
POTENTIALS OF CONSTRAINT-BASED METHODS IN SOFTWARE VERIFICATION

AND VALIDATION

Ralf Gerlich
(1)

, Rainer Gerlich
(2)

Dr. Rainer Gerlich System and Software Engineering, Auf dem Ruhbuehl 181, D-88090 Immenstaad, Germany
(1)

 Email: ralf.gerlich@bsse.biz
(2)

 Email: rainer.gerlich@bsse.biz

ABSTRACT

We give an overview over the principles of constraint-

based test data generation, discuss its limitations and

potentials and touch some of the domains which may be

interesting to combine with constraint-based testing

techniques. Automated generation of test data is an

example where this technique can be applied and

significantly increase the degree of automation, but it is

not limited to. This paper is intended to give interested

readers a quick entry into the methods and applications

to allow a deeper understanding and an informed verdict

about the actual capabilities and potential future

directions.

1. INTRODUCTION

In software test, automation of the test procedures itself

can be considered solved. Automation toolkits such as

JUnit for Java or its numerous counterparts for Ada,

C/C++, Python, PHP and even Perl, for example, cover

the relevant languages of almost all application

domains.

The limits of automation can be stretched further by

parameterising test cases and using hand-written test

data generators to allow statistically relevant test case

counts.

For two major problems of software testing, however,

current practice does not or only very restrictively apply

automatic approaches:

 test data generation, and

 generation of verdicts - also known as the

"oracle problem" [1].

Constraint-based test-data generation (CBTDG)[2]

contributes to the solution of the first of these issues.

CBTDG can deliver test inputs that fulfil formal test

objectives. These include generic coverage testing as

well as specification-based approaches. Theory-testing,

which explores the input space for possible violations of

axiomatic properties of a functional unit, can also be

supported by CBTDG.

With this paper we want to give an overview over the

domain of CBTDG for practitioners and introduce

limitations and potentials of this technique. The paper

shall also be a starting point for interested readers to

delve deeper into the topic.

2. BASIC APPROACH

Constraint-based techniques – in contrast to random test

data generation or parameterized testing with data tables

– work by solving systems of logical constraints – e.g.

equations or inequations. The free variables in these

constraint systems represent the initial and intermediate

states of the program under test.

The idea is that these constraints represent the

conditions under which the desired test objective is

fulfilled. Test inputs may be found by solving the

constraint system for the variables representing the

initial state.

In cases of specification-based black-box testing these

constraints can often be lifted directly from the

specification. Examples here are the enforcement of

invariants over specific input variables or the definition

of nominal and faulty ranges for input data.

In the case of specification-based testing – e.g. based on

a test model established independently from the

implementation to be tested – the expected outputs may

be taken from the free variables representing

intermediate states as well as the final state of the

program, as far as they are observable on the

implementation.

For example, intermediate and final states of internal

variables of a program may not be observable, while the

return value of a function as a part of the final state of

the function is typically observable.

In case of white-box coverage testing, the constraints

need to be constructed from the control structure of the

program itself.

Typically, an annotated form of the control-flow graph

(CFG) is used for that, where the annotation consists of

the formal semantics of the instructions and conditions

contained in the nodes and edges of the

CFG[3][4][5][6].

Consider the following code example:

unsigned int gcd(unsigned int a,

 unsigned int b)

{

 while (a!=b) {

 if (a>b) {

 a=a-b;

 } else {

 b=b-a;

 }

 }

 return a;

}

This is the classical implementation of Euclid’s

algorithm for finding the greatest common divisor of

two positive integers. Figure 1 shows the CFG for this

algorithm. The circles represent the nodes and the

arrows represent the edges. The nodes are labelled by

the instruction that is executed when they are reached,

and the edges are labelled by the conditions that must be

fulfilled so that the edges can be traversed.

We can easily identify the conditions from the loop,

 , and from the if-statement, . The other

conditions are the respective logical negations of these

conditions. The center node at the top is the entry node

and the node to the top-right is the exit node.

Figure 1: CFG for Euclid's GCD algorithm

Other methods[7] use the structure of the source code

itself and apply transformation techniques such as loop

unrolling to generate test data.

2.1 Infeasible Paths

While each of these methods has its advantages and

disadvantages for different kinds of test objectives, they

all share a common issue: infeasible paths of

execution[5][7][6].

Infeasible paths are such paths which are possible to

construct, e.g., in the CFG, but for which there is no

input to the program that will lead to their execution.

