting point for interested readers to 

delve deeper into the topic. 

2. BASIC APPROACH 

Constraint-based techniques – in contrast to random test 

data generation or parameterized testing with data tables 

– work by solving systems of logical constraints – e.g. 

equations or inequations. The free variables in these 

constraint systems represent the initial and intermediate 

states of the program under test. 

The idea is that these constraints represent the 

conditions under which the desired test objective is 

fulfilled. Test inputs may be found by solving the 

constraint system for the variables representing the 

initial state. 

In cases of specification-based black-box testing these 

constraints can often be lifted directly from the 

specification. Examples here are the enforcement of 

invariants over specific input variables or the definition 

of nominal and faulty ranges for input data. 

In the case of specification-based testing – e.g. based on 

a test model established independently from the 

implementation to be tested – the expected outputs may 

be taken from the free variables representing 

intermediate states as well as the final state of the 

program, as far as they are observable on the 

implementation. 

For example, intermediate and final states of internal 

variables of a program may not be observable, while the 

return value of a function as a part of the final state of 

the function is typically observable. 

In case of white-box coverage testing, the constraints 

need to be constructed from the control structure of the 

program itself. 

Typically, an annotated form of the control-flow graph 

(CFG) is used for that, where the annotation consists of 

the formal semantics of the instructions and conditions 

contained in the nodes and edges of the 

CFG[3][4][5][6]. 



Consider the following code example: 

unsigned int gcd(unsigned int a, 

                 unsigned int b) 

{ 

 while (a!=b) { 

  if (a>b) { 

   a=a-b; 

  } else { 

   b=b-a; 

  } 

 } 

 return a; 

} 

This is the classical implementation of Euclid’s 

algorithm for finding the greatest common divisor of 

two positive integers. Figure 1 shows the CFG for this 

algorithm. The circles represent the nodes and the 

arrows represent the edges. The nodes are labelled by 

the instruction that is executed when they are reached, 

and the edges are labelled by the conditions that must be 

fulfilled so that the edges can be traversed. 

We can easily identify the conditions from the loop, 

   , and from the if-statement,    . The other 

conditions are the respective logical negations of these 

conditions. The center node at the top is the entry node 

and the node to the top-right is the exit node. 

 

Figure 1: CFG for Euclid's GCD algorithm 

Other methods[7] use the structure of the source code 

itself and apply transformation techniques such as loop 

unrolling to generate test data. 

2.1 Infeasible Paths 

While each of these methods has its advantages and 

disadvantages for different kinds of test objectives, they 

all share a common issue: infeasible paths of 

execution[5][7][6]. 

Infeasible paths are such paths which are possible to 

construct, e.g., in the CFG, but for which there is no 

input to the program that will lead to their execution. 

They resemble dead code in the sense that if none of the 

paths leading to a specific part of the code is feasible, 

then this code part constitutes dead code. Put another 

way, as long as there is at least one feasible path leading 

to a specific code part, that code part is alive. 

In practice, infeasible paths are much more frequent 

than feasible paths, so that avoiding the construction of 

infeasible paths is necessary for adequate performance. 

One example is given in the following code example: 

void sort(int len, int a[]) { 

 int i, j, min, tmp; 

 for (i=0;i<len;i++) { 

  min=i; 

  for (j=i+1;j<len;j++) { 

   if (a[j]<a[min]) 

    min=j; 

  } 

  tmp=a[min]; 

  a[min]=a[i]; 

  a[i]=tmp; 

 } 

} 

This is a classical implementation of the selection sort, 

which repeatedly searches for the minimum element in 

the remaining array and places that at the end of the 

already sorted array. Here i gives the length of the 

already sorted part of the array, and the inner loop 

iterates over the remaining elements, identifying the 

smallest. 

Examining the source code closely we find that the total 

number of iterations of the outer loop is    , i.e. the 

number of entries in the array to be sorted. Further we 

see that with every iteration of the outer loop, the 

number of iterations of the inner loop decreases by 1, 

starting at       and finally reaching 0. Thus, the total 

number of iterations of the inner loop can be derived to 

be 
          

 
. 

Thus the iterations of the inner and the outer loop are 

strictly interdependent and the execution sequence – 

except for the conditional statement inside the inner 

loop – is strictly defined by just the parameter len. 

However, this dependency is not visible in the CFG as 

shown in Figure 2. The CFG allows a path through the 

program where the outer loop is iterated once while the 

total count of iterations of the inner loop is 2. 

Let us construct the constraints in the order in which 

they come up during traversal. Note that all variables 

get an additional index, as the program variables 

support destructive assignments while the variables in 

the constraints are logical variables which may hold 

only one value. We increment the index whenever we 

observe an assignment. We will ignore the comparisons 

involving the array and min as they do not contribute to 

the explanation. 



 

Figure 2: CFG of selection sort 

 

So these are the constraints as they come up: 

     

       

        

       

        

       

        

       

        

       

We find that      and thus       follows from 

      , but also      and       , thus      . 

This is a contradiction, indicating an infeasible path, as 

there is no solution for the constraint system. 

Unfortunately, these contradictions often do not become 

visible before the full path was constructed. As we can 

see in the example, the constraint system contained no 

contradiction until        was introduced at the end of 

the sequence. 

This problem cannot be solved by a simple trial-and-

error approach, where the identification of a 

contradiction and thus an infeasible path simply results 

in the generation of a new path. The ratio of feasible to 

infeasible paths in a single program can be so small that 

the mean number of retries required to find a single 

feasible path can be too large for the approach to be 

practical[5][6]. 

Instead, special mechanisms are necessary for avoiding 

infeasible paths in the first place. These rely on 

detecting inconsistencies in the constraint system as 

early as possible during construction. 

Further, in some approaches the path construction 

algorithm tries to predict the behaviour of the 

software[6][7] in order to find additional constraints 

early which may lead to contradictions and thus indicate 

an infeasible path. 

Here the structure of a program may be indicative of 

code sequences which are executed in any case, 

independent of what decision is taken at the current 

branching point. For example, the code coming after the 

body of a loop is typically executed independently of 

whether the body of the loop is traversed or not. 

The only time when this is not the case is when the body 

of the loop contains a jump statement by which the code 

after the loop is skipped, e.g. a return statement. 

2.2 The Use of Constraint Solvers 

Once a feasible path has been found and the set of 

constraints to be fulfilled is established, a solution to 

these constraints needs to be found. 

A solution to a constraint system is a list of assignments 

of the form "V=x", where V is a variable and x is an 

atomic value, so that the constraint system is fulfilled 

when the variables are replaced by their assigned 

variables[8]. 

For example, considering the inequations       
  and           , a solution could consist of 

the assignments     and    . 

The algorithm that transforms a system of constraints 

into a solution is called a constraint solver. Depending 

on the type of constraints to be solved, different 

algorithms need to be used. 

As in most cases there is more than one solution, the 

main task of the constraint solver is to find an 

approximate parameterisation of the solution space. The 

approximation should be as exact as possible, while not 

being a too heavy burden on performance – for both 

memory and CPU consumption. 

In the context of CBTDG, constraint solvers are not 

only used to find a solution, but also to find whether a 

system of constraints is actually solvable. This is of 

specific importance when trying to avoid infeasible 

paths. 



3. LIMITATIONS 

The generation of input data is limited by the Halting 

Problem, which states that there is no procedure which 

can determine within finite time whether an arbitrary 

given program – in this case the program under test – 

will terminate within finite time on an arbitrary given 

input. 

This is a fundamental problem in computer science. 

Because it is a theoretical and therefore absolute 

limitation, it cannot be removed by optimisation, only 

by specialisation. 

In one specific instantiation, the halting problem implies 

that the CBTDG algorithm might not terminate while 

trying to find an input that covers the last statement of a 

program. More generically, this also applies to any 

statement in a program, as any program can be 

transformed in a syntactically and semantically valid 

way so that the target statement becomes the last 

statement in the program. This again leads to a program 

that may fall under the limitation imposed by the halting 

problem. 

In addition to this theoretical limitation, there are 

practical limitations of mostly two kinds. The first kind 

is related to performance limitations for finding a 

feasible path and solving the constraints or detecting 

their insatisfiability – meaning that there is no solution –

, the second kind are inaccuracies of the formal model 

used to describe the semantics of the program or the 

execution environment. 

3.1 Performance Limitations 

Performance problems come both from the fact that 

solving systems of equations and inequations is often 

difficult or impossible to do in a scalable way. This 

means that the execution time for the solver often grows 

non-linearly with the number of free variables involved. 

In turn, the number of free variables often grows at least 

linearly with the length of the constructed execution 

path. 

Already the solution of systems of linear equations over 

real or rational numbers using the Gaussian elimination 

method may require a worst-case execution time 

growing with the cube of the number of variables. 

Unfortunately, these are not simple specialisations of 

the more generic constraints over the real or rational 

numbers. While every integer and every floating point 

number is also a real and a rational number, the solution 

methods for the latter are not generally suitable for the 

former. Therefore other algorithms need to be applied to 

integer and floating point numbers. 

In addition, there is a difference between the theoretical 

mathematical – infinite – set of integer and real numbers 

and their computational representation as a finite set of 

combinations of bits. In this context we take the 

notation integer, rational and real for the mathematical 

sets and two’s-complement integer, fixed-point – as a 

generalisation of two’s-complement integer – and 

floating point for the computational sets, to avoid 

overloading of terms. 

The following examples outline a difference between 

the mathematical and the computational world. 

3.1.1. Integer Constraints 

For example, constraint systems which have a solution 

over the real or rational numbers do not necessarily 

have a solution over the integers. 

A simple example for this is shown in Eq. (1). It is 

obvious that there is no integer between 2 and 3, 

however, a solution over the rational numbers would be 

x=2.5. This is also true if   where a two’s-complement 

integer. 

       (1)  

Unfortunately, in practice typically neither the solutions 

nor their existence are as obvious as in Eq. (1). For 

example, Eqs. (2) and (3) show a system of inequations 

which has an infinite set of solutions over the real or 

rational numbers, but none over the integers. 

           (2)  

           (3)  

The existence of real and rational solutions can be 

shown using Fourier-Motzkin-elimination. From each of 

the two inequations two lower and two upper bounds for 

x can be extracted, all of which depend on  . 

In order for a value of x to exist that satisfies these 

bounds, both lower bounds must be less than each of the 

upper bounds, leading to two trivially satisfied 

inequations –           and          – 

and two non-trivially satisfied inequations      
     and           . 

The latter two can be transformed into a lower and an 

upper bound for  :  
 

 
   

 

 
. 

The significance of this – in the realm of real and 

rational numbers – is that as long as   lies within these 

bounds then there is also a value for   so that   and   

satisfy the original inequations Eq. (2) and Eq. (3). 

One could now consider only integer values of   that 

satisfy the bounds and try to find a matching integer 

value for  . 

In this case the possible integer values for   would be 

    and    . 

Substituting     into Eqs. (2) and (3) results in 

        and        . These can be combined 



to 
 

 
    , using the maximum lower bounds and the 

minimum upper bounds from the inequations. We can 

see that there is no integer value for   in these bounds. 

Substituting     into Eqs. (2) and (3) we arrive at 

        and       , which can be simplified 

to     
 

 
, which again obviously contains no integer 

value for  . 

So the pure Fourier-Motzkin-method is not sufficient 

for solving integer inequations or checking for the 

existence of a solution. This is due to the fact that 

Fourier-Motzkin depends on the solution space to be 

compact, i.e. for any pair of distinct values   and   with 

    there must be a value   so that      . This 

compactness criterion is clearly not fulfilled by the set 

of integer values, as we can see in the fact that Eq. (1) 

does not have an integer solution. 