They resemble dead code in the sense that if none of the

paths leading to a specific part of the code is feasible,

then this code part constitutes dead code. Put another

way, as long as there is at least one feasible path leading

to a specific code part, that code part is alive.

In practice, infeasible paths are much more frequent

than feasible paths, so that avoiding the construction of

infeasible paths is necessary for adequate performance.

One example is given in the following code example:

void sort(int len, int a[]) {

 int i, j, min, tmp;

 for (i=0;i<len;i++) {

 min=i;

 for (j=i+1;j<len;j++) {

 if (a[j]<a[min])

 min=j;

 }

 tmp=a[min];

 a[min]=a[i];

 a[i]=tmp;

 }

}

This is a classical implementation of the selection sort,

which repeatedly searches for the minimum element in

the remaining array and places that at the end of the

already sorted array. Here i gives the length of the

already sorted part of the array, and the inner loop

iterates over the remaining elements, identifying the

smallest.

Examining the source code closely we find that the total

number of iterations of the outer loop is , i.e. the

number of entries in the array to be sorted. Further we

see that with every iteration of the outer loop, the

number of iterations of the inner loop decreases by 1,

starting at and finally reaching 0. Thus, the total

number of iterations of the inner loop can be derived to

be

.

Thus the iterations of the inner and the outer loop are

strictly interdependent and the execution sequence –

except for the conditional statement inside the inner

loop – is strictly defined by just the parameter len.

However, this dependency is not visible in the CFG as

shown in Figure 2. The CFG allows a path through the

program where the outer loop is iterated once while the

total count of iterations of the inner loop is 2.

Let us construct the constraints in the order in which

they come up during traversal. Note that all variables

get an additional index, as the program variables

support destructive assignments while the variables in

the constraints are logical variables which may hold

only one value. We increment the index whenever we

observe an assignment. We will ignore the comparisons

involving the array and min as they do not contribute to

the explanation.

Figure 2: CFG of selection sort

So these are the constraints as they come up:

We find that and thus follows from

 , but also and , thus .

This is a contradiction, indicating an infeasible path, as

there is no solution for the constraint system.

Unfortunately, these contradictions often do not become

visible before the full path was constructed. As we can

see in the example, the constraint system contained no

contradiction until was introduced at the end of

the sequence.

This problem cannot be solved by a simple trial-and-

error approach, where the identification of a

contradiction and thus an infeasible path simply results

in the generation of a new path. The ratio of feasible to

infeasible paths in a single program can be so small that

the mean number of retries required to find a single

feasible path can be too large for the approach to be

practical[5][6].

Instead, special mechanisms are necessary for avoiding

infeasible paths in the first place. These rely on

detecting inconsistencies in the constraint system as

early as possible during construction.

Further, in some approaches the path construction

algorithm tries to predict the behaviour of the

software[6][7] in order to find additional constraints

early which may lead to contradictions and thus indicate

an infeasible path.

Here the structure of a program may be indicative of

code sequences which are executed in any case,

independent of what decision is taken at the current

branching point. For example, the code coming after the

body of a loop is typically executed independently of

whether the body of the loop is traversed or not.

The only time when this is not the case is when the body

of the loop contains a jump statement by which the code

after the loop is skipped, e.g. a return statement.

2.2 The Use of Constraint Solvers

Once a feasible path has been found and the set of

constraints to be fulfilled is established, a solution to

these constraints needs to be found.

A solution to a constraint system is a list of assignments

of the form "V=x", where V is a variable and x is an

atomic value, so that the constraint system is fulfilled

when the variables are replaced by their assigned

variables[8].

For example, considering the inequations
 and , a solution could consist of

the assignments and .

The algorithm that transforms a system of constraints

into a solution is called a constraint solver. Depending

on the type of constraints to be solved, different

algorithms need to be used.

As in most cases there is more than one solution, the

main task of the constraint solver is to find an

approximate parameterisation of the solution space. The

approximation should be as exact as possible, while not

being a too heavy burden on performance – for both

memory and CPU consumption.

In the context of CBTDG, constraint solvers are not

only used to find a solution, but also to find whether a

system of constraints is actually solvable. This is of

specific importance when trying to avoid infeasible

paths.

3. LIMITATIONS

The generation of input data is limited by the Halting

Problem, which states that there is no procedure which

can determine within finite time whether an arbitrary

given program – in this case the program under test –

will terminate within finite time on an arbitrary given

input.

This is a fundamental problem in computer science.