Although Fourier-Motzkin is able to reduce the search 

space for integer inequations, it is still necessary to 

check all the solution candidates individually and for all 

variables whether they are of integer type, resulting in 

computational effort which grows exponentially with 

the number of variables. 

As an alternative the Omega-Test[9] can be applied, 

which in a first step uses a modified Fourier-Motzkin 

approach wherein the upper and lower bounds are 

narrowed down to ensure that the new bounds actually 

include integer solutions, given that the bounds do not 

represent an empty set. 

As narrowing down may remove some solutions, these 

solutions have to be checked in a second step. Although 

this second step, again, may involve exponential 

computation time in the number of variables, the actual 

computation time spent in this step is considerably 

smaller than for the original Fourier-Motzkin approach, 

as not all but only a small subset of solutions are 

enumerated this way. 

3.1.2. Floating-Point Constraints 

Consider the following code snippet: 

float v, inc, v0, limit; 

inc = /* ... */; 

v0 = /* ... */; 

limit = /* ... */; 

for (v=v0;v<limit;v+=inc) { 

 /* ... */ 

} 

It seems that this loop should terminate in any case – 

provided that     is positive, as   seems to increase 

monotonically and thus at some point in time         

must hold. 

However, due to the way floating point values are 

represented, this loop may not terminate in the case that 

limit is large enough so that there is an         where 

      cannot be represented as a floating point value 

and is rounded towards  . In that case, the loop would 

continue endlessly without   ever reaching a value 

greater than or equal to      . 

Put more formally, the Eqs. (4) and (5) have no solution 

over the domain of the real or rational numbers, but they 

may have one over the floating point numbers, 

depending on the rounding mode in which the addition 

is executed. 

       (4)  

     (5)  

In order to consider these specifics, algorithms are 

required which are more complex both in terms of their 

implementation and their use of computation resources. 

Unfortunately, all floating-point operations are 

inherently non-linear due to the non-linear nature of the 

floating-point representation. 

So-called normalised floating-point numbers are 

represented as             , where   is the sign 

(  ),   is the mantissa consisting of     bits, and   

is the (binary) exponent. 

Only the non-normalised floating-point numbers have a 

linear representation, namely          , where      is 

the minimum exponent in the respective format. 

In essence, non-normalised floating-point numbers are 

represented as fixed-point values. Unfortunately, 

normalised numbers occur much more often than non-

normalised numbers as the results of computations. 

Current approaches for constraint solving over floating-

point arithmetic are limited to domain-filtering[10]. 

3.1.3. Domain Filtering 

Domain filtering can be applied to almost any kind of 

constraint, including arithmetic constraints over integer, 

real, rational or floating-point values. Although we are 

discussing domain filtering in the context of floating 

point values, we will use integer values as examples as 

they are more suitable to explain the basic idea behind 

domain filtering. 

In domain-filtering approaches[3][11], each free 

variable is associated with a set of allowed values for 

that variable. This set is called the domain of the 

variable. Typically contiguous intervals such as 

          or finite set enumerations such as   
           are used. 

The process of domain filtering iteratively tries to 

remove as many values from the domain of a variable 

that do not take part in a solution. 

In the example from Eq. (1) we could start with the 

assumption that              . Given    , we 

can remove all values from the domain that are less than 



or equal to 2, resulting in the new domain   
           . 

Further, using x<3, we can remove all values from the 

domain that are greater than or equal to 3. This means 

that we have to remove all elements from the domain, 

resulting in an empty domain. 

As a consequence we can conclude that there is no value 

for  x that would fulfil the constraints, and thus there is 

no solution within the initial domain of integer values. 

In a constraint solver that is based on domain-filtering 

this kind of removal of values is continued until the 

domains of all variables have reached a fix point, i.e. 

until the domains cannot be refined anymore. 

Unfortunately, the representation of the domains must 

be finite, i.e. it must not require an infinite amount of 

memory, and typically, the amount of memory required 

for representing a single domain not only has to be 

finite, but also bounded, meaning that no more than a 

given maximum of memory may be consumed by the 

representation of a single domain. 

This often leads to poor approximations. For example, 

consider    . The domain of x shall be represented as 

a contiguous set of integers, given by the lowest and the 

highest number in the set. 

If the domain of x is              , we can 

remove 0 from the domain and the filtered domain is 

             . 

However, if we start off with                 , 
the result of removing 0 is               
           , which is not a contiguous set. We can 

only approximate it as                 . Thus the 

domain contains a value of x which cannot take part in a 

solution. 

Some constraint solvers employ a combination of 

contiguous sets and enumeration of individual values by 

representing the domains as the union of a finite number 

of contiguous subsets. However, that also implies higher 

memory consumption. Perhaps non-intuitively it also 

implies higher CPU impact, as filtering for a constraint 

involving k variables now has to performed      
     times, where    is the number of subsets the 

domain of variable i has. 

So even those systems at some point have to perform 

approximation, and while it is possible to minimise the 

impact of such an approximation, it is not generally 

possible to keep the impact acceptable. 

The filtering algorithms for floating point constraints 

are a bit more complex as they have to consider proper 

rounding. In some cases – such as the example from 

Eqs. (2) and (3) – they exhibit inadequate convergence 

of the domains, taking inacceptably long to reach a fix 

point. 

3.1.4. Non-Linear Constraints 

Although still complex, solutions for linear equations 

and inequations over the integers are easier to find than 

for the same constraints over floating point values [9]. 

While for a purely linear system of constraints a proper 

parameterisation of the solution space is often possible, 

this is typically not the case for non-linear constraints 

such as multiplication of variables or bitwise binary 

constraints such as bitwise and, or, xor as well as 

bitwise shifting operators in their signed an unsigned 

forms. 

This can be easily seen by considering the problem of 

finding the roots of a polynom of arbitrary degree 

greater than 2. For example, it is possible to solve 

          using the general solution formula for 

quadratic equations      
         

 
. However, there is 

no known algorithm for determining the roots of 

            in general. 

Furthermore, even the solution formula for quadratic 

equations only holds if the solutions may be real 

numbers, not, e.g. for floating point values. 

As a consequence, the presence of non-linear constraints 

in a constraint system makes construction of solution by 

search necessary. This process often implies several 

steps of trial-and-error before a solution is actually 

found. 

For some non-linear constraints, so-called dynamic 

linear relaxations exist, where the actual constraint is 

approximated using linear constraints[12]. Nevertheless, 

these relaxations also require search. 

For example, consider a constraint      , involving 

the three variables a, b and c. As none of them is a 

constant, this clearly is a non-linear constraint. 

Once we add constraints limiting the range of a and b, 

such as          and         , we can 

further constrain the value of c. 

By rewriting       as        and      as 

      , we find that the product of the two positive 

values      and      is also positive. The new 

constraint is therefore:                  . 

With      we finally get              . So 

now we have found an upper bound for c, which is 

given in terms of a and b. Using the remaining three 

combinations of the lower and upper bounds for   and   

we further get                ,     
            and                 as 

further bounds for  . 

Of course, these are only linear approximations of the 

range of c. It is not possible to just remove the 

constraint      from the system and solve the 

remaining system of linear inequations. 



It is said that the non-linear constraint is relaxed by 

introducing linear approximations. These relaxations are 

dynamic, because they are adapted whenever new 

bounds for a or b are introduced. However, it is not 

possible to completely replace non-linear constraints by 

such relaxations. 

3.1.5. Linearization 

A typical parameterisation used in context of bitwise 

binary operations is the bit vector. Here, the value of a 

variable with n bits is represented by an n-element 

vector of bits, each bit having either value 0 or 1. Once 

a value is available in that form, bitwise operations are 

easy to solve. 

However, the naive conversion to a bit vector implies 

the creation of   additional logical variables for every 

value handled in this way, thereby also increasing the 

complexity of the system. 

Some forms of bitwise operators can be expressed in 

linear form, most specifically those where one operand 

is constant. For example, the C-expression b=a<<4 can 

be transformed into      . Similarly, b=a&12 can be 

represented by the Eqs. (6) to (9). 

               (6)  

        (7)  

        (8)  

       (9)  

The idea is that  can be uniquely expressed as 

    
    

   , where n is the width of n in bits and the    are 

the values of the individual bits with       . 

However, we can combine some of the bits together and 

form Eq. (6), where          ,           and 

         
    

   . The additional constraints in Eqs. (7) 

and (8) ensure that there is a unique mapping between 

the    and the   . 

We find that              . Using this 

representation we can avoid splitting   into all its 

individual bits: Instead of introducing 32 new variables 

for a 32-bit integer, we only introduce 3 new variables, 

all representing one or more bits of  . 

It should be noted that the sum-of-bits-representation 

for a given above assumes that  is unsigned. However, 

Eqs. (6) to (8) are also valid for signed integers. 

For example, if      , we get     ,      and 

      as solution. 

Unfortunately, no such linearization exists for 

expressions such as b=1<<a. 

3.1.6. Memory Model 

The examples discussed above were very theoretical in 

so far as they did not involve explicit memory access. 

However, for most practical applications explicit 

memory access is necessary and often used, especially 

in the domain of embedded systems. 

Consider, just as an example, processing of a 

telecommand onboard a spacecraft. The telecommand is 

provided in the form of a byte-stream, and groups of 

bytes in this stream are combined to form the individual 

command and data fields. 

Languages such as C or C++ allow use of pointer 

arithmetic, allowing the code to access any place in 

memory directly. It is even possible to write an 

unsigned integer value to some address addr 

(assuming a representation of 4 bytes) in memory and 

sometime later read a floating point value from the same 

address. As a more extreme example, it is even possible 

to read an unsigned short (2 bytes) from the 

address 1byte after addr. 

Whenever a read to memory occurs in the program for 

which test data shall be generated, the constraint solver 

must find the result of the read access. This means that 

the solver needs to find the latest preceding write access 

to a matching address. 

When discussing the memory model, one should keep in 

mind that in most cases the values of the variables are 

represented by logical variables which have no distinct 

value until a solution is selected. 

For example, the value of the pointer returned by a call 

to malloc() is not known in advance. It may take any 

value – except, typically, values indicating addresses on 

the stack or in the fixed code and data segments. Fixing 

the value of said pointer already during the process of 

constructing the path and the constraint system could 

therefore preclude specific solutions which would 

otherwise be possible. 

This means that for a completely symbolic address, 

potentially all previous write accesses may match. As a 

consequence, the solver may have to iterate over a large 

number of alternatives, each of which may influence 

further path construction in a different way. 

However, it is sometimes possible to effectively 

conclude whether a write access and a read access are 

related to the same address range. The underlying 

problem is called the aliasing problem, and there are 

several approximations of a solution. 

For example, if a one-byte write access on the address 

     is performed, followed by a one-byte write 

access to the address     , with   and   both being 

integers, it is possible to conclude that the two accesses 

do not overlap, even without knowing the concrete 

values of   and  . 



If the two addresses would be the same, they would also 

have to be congruent modulo 4. However,      
                and thus the two addresses are 

not congruent modulo 4. As a consequence, they cannot 

be equal. 

The reverse, however, is not true. Although    
          , the addresses    and    do not necessarily 

refer to the same location. 

Another possibility to exclude overlaps is when the two 

addresses refer to the same base address, which is 

typically the case when accessing objects on the stack, 

in the fixed data segment or within a single array. 