Because it is a theoretical and therefore absolute

limitation, it cannot be removed by optimisation, only

by specialisation.

In one specific instantiation, the halting problem implies

that the CBTDG algorithm might not terminate while

trying to find an input that covers the last statement of a

program. More generically, this also applies to any

statement in a program, as any program can be

transformed in a syntactically and semantically valid

way so that the target statement becomes the last

statement in the program. This again leads to a program

that may fall under the limitation imposed by the halting

problem.

In addition to this theoretical limitation, there are

practical limitations of mostly two kinds. The first kind

is related to performance limitations for finding a

feasible path and solving the constraints or detecting

their insatisfiability – meaning that there is no solution –

, the second kind are inaccuracies of the formal model

used to describe the semantics of the program or the

execution environment.

3.1 Performance Limitations

Performance problems come both from the fact that

solving systems of equations and inequations is often

difficult or impossible to do in a scalable way. This

means that the execution time for the solver often grows

non-linearly with the number of free variables involved.

In turn, the number of free variables often grows at least

linearly with the length of the constructed execution

path.

Already the solution of systems of linear equations over

real or rational numbers using the Gaussian elimination

method may require a worst-case execution time

growing with the cube of the number of variables.

Unfortunately, these are not simple specialisations of

the more generic constraints over the real or rational

numbers. While every integer and every floating point

number is also a real and a rational number, the solution

methods for the latter are not generally suitable for the

former. Therefore other algorithms need to be applied to

integer and floating point numbers.

In addition, there is a difference between the theoretical

mathematical – infinite – set of integer and real numbers

and their computational representation as a finite set of

combinations of bits. In this context we take the

notation integer, rational and real for the mathematical

sets and two’s-complement integer, fixed-point – as a

generalisation of two’s-complement integer – and

floating point for the computational sets, to avoid

overloading of terms.

The following examples outline a difference between

the mathematical and the computational world.

3.1.1. Integer Constraints

For example, constraint systems which have a solution

over the real or rational numbers do not necessarily

have a solution over the integers.

A simple example for this is shown in Eq. (1). It is

obvious that there is no integer between 2 and 3,

however, a solution over the rational numbers would be

x=2.5. This is also true if where a two’s-complement

integer.

 (1)

Unfortunately, in practice typically neither the solutions

nor their existence are as obvious as in Eq. (1). For

example, Eqs. (2) and (3) show a system of inequations

which has an infinite set of solutions over the real or

rational numbers, but none over the integers.

 (2)

 (3)

The existence of real and rational solutions can be

shown using Fourier-Motzkin-elimination. From each of

the two inequations two lower and two upper bounds for

x can be extracted, all of which depend on .

In order for a value of x to exist that satisfies these

bounds, both lower bounds must be less than each of the

upper bounds, leading to two trivially satisfied

inequations – and –

and two non-trivially satisfied inequations
 and .

The latter two can be transformed into a lower and an

upper bound for :

.

The significance of this – in the realm of real and

rational numbers – is that as long as lies within these

bounds then there is also a value for so that and

satisfy the original inequations Eq. (2) and Eq. (3).

One could now consider only integer values of that

satisfy the bounds and try to find a matching integer

value for .

In this case the possible integer values for would be

 and .

Substituting into Eqs. (2) and (3) results in

 and . These can be combined

to

 , using the maximum lower bounds and the

minimum upper bounds from the inequations. We can

see that there is no integer value for in these bounds.

Substituting into Eqs. (2) and (3) we arrive at

 and , which can be simplified

to

, which again obviously contains no integer

value for .

So the pure Fourier-Motzkin-method is not sufficient

for solving integer inequations or checking for the

existence of a solution. This is due to the fact that

Fourier-Motzkin depends on the solution space to be

compact, i.e. for any pair of distinct values and with

 there must be a value so that . This

compactness criterion is clearly not fulfilled by the set

of integer values, as we can see in the fact that Eq. (1)

does not have an integer solution.

Although Fourier-Motzkin is able to reduce the search

space for integer inequations, it is still necessary to

check all the solution candidates individually and for all

variables whether they are of integer type, resulting in

computational effort which grows exponentially with

the number of variables.

As an alternative the Omega-Test[9] can be applied,

which in a first step uses a modified Fourier-Motzkin

approach wherein the upper and lower bounds are

narrowed down to ensure that the new bounds actually

include integer solutions, given that the bounds do not

represent an empty set.