Consider, for example, the following code: 

void swap(int a[], int i, int j) { 

 int tmp; 

 if (i==j) 

  return; 

 tmp = a[i]; 

 a[i] = a[j]; 

 a[j] = tmp; 

} 

Let us assume that the base address of the array a is p. 

As an example, we want to know whether the memory 

accesses in the line a[i] = a[j] refer to the same 

address. 

The address accessed in a[i] is      (assuming an 

int size of 4). The address accessed in a[j] is     . 
When we have reached that line, we have already 

established that     due to the if-statement 

containing a return-statement. 

Comparing the two addresses, we find that      
     if and only if    . This obviously contradicts 

the constraint    , so that we can conclude that the 

two accesses do not refer to the same address. 

In contrast, consider the following example: 

int scalar(int a[], int b[]) { 

 int i, res = 0; 

 for (i=0;i<3;i++) { 

  res += a[i]*b[i]; 

 } 

 return res; 

} 

Again assuming that the start address of the array a is p, 

and assuming that the start address of the array b is q, 

the accesses in the body of the loop would be to the 

addresses      and     . In that case it is not 

possible to conclude whether these addresses are the 

same, as we have no information about p and q. 

3.2 Discrepancies between Model and Reality 

As has been discussed in the previous sections, 

constraint-based test data generation requires exact 

mathematical models of the semantics of a program. 

These are available if a program is considered to be a 

purely mathematical construct in isolation from any 

physical hardware or timing aspects. 

However, when executing a program on a certain 

platform it may be not known how a mathematical 

operation on abstract numbers is mapped onto 

computational operations on reals numbers on a given 

platform. 

As soon as the software to be tested communicates 

directly with hardware or when timing aspects are 

relevant, the models become inherently more complex. 

While it is theoretically possible to model timing in 

various ways, it is currently impractical in reality. 

Also, mathematical models of program semantics may 

be incomplete regarding the actual behaviour of 

hardware, both periphery and the processor itself. 

For example, the C standard ISO/IEC 9899 describes 

the result of many operations as being undefined, such 

as bitwise left-shifting with negative shift offsets. The 

rationale for the standard is of course that these cases 

are not sensible to define as they may be interpreted 

differently on different hardware. 

Still, such operations are not necessary undefined given 

a specific compiler and platform. 

Another example are transcendental functions – sin, 

cos, tan, etc. – in floating-point calculations. 

The standard IEEE754 requires that the results of 

addition, subtraction, multiplication, division and 

square-root shall be correctly rounded, i.e. the results 

should be same as if the operation had been executed in 

full accuracy and then rounded. This means that the 

results of these operations are well-defined. 

The standard does not enforce an equivalent 

requirement on other operations, including, e.g., the 

transcendental functions. This is not a case of neglect on 

the part of the authors of the standard, but instead a 

result of the so-called table maker’s dilemma: An 

algorithm producing correctly rounded results would 

first have to calculate the result with a larger precision. 

The number of bits to which the result would have to be 

precise cannot be known in advance, and calculation 

according to a – yet unknown – worst case would be 

computationally expensive. 

As a result, these functions are not well-defined 

according to the standard and their values are dependent 

on the respective implementation on the target. This 

makes it difficult for a solver to find a solution while 

not knowing exactly the conditions of a representation. 

One way to solve the problems around these operations 

is to completely avoid them. But in some cases this may 

not be desirable. For example it is known that on some 

platforms left-shifting with negative offsets is handled 



in a sensible manner. In contrast, explicitly checking the 

sign of the offset and using right shift for negative 

values and left shift for positive values may impair 

performance and is difficult to automatically optimise 

by a compiler. 

The other way is to make sure that the implementation 

on the given platform matches the definition in the 

theoretical model on which the test data generator is 

based. 

The simulation of hardware/software-interaction may 

also be impaired by another limitation of the approaches 

available today. One of the issues introduced by 

interaction between hardware and software in terms of 

the models is parallelism: Processes in (periphery) 

hardware and in software execute in parallel to each 

other. 

As previously mentioned, the avoidance of infeasible 

paths is very important for feasibility of constraint-

based test data generation. Unfortunately, none of the 

currently known methods for avoidance of infeasible 

paths is able to properly handle parallelism. 

In addition, timing is often very important in 

hardware/software interaction. The timing of complex 

hardware circuits is not only difficult to simulate 

accurately, but – as mentioned earlier – is also difficult 

to model in a feasible way in the context of CBTDG. 

If timing is not considered properly in a parallelised 

system, the state of the system – including memory and 

message queues – cannot be determined for a given 

point in time. This means that the interaction between 

the various processes cannot be considered for test-data 

generation. 

4. BIAS CONSIDERATIONS 

Testing is imperfect in the sense that only the presence 

of defects can be shown, but not their absence. As a 

consequence, a software test very much resembles a 

scientific experiment aiming to disprove the hypothesis 

of the software being correct. 

Therefore the proper selection of samples – in this case: 

test inputs or test cases – is important for the 

significance of the result. If – by chance – only test 

cases are selected for which the software does not 

exhibit faulty behaviour, although the software is not 

correct, the hypothesis of correctness may be accepted 

by mistake. 

The same is true if the software exhibits faulty 

behaviour but the faultiness of the behaviour stays 

unnoticed, e.g. due to being hidden in masses of data. 

Classical coverage criteria such as statement coverage 

or even Modified Condition/Decision Coverage 

(MC/DC) – the latter of which is normally considered to 

be very challenging – can help guide the selection of 

appropriate test inputs, but are not sufficient on their 

own[13]. 

Therefore, even though any test input from a given 

partition as defined by the coverage criterion may seem 

equivalent to any other input from the partition, this is 

not the case. 