As narrowing down may remove some solutions, these

solutions have to be checked in a second step. Although

this second step, again, may involve exponential

computation time in the number of variables, the actual

computation time spent in this step is considerably

smaller than for the original Fourier-Motzkin approach,

as not all but only a small subset of solutions are

enumerated this way.

3.1.2. Floating-Point Constraints

Consider the following code snippet:

float v, inc, v0, limit;

inc = /* ... */;

v0 = /* ... */;

limit = /* ... */;

for (v=v0;v<limit;v+=inc) {

 /* ... */

}

It seems that this loop should terminate in any case –

provided that is positive, as seems to increase

monotonically and thus at some point in time

must hold.

However, due to the way floating point values are

represented, this loop may not terminate in the case that

limit is large enough so that there is an where

 cannot be represented as a floating point value

and is rounded towards . In that case, the loop would

continue endlessly without ever reaching a value

greater than or equal to .

Put more formally, the Eqs. (4) and (5) have no solution

over the domain of the real or rational numbers, but they

may have one over the floating point numbers,

depending on the rounding mode in which the addition

is executed.

 (4)

 (5)

In order to consider these specifics, algorithms are

required which are more complex both in terms of their

implementation and their use of computation resources.

Unfortunately, all floating-point operations are

inherently non-linear due to the non-linear nature of the

floating-point representation.

So-called normalised floating-point numbers are

represented as , where is the sign

(), is the mantissa consisting of bits, and

is the (binary) exponent.

Only the non-normalised floating-point numbers have a

linear representation, namely , where is

the minimum exponent in the respective format.

In essence, non-normalised floating-point numbers are

represented as fixed-point values. Unfortunately,

normalised numbers occur much more often than non-

normalised numbers as the results of computations.

Current approaches for constraint solving over floating-

point arithmetic are limited to domain-filtering[10].

3.1.3. Domain Filtering

Domain filtering can be applied to almost any kind of

constraint, including arithmetic constraints over integer,

real, rational or floating-point values. Although we are

discussing domain filtering in the context of floating

point values, we will use integer values as examples as

they are more suitable to explain the basic idea behind

domain filtering.

In domain-filtering approaches[3][11], each free

variable is associated with a set of allowed values for

that variable. This set is called the domain of the

variable. Typically contiguous intervals such as

 or finite set enumerations such as
 are used.

The process of domain filtering iteratively tries to

remove as many values from the domain of a variable

that do not take part in a solution.

In the example from Eq. (1) we could start with the

assumption that . Given , we

can remove all values from the domain that are less than

or equal to 2, resulting in the new domain
 .

Further, using x<3, we can remove all values from the

domain that are greater than or equal to 3. This means

that we have to remove all elements from the domain,

resulting in an empty domain.

As a consequence we can conclude that there is no value

for x that would fulfil the constraints, and thus there is

no solution within the initial domain of integer values.

In a constraint solver that is based on domain-filtering

this kind of removal of values is continued until the

domains of all variables have reached a fix point, i.e.

until the domains cannot be refined anymore.

Unfortunately, the representation of the domains must

be finite, i.e. it must not require an infinite amount of

memory, and typically, the amount of memory required

for representing a single domain not only has to be

finite, but also bounded, meaning that no more than a

given maximum of memory may be consumed by the

representation of a single domain.

This often leads to poor approximations. For example,

consider . The domain of x shall be represented as

a contiguous set of integers, given by the lowest and the

highest number in the set.

If the domain of x is , we can

remove 0 from the domain and the filtered domain is

 .

However, if we start off with ,
the result of removing 0 is
 , which is not a contiguous set. We can

only approximate it as . Thus the

domain contains a value of x which cannot take part in a

solution.

Some constraint solvers employ a combination of

contiguous sets and enumeration of individual values by

representing the domains as the union of a finite number

of contiguous subsets. However, that also implies higher

memory consumption. Perhaps non-intuitively it also

implies higher CPU impact, as filtering for a constraint

involving k variables now has to performed
 times, where is the number of subsets the

domain of variable i has.

So even those systems at some point have to perform

approximation, and while it is possible to minimise the

impact of such an approximation, it is not generally

possible to keep the impact acceptable.

The filtering algorithms for floating point constraints

are a bit more complex as they have to consider proper

rounding. In some cases – such as the example from

Eqs. (2) and (3) – they exhibit inadequate convergence

of the domains, taking inacceptably long to reach a fix

point.

3.1.4. Non-Linear Constraints

Although still complex, solutions for linear equations

and inequations over the integers are easier to find than

for the same constraints over floating point values [9].

While for a purely linear system of constraints a proper

parameterisation of the solution space is often possible,

this is typically not the case for non-linear constraints

such as multiplication of variables or bitwise binary

constraints such as bitwise and, or, xor as well as

bitwise shifting operators in their signed an unsigned

forms.

This can be easily seen by considering the problem of

finding the roots of a polynom of arbitrary degree

greater than 2. For example, it is possible to solve

 using the general solution formula for

quadratic equations

. However, there is

no known algorithm for determining the roots of

 in general.

Furthermore, even the solution formula for quadratic

equations only holds if the solutions may be real

numbers, not, e.g. for floating point values.

As a consequence, the presence of non-linear constraints

in a constraint system makes construction of solution by

search necessary. This process often implies several

steps of trial-and-error before a solution is actually

found.

For some non-linear constraints, so-called dynamic

linear relaxations exist, where the actual constraint is

approximated using linear constraints[12]. Nevertheless,

these relaxations also require search.

For example, consider a constraint , involving

the three variables a, b and c. As none of them is a

constant, this clearly is a non-linear constraint.

Once we add constraints limiting the range of a and b,

such as and , we can

further constrain the value of c.

By rewriting as and as

 , we find that the product of the two positive

values and is also positive. The new

constraint is therefore: .

With we finally get . So

now we have found an upper bound for c, which is

given in terms of a and b. Using the remaining three

combinations of the lower and upper bounds for and

we further get ,
 and as

further bounds for .

Of course, these are only linear approximations of the

range of c. It is not possible to just remove the

constraint from the system and solve the

remaining system of linear inequations.

It is said that the non-linear constraint is relaxed by

introducing linear approximations. These relaxations are

dynamic, because they are adapted whenever new

bounds for a or b are introduced. However, it is not

possible to completely replace non-linear constraints by

such relaxations.

3.1.5. Linearization

A typical parameterisation used in context of bitwise

binary operations is the bit vector. Here, the value of a

variable with n bits is represented by an n-element

vector of bits, each bit having either value 0 or 1. Once

a value is available in that form, bitwise operations are

easy to solve.

However, the naive conversion to a bit vector implies

the creation of additional logical variables for every

value handled in this way, thereby also increasing the

complexity of the system.

Some forms of bitwise operators can be expressed in

linear form, most specifically those where one operand

is constant. For example, the C-expression b=a<<4 can

be transformed into . Similarly, b=a&12 can be

represented by the Eqs. (6) to (9).

 (6)

 (7)

 (8)

 (9)

The idea is that can be uniquely expressed as

 , where n is the width of n in bits and the are

the values of the individual bits with .

However, we can combine some of the bits together and

form Eq. (6), where , and

 . The additional constraints in Eqs. (7)

and (8) ensure that there is a unique mapping between

the and the .

We find that . Using this

representation we can avoid splitting into all its

individual bits: Instead of introducing 32 new variables

for a 32-bit integer, we only introduce 3 new variables,

all representing one or more bits of .

It should be noted that the sum-of-bits-representation

for a given above assumes that is unsigned. However,

Eqs. (6) to (8) are also valid for signed integers.

For example, if , we get , and

 as solution.

Unfortunately, no such linearization exists for

expressions such as b=1<<a.

3.1.6. Memory Model

The examples discussed above were very theoretical in

so far as they did not involve explicit memory access.

However, for most practical applications explicit

memory access is necessary and often used, especially

in the domain of embedded systems.

Consider, just as an example, processing of a

telecommand onboard a spacecraft. The telecommand is

provided in the form of a byte-stream, and groups of

bytes in this stream are combined to form the individual

command and data fields.

Languages such as C or C++ allow use of pointer

arithmetic, allowing the code to access any place in

memory directly. It is even possible to write an

unsigned integer value to some address addr

(assuming a representation of 4 bytes) in memory and

sometime later read a floating point value from the same

address. As a more extreme example, it is even possible

to read an unsigned short (2 bytes) from the

address 1byte after addr.

Whenever a read to memory occurs in the program for

which test data shall be generated, the constraint solver

must find the result of the read access. This means that

the solver needs to find the latest preceding write access

to a matching address.

When discussing the memory model, one should keep in

mind that in most cases the values of the variables are

represented by logical variables which have no distinct

value until a solution is selected.