This not only implies that not just any input that 

matches the criterion may be selected. It also implies 

that giving precedence to some of the inputs – for 

whatever reason, including technical reasons rooted in 

algorithm optimisation – may negatively impact the 

validity of the test conclusion. 

Therefore, algorithms used for automatic test data 

generation need to be carefully tuned not to be biased 

towards any specific subset of the possible solution set. 

Assuming that no more specific information is available 

on which values from the candidate set are more likely 

to activate fault conditions than others, the algorithms 

must therefore apply random selection of input data 

from the solution set. 

If, on the other hand, more specific information is 

available, this information should instead be formalised 

by way of a more specific coverage criterion. 

However, this may be difficult to achieve. For example, 

the selection of a path through the system by way of a 

random walk will favour shorter paths, if at each step 

the edge to be traversed is chosen by a uniform 

distribution from the available set of edges. If it is 

acceptable to limit the length of the path to a given 

maximum, then a method is available that can be used 

to ensure uniform distribution among the paths with that 

given maximum length[14]. However, this method 

needs to be integrated with the method used for 

avoiding infeasible paths. 

Even then, the solution of integer inequations according 

to the Omega Test involves two steps, one of which 

being the modified Fourier-Motzkin-Elimination and 

the other being the search involving the possible 

solutions that may have been missed in the first step. 

This second step may involve the consideration of 

multiple, possible non-disjoint sets of solution 

candidates. 

Thus when selecting a solution, a decision needs to be 

taken over whether to select a solution that results from 

the first or the second step, and if a solution from the 

second step is targeted, one of the candidate sets needs 

to be selected. 

In order to guarantee a uniform distribution among the 

two steps as well as between the individual candidate 

sets, the number of solutions provided by each of the 

choices must be known. However, there is no way to 

determine this number except by first enumerating all 

solutions. 



However, not only CBTDG algorithms may show bias 

towards specific test inputs. 

Their human counterpart – the test engineer – may 

exhibit engineering bias, selecting test input values 

based on previous knowledge about the system. This 

assumed knowledge may include invalid assumptions. 

Such invalid assumptions may lead the test engineer to 

assume that the results of some specific test cases would 

be obvious and irrelevant, thus not selecting these test 

cases, although they could actually show the invalidity 

of the assumption. 

Another case of engineer bias is when a test engineer 

selects easily visible solutions to the test objective and 

discards solutions which are more difficult to calculate 

and thus may be erroneous when calculated manually. 

5. CONSEQUENCES 

Although some of the limitations seem grave, there are 

some simple rules for design and coding, which help 

counter these limitations and at the same time also can 

be considered good engineering practice. 

Further, CBTDG should not be considered the method 

of first choice for test data generation when simpler and 

more effective methods are available. 

Instead, CBTDG should be used to complement other 

approaches to test data generation such as random 

testing. Random testing is not only faster in generating 

test data sets with high variability, but also is based on 

very simple algorithms which are less prone to 

introduce bias in the selection of test data. 

5.1 Design and Coding Rules 

By applying the following rules, the produced code may 

become easier to test and verify automatically. 

Adherence to these rules is optional, but performance of 

constraint-based test and verification may suffer if the 

rules are not followed. 

5.1.1. Separate Hardware Interaction from Logic 

As a basic rule, interaction with peripherial hardware 

should be separated from operational logic as far as 

possible. This way CBTDG can be applied to the logic 

parts without raising any issues in hardware/software 

interaction. The parts directly interacting with periphery 

– e.g. transmitters or sensors – typically cannot be tested 

without hardware-in-the-loop anyway. 

However, by separation of these concerns, the manual 

effort for testing the logic part can be reduced 

considerable, although the manual effort for the 

hardware-interaction part remains. 

5.1.2. Avoid  Overlays and Union 

Overlays occur when a location in memory is accessed 

using different types, e.g. writing a 32-bit unsigned 

integer location only to later retrieve a float value from 

the same location. In symbolic execution, this requires 

expensive symbolic casting operations. A more extreme 

example is writing a float value to a location only to 

receive the lowest 16 bits in the form of an unsigned 

integer. 

This is often an issue when communication data is to be 

processed. The communication packets are delivered by 

the hardware in the form of unstructured byte-streams, 

so that the data is often referred to in the form of a 

pointer to an array of bytes. 

Access to the data may occur in the form: 

uint16_t getSeqNum(char* packet) { 

 uint16_t val; 

 memcpy(&val, 

  packet+OFFSET_SQNUM, 

  sizeof(val)); 

 return val; 

} 

Note that although the use of memcpy seems inefficient 

and unnecessary here, this way of accessing fields in a 

telecommand was actually observed in actual flight 

software. 

Instead, proper struct-types defining the structure of 

the individual packet types should be defined and the 

cast from the byte-pointer to a pointer to the given 

structure should be done as early as possible in the 

processing sequence. 

Often alignment issues are claimed, but they do not 

justify the construct above, as they can be solved 

satisfyingly with non-exotic constructs. For example, 

Almost all compilers support specific language 

extensions by which a struct can be packed, i.e. the 

alignment requirements of each field are explicitly set to 

1 byte. If the underlying architecture does not support 

non-aligned memory access – which is the case in some 

RISC architectures – appropriate memory access 

scheduling can be left to the compiler. Even though this 

might inspire concerns about performance, as a single 

32-bit access may have to be split up into as much as 4 

individual byte reads, these concerns are even more 

justified with the memcpy-approach shown above. 

For example, packet structure could be defined 

involving a common header and different structures for 

the different command types: 

typedef enum { 

 Cmd_Set_State, 

 Cmd_Get_State, 

 ... 

} CommandType; 

typedef enum ProcessType; 

typedef enum StateType; 



typedef struct { 

 uint16_t crc16; 

 uint16_t length; 

 uint16_t seqNum; 

 CommandType command; 

 ... 

} PacketHeader; 

typedef struct { 

 PacketHeader       header; 

 ProcessType  process; 

} PacketGetState; 

typedef struct { 

 PacketHeader    header; 

 ProcessType  process; 

 StateType  targetState; 

} PacketSetState; 

char TC_PacketBuffer[TC_MAX_SIZE]; 

void IRQ_PacketReceived(); 

void DispatchTC(PacketHeader*); 

void GetState(PacketGetState*); 

void SetState(PacketSetState*); 

The function IRQ_PacketReceived handling the 

reception interrupt from the transceiver could first 

verify the length of the packet and the CRC16 

checksum, and pass by casting 
(PacketHeader*)TC_PacketBuffer 

to the dispatch function DispatchTC. The latter 

would then check the command in the header and 

dispatch the TC to the respective handler function, 

casting it to the respective structure type in the process, 

in this case (PacketGetState*) for GetState or 

PacketSetState* for SetState. 

This way, the handler functions as well as the dispatch 

functions have well-defined interfaces and all memory 

accesses are typed, different from the memcpy 

approach. 

Overlays are avoided – with one exception in the 

example: The CRC16 calculation will probably access 

every byte in the packet individually, while the same 

bytes may be accessed using different types later on. 

However, as this is limited to a single function, it does 

not impact the test data generation for GetState and 

SetState. 

For the reader concerned by the performance overhead 

introduced by the dispatch function calls it should be 

noted that of course the compiler can be instructed to 

inline some of the functions, avoiding the overhead 

while at the same time keeping up the well-defined 

interface. 

5.1.3. Use Small Functions for Specific Purposes 

Tasks like sorting, CRC-calculation, etc. should be 

exported to small specialized functions. If there is 

concern about the call overhead, the functions can be 

inlined by the compiler. 

In unit testing the test for a single unit – in our case a 

single function – is often created under the assumption 

that units used by the unit under test are working 

correctly. So if a function checking the integrity of a 

telecommand packet uses a CRC-calculation function, 

the test of the former function assumes that the latter is 

working correctly. 

Due to the declarative nature of the algorithms 

underlying CBTDG it is possible to replace individual 

functions – except, of course, the function under test – 

by their respective specification. 

Coming back to the sorting function, for its 

functionality it is only important to know that the result 

is sorted and maybe whether the sort is stable – i.e. 

whether the order of elements that are considered equal 

is changed. It is not important to know how the sorting 

takes place. 

Additionally, symbolically executing the sorting 

algorithm is almost certainly more computationally 

expensive than asserting that the resulting list is sorted. 

By splitting specific tasks into specialized functions 

replacement of such functions by their respective 

specification may be possible – given that the tool used 

supports such a replacement. 

This – in general – would be good engineering practice, 

as it separates the code into small, self-contained 

elements. These are also easier to manage in manual 

testing,. In consequence, such coding issues are not only 

a matter of CBDTG, but of good engineering practices 

in general. 

5.1.4. Prefer fixed-point calculations over floating-

point 

This recommendation does not generally fit with the 

other rules as it cannot be considered good 

programming practice in general. 

Further, it is not always possible or desirable from a 

design point of view to replace floating-point 

calculations by fixed-point calculations. 

However, specification and design should in general 

also consider testability of a system and the effort 

impact implied by limited applicability of automatic 

testing solutions as well as their current technical 

limitations. 

As mentioned previously, available constraint solvers 

for CBTDG generally deal better with integer – and thus 

also fixed-point – arithmetic than with floating-point. 

5.1.5. Limit the range of parameters as far as 

possible 

The free variables present in the constraint system 

represent the initial or intermediate states of variables of 

the program and thus the values of these free variables 

are implicitly limited to the type range of the associated 

program variables. 



Solving a constraint system typically also includes 

search over the remaining search space, which, although 

in many cases already being reduced due to the known 

constraints, may in the worst case extend to the full type 

range of a variable. 

Further, limits imposed on one variable may also imply 

further search space reductions for other variables. For 

example, consider the program z=x+y, where z is an 

unsigned 32-bit integer variable. Let us assume that the 

range of   has already been constrained to         , 
whereas   is an unconstrained unsigned 32-bit integer. 

In that case, the solver cannot restrict the range of   

beyond its regular type range. 

If, however,   by design shall only take values that all 

fit in the range of an unsigned 16-bit integer, by 

declaring   with a matching type – e.g. unsigned short 

in C – the range of   can be constrained to 
           . This is smaller than the full 32-bit 

integer range by a factor of    , meaning that the 

solution may be found up to 16 times faster than with 

the original setup. 

5.2 Combining CBTDG with Random Testing 

In the last years, random test data generation and similar 

black-box approaches like grid-based testing have been 

shown to reach high – although not necessarily 

complete – test coverage on their own. Heuristic 

methods are already in use in the practice of test data 

generation that increase the coverage achieved without 

using constraint solution algorithms[15]. 

So in terms of test-data generation there is no reason to 

use CBTDG as the first and only method within a test 

preparation process. 

Random and grid-based test data generation, for 

example, is able to generate and evaluate thousands of 

test inputs based on type ranges visible in a prototype 

within a few seconds, where evaluation includes 

analysis of coverage. In contrast, generating a single test 

input for practically relevant code with CBTDG may 

take a tenth of a second up to many minutes, depending 

on the code and the point in the code to be reached. 

Further, type-range-based test data generation (TRTDG) 

allows unbiased generation of test input as well as 

generation of input data according to operational or 

other profiles without much complication. However, it 

is not perfect regarding reaching full coverage as it does 

not consider constraints at all which in some cases is 

required. 

On the other hand, constraint-based methods require 

considerable efforts and complexity in order to ensure 

absence of bias. There are methods which, for example, 

ensure that from all paths with a given maximum length 

any path is selected with the same probability[14]. 

However, these methods may introduce issues with 

infeasible paths[5] and are difficult to combine with 

approaches for avoidance of such paths. This is where 

TRTDG can easily complement CBTDG. 