For example, the value of the pointer returned by a call

to malloc() is not known in advance. It may take any

value – except, typically, values indicating addresses on

the stack or in the fixed code and data segments. Fixing

the value of said pointer already during the process of

constructing the path and the constraint system could

therefore preclude specific solutions which would

otherwise be possible.

This means that for a completely symbolic address,

potentially all previous write accesses may match. As a

consequence, the solver may have to iterate over a large

number of alternatives, each of which may influence

further path construction in a different way.

However, it is sometimes possible to effectively

conclude whether a write access and a read access are

related to the same address range. The underlying

problem is called the aliasing problem, and there are

several approximations of a solution.

For example, if a one-byte write access on the address

 is performed, followed by a one-byte write

access to the address , with and both being

integers, it is possible to conclude that the two accesses

do not overlap, even without knowing the concrete

values of and .

If the two addresses would be the same, they would also

have to be congruent modulo 4. However,
 and thus the two addresses are

not congruent modulo 4. As a consequence, they cannot

be equal.

The reverse, however, is not true. Although
 , the addresses and do not necessarily

refer to the same location.

Another possibility to exclude overlaps is when the two

addresses refer to the same base address, which is

typically the case when accessing objects on the stack,

in the fixed data segment or within a single array.

Consider, for example, the following code:

void swap(int a[], int i, int j) {

 int tmp;

 if (i==j)

 return;

 tmp = a[i];

 a[i] = a[j];

 a[j] = tmp;

}

Let us assume that the base address of the array a is p.

As an example, we want to know whether the memory

accesses in the line a[i] = a[j] refer to the same

address.

The address accessed in a[i] is (assuming an

int size of 4). The address accessed in a[j] is .
When we have reached that line, we have already

established that due to the if-statement

containing a return-statement.

Comparing the two addresses, we find that
 if and only if . This obviously contradicts

the constraint , so that we can conclude that the

two accesses do not refer to the same address.

In contrast, consider the following example:

int scalar(int a[], int b[]) {

 int i, res = 0;

 for (i=0;i<3;i++) {

 res += a[i]*b[i];

 }

 return res;

}

Again assuming that the start address of the array a is p,

and assuming that the start address of the array b is q,

the accesses in the body of the loop would be to the

addresses and . In that case it is not

possible to conclude whether these addresses are the

same, as we have no information about p and q.

3.2 Discrepancies between Model and Reality

As has been discussed in the previous sections,

constraint-based test data generation requires exact

mathematical models of the semantics of a program.

These are available if a program is considered to be a

purely mathematical construct in isolation from any

physical hardware or timing aspects.

However, when executing a program on a certain

platform it may be not known how a mathematical

operation on abstract numbers is mapped onto

computational operations on reals numbers on a given

platform.

As soon as the software to be tested communicates

directly with hardware or when timing aspects are

relevant, the models become inherently more complex.

While it is theoretically possible to model timing in

various ways, it is currently impractical in reality.

Also, mathematical models of program semantics may

be incomplete regarding the actual behaviour of

hardware, both periphery and the processor itself.

For example, the C standard ISO/IEC 9899 describes

the result of many operations as being undefined, such

as bitwise left-shifting with negative shift offsets. The

rationale for the standard is of course that these cases

are not sensible to define as they may be interpreted

differently on different hardware.

Still, such operations are not necessary undefined given

a specific compiler and platform.

Another example are transcendental functions – sin,

cos, tan, etc. – in floating-point calculations.

The standard IEEE754 requires that the results of

addition, subtraction, multiplication, division and

square-root shall be correctly rounded, i.e. the results

should be same as if the operation had been executed in

full accuracy and then rounded. This means that the

results of these operations are well-defined.

The standard does not enforce an equivalent

requirement on other operations, including, e.g., the

transcendental functions. This is not a case of neglect on

the part of the authors of the standard, but instead a

result of the so-called table maker’s dilemma: An

algorithm producing correctly rounded results would

first have to calculate the result with a larger precision.

The number of bits to which the result would have to be

precise cannot be known in advance, and calculation

according to a – yet unknown – worst case would be

computationally expensive.

As a result, these functions are not well-defined

according to the standard and their values are dependent

on the respective implementation on the target. This

makes it difficult for a solver to find a solution while

not knowing exactly the conditions of a representation.

One way to solve the problems around these operations

is to completely avoid them. But in some cases this may

not be desirable. For example it is known that on some

platforms left-shifting with negative offsets is handled

in a sensible manner. In contrast, explicitly checking the

sign of the offset and using right shift for negative

values and left shift for positive values may impair

performance and is difficult to automatically optimise

by a compiler.

The other way is to make sure that the implementation

on the given platform matches the definition in the

theoretical model on which the test data generator is

based.

The simulation of hardware/software-interaction may

also be impaired by another limitation of the approaches

available today. One of the issues introduced by

interaction between hardware and software in terms of

the models is parallelism: Processes in (periphery)

hardware and in software execute in parallel to each

other.

As previously mentioned, the avoidance of infeasible

paths is very important for feasibility of constraint-

based test data generation. Unfortunately, none of the

currently known methods for avoidance of infeasible

paths is able to properly handle parallelism.

In addition, timing is often very important in

hardware/software interaction. The timing of complex

hardware circuits is not only difficult to simulate

accurately, but – as mentioned earlier – is also difficult

to model in a feasible way in the context of CBTDG.

If timing is not considered properly in a parallelised

system, the state of the system – including memory and

message queues – cannot be determined for a given

point in time. This means that the interaction between

the various processes cannot be considered for test-data

generation.

4. BIAS CONSIDERATIONS

Testing is imperfect in the sense that only the presence

of defects can be shown, but not their absence. As a

consequence, a software test very much resembles a

scientific experiment aiming to disprove the hypothesis

of the software being correct.

Therefore the proper selection of samples – in this case:

test inputs or test cases – is important for the

significance of the result. If – by chance – only test

cases are selected for which the software does not

exhibit faulty behaviour, although the software is not

correct, the hypothesis of correctness may be accepted

by mistake.

The same is true if the software exhibits faulty

behaviour but the faultiness of the behaviour stays

unnoticed, e.g. due to being hidden in masses of data.

Classical coverage criteria such as statement coverage

or even Modified Condition/Decision Coverage

(MC/DC) – the latter of which is normally considered to

be very challenging – can help guide the selection of

appropriate test inputs, but are not sufficient on their

own[13].

Therefore, even though any test input from a given

partition as defined by the coverage criterion may seem

equivalent to any other input from the partition, this is

not the case.

This not only implies that not just any input that

matches the criterion may be selected. It also implies

that giving precedence to some of the inputs – for

whatever reason, including technical reasons rooted in

algorithm optimisation – may negatively impact the

validity of the test conclusion.

Therefore, algorithms used for automatic test data

generation need to be carefully tuned not to be biased

towards any specific subset of the possible solution set.

Assuming that no more specific information is available

on which values from the candidate set are more likely

to activate fault conditions than others, the algorithms

must therefore apply random selection of input data

from the solution set.

If, on the other hand, more specific information is

available, this information should instead be formalised

by way of a more specific coverage criterion.

However, this may be difficult to achieve. For example,

the selection of a path through the system by way of a

random walk will favour shorter paths, if at each step

the edge to be traversed is chosen by a uniform

distribution from the available set of edges. If it is

acceptable to limit the length of the path to a given

maximum, then a method is available that can be used

to ensure uniform distribution among the paths with that

given maximum length[14]. However, this method

needs to be integrated with the method used for

avoiding infeasible paths.

Even then, the solution of integer inequations according

to the Omega Test involves two steps, one of which

being the modified Fourier-Motzkin-Elimination and

the other being the search involving the possible

solutions that may have been missed in the first step.

This second step may involve the consideration of

multiple, possible non-disjoint sets of solution

candidates.

Thus when selecting a solution, a decision needs to be

taken over whether to select a solution that results from

the first or the second step, and if a solution from the

second step is targeted, one of the candidate sets needs

to be selected.

In order to guarantee a uniform distribution among the

two steps as well as between the individual candidate

sets, the number of solutions provided by each of the

choices must be known. However, there is no way to

determine this number except by first enumerating all

solutions.

However, not only CBTDG algorithms may show bias

towards specific test inputs.

Their human counterpart – the test engineer – may

exhibit engineering bias, selecting test input values

based on previous knowledge about the system. This

assumed knowledge may include invalid assumptions.

Such invalid assumptions may lead the test engineer to

assume that the results of some specific test cases would

be obvious and irrelevant, thus not selecting these test

cases, although they could actually show the invalidity

of the assumption.

Another case of engineer bias is when a test engineer

selects easily visible solutions to the test objective and

discards solutions which are more difficult to calculate

and thus may be erroneous when calculated manually.