So CBTDG is best used to complement the test 

coverage already provided by heuristic and type-range-

based test data generation. 

6. POTENTIAL 

Although CBTDG seems to be laden with performance 

and theoretical limitations, its use can still be more 

efficient than manual test data selection. This, of course, 

can only be valid wherever CBTDG is applicable in the 

first place, i.e. where formal test objectives are available 

that can be translated into constraints. This is the case 

for typical and also extended coverage criteria[6]. 

After all, CBTDG is able to generate test data for some 

test objectives within less than a second on current 

computers, with potential for further increase in 

efficiency, while a test engineer might even require 

more than that time for even understanding the test 

objective. 

An important benefit is that CBTDG can be advised to 

provide test inputs for a code segment or branch which 

could not be covered by TRTDG applied in a first step. 

This way most of the branches can be covered by 

TRTDG rather fast – typically up to 60 – 80 % - and the 

remaining coverage is provided by CBTDG – if full 

coverage is possible at all – by identifying the non-

covered elements after the first step and then asking 

CBTDG for the remaining test inputs. 

When combined with meta-heuristic testing 

approaches[16][17], proper formal oracles or 

plausibility checks, use of CBTDG may lead to a higher 

number of test inputs and consequently provide higher 

reliability of test results.  

For example, the already introduced gcd function is 

commutable, i.e. gcd(a,b)=gcd(b,a) for any 

values of a and b. A constraint-based test data generator 

could systematically explore the set of possible paths 

through the function and check for violation of this 

invariant. Alternatively it might be possible to explicitly 

search for counter examples. 

If there is a plausibility condition for the return value of 

a function f, such as        , then CBTDG could 

be used to explicitly search for inputs for which this 

plausibility condition is violated. These cases would 

then be interesting material for further analysis. 

The (relative) lack of bias in combination with the exact 

representation of language semantics may lead to 

unexpected test input being selected – which a test 

engineer never would derive or consider as an 



interesting input - resulting in evidence for unexpected 

behaviour of the software under test. 

For example, in context of machine representations the 

condition (u-l)<100 with two signed integers u and l 

may very well be true, while at the same time a loop 

for (i=l;i<u;i++){...} 

may take much more than 100 steps, for example if 

         and    . In this case,     evaluates to 

   . This is outside the range of unsigned int and 

thus according to the C-standard is converted to     , 

which obviously is less than 100. Also,     holds. The 

loop will iterate       times 

Similarly, the expression i+1 may very well be 0 even 

if     holds (as shown in the example below). 

These are consequences of explicit modelling of two’s-

complement arithmetic of integers. Basically, the 

expression z=i+1 in C is not equivalent to the 

expression z=i+1 in classical integer arithmetic. 

Rather, it must be translated into Eqs. (10) and (11). The 

additional variable c represents the carry that occurs 

during overflow. Note that these equations exactly 

model the behaviour specified in the C-standard 

ISO/IEC 9899:2011.With the translations shown in Eqs. 

(10) and (11), it is easy to see that         leads to 

   , although     holds. 

            (10)  

         (11)  

This case was observed in a loop of the form 

int getIncrement(...); 

/*... */ 

unsigned int i,j; 

i= getIncrement(...); 

for (j=0;j<100;j+=i+1) {...} 

The value returned from getIncrement was not 

checked for whether i+1 would be zero in the memory 

representation, so it was possible to send the function 

into an endless loop. 

This example demonstrates how the rather exotic value 

of        = 0xffffffff can occur for i: In this case it is 

a matter of (implicit) type casting between signed and 

unsigned. If the function returns -1 e.g. to flag an 

error while in normal case only non-negative return 

values are expected, i gets the highest value of 

unsigned int, so that adding 1 evaluates to 0. In 

terms of  signed int this is also correct: -1 + 1 =0. 

Similarly, a quasi-endless loop would occur for 

for (j=0;j<i;j++) {...} 

while at the first glance it could be expected from the 

returned value -1 that the loop never would be executed 

as 0 ≤ j < -1 is a contradiction. But the compiler 

interprets the value 0xffffffff differently, depending on 

the type. 

7. OTHER POTENTIAL APPICATION AREAS 

While in context of this paper we only discussed 

constraint programming in the context of constraint-

based test-data generation, there is a large potential for 

other applications [8]. 

Solutions based on constraint programming are already 

in use for scheduling, not only in the computer-science 

sense but also, e.g. for fleet planning in logistics or 

aviation. 

In a similar context they may be suitable for continuous 

mission replanning and on-board autonomy, e.g. for 

planning orbit manouvers for earth-observation based 

on requests coming from ground. 

In operations research constraint programming is used 

for optimisation problems. 

Also, constraint programming methods may be used for 

implementing design choices in code generation or for 

optimisation in compilers. One example for the latter is 

the use in parallelisation of algorithms or rescheduling 

of instructions. 

8. CONCLUSIONS 

While the original movement was already started in the 

early 1990s, the area of CBTDG has seen a surge of 

research activities in the last decade, some of which 

have led to actual implementations close to industrial 

requirements. 

Effective use requires knowledge about the possibilities 

and the limitations at the same time. Some of the 

limitations highlighted in this paper do not only apply to 

constraint-based test data generation, but also to other 

formal and automated methods in software verification 

and validation, most notably to many forms of model 

checking and abstract interpretation. 

Although there is still a lot of research potential left, 

most specifically in the area of solvers and the 

application to parallelised environments, CBTDG has 

the potential to become an important tool of the trade of 

software testing within the near future. 

BSSE is also contributing to industry-ready solutions to 

many of these issues in the course of industrial research 

accompanying the development and maintenance of an 

industry-ready CBTDG tool integrated with its already 

existing tools for random, heuristic and grid-based 

testing. 
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