5. CONSEQUENCES

Although some of the limitations seem grave, there are

some simple rules for design and coding, which help

counter these limitations and at the same time also can

be considered good engineering practice.

Further, CBTDG should not be considered the method

of first choice for test data generation when simpler and

more effective methods are available.

Instead, CBTDG should be used to complement other

approaches to test data generation such as random

testing. Random testing is not only faster in generating

test data sets with high variability, but also is based on

very simple algorithms which are less prone to

introduce bias in the selection of test data.

5.1 Design and Coding Rules

By applying the following rules, the produced code may

become easier to test and verify automatically.

Adherence to these rules is optional, but performance of

constraint-based test and verification may suffer if the

rules are not followed.

5.1.1. Separate Hardware Interaction from Logic

As a basic rule, interaction with peripherial hardware

should be separated from operational logic as far as

possible. This way CBTDG can be applied to the logic

parts without raising any issues in hardware/software

interaction. The parts directly interacting with periphery

– e.g. transmitters or sensors – typically cannot be tested

without hardware-in-the-loop anyway.

However, by separation of these concerns, the manual

effort for testing the logic part can be reduced

considerable, although the manual effort for the

hardware-interaction part remains.

5.1.2. Avoid Overlays and Union

Overlays occur when a location in memory is accessed

using different types, e.g. writing a 32-bit unsigned

integer location only to later retrieve a float value from

the same location. In symbolic execution, this requires

expensive symbolic casting operations. A more extreme

example is writing a float value to a location only to

receive the lowest 16 bits in the form of an unsigned

integer.

This is often an issue when communication data is to be

processed. The communication packets are delivered by

the hardware in the form of unstructured byte-streams,

so that the data is often referred to in the form of a

pointer to an array of bytes.

Access to the data may occur in the form:

uint16_t getSeqNum(char* packet) {

 uint16_t val;

 memcpy(&val,

 packet+OFFSET_SQNUM,

 sizeof(val));

 return val;

}

Note that although the use of memcpy seems inefficient

and unnecessary here, this way of accessing fields in a

telecommand was actually observed in actual flight

software.

Instead, proper struct-types defining the structure of

the individual packet types should be defined and the

cast from the byte-pointer to a pointer to the given

structure should be done as early as possible in the

processing sequence.

Often alignment issues are claimed, but they do not

justify the construct above, as they can be solved

satisfyingly with non-exotic constructs. For example,

Almost all compilers support specific language

extensions by which a struct can be packed, i.e. the

alignment requirements of each field are explicitly set to

1 byte. If the underlying architecture does not support

non-aligned memory access – which is the case in some

RISC architectures – appropriate memory access

scheduling can be left to the compiler. Even though this

might inspire concerns about performance, as a single

32-bit access may have to be split up into as much as 4

individual byte reads, these concerns are even more

justified with the memcpy-approach shown above.

For example, packet structure could be defined

involving a common header and different structures for

the different command types:

typedef enum {

 Cmd_Set_State,

 Cmd_Get_State,

 ...

} CommandType;

typedef enum ProcessType;

typedef enum StateType;

typedef struct {

 uint16_t crc16;

 uint16_t length;

 uint16_t seqNum;

 CommandType command;

 ...

} PacketHeader;

typedef struct {

 PacketHeader header;

 ProcessType process;

} PacketGetState;

typedef struct {

 PacketHeader header;

 ProcessType process;

 StateType targetState;

} PacketSetState;

char TC_PacketBuffer[TC_MAX_SIZE];

void IRQ_PacketReceived();

void DispatchTC(PacketHeader*);

void GetState(PacketGetState*);

void SetState(PacketSetState*);

The function IRQ_PacketReceived handling the

reception interrupt from the transceiver could first

verify the length of the packet and the CRC16

checksum, and pass by casting
(PacketHeader*)TC_PacketBuffer

to the dispatch function DispatchTC. The latter

would then check the command in the header and

dispatch the TC to the respective handler function,

casting it to the respective structure type in the process,

in this case (PacketGetState*) for GetState or

PacketSetState* for SetState.

This way, the handler functions as well as the dispatch

functions have well-defined interfaces and all memory

accesses are typed, different from the memcpy

approach.

Overlays are avoided – with one exception in the

example: The CRC16 calculation will probably access

every byte in the packet individually, while the same

bytes may be accessed using different types later on.

However, as this is limited to a single function, it does

not impact the test data generation for GetState and

SetState.

For the reader concerned by the performance overhead

introduced by the dispatch function calls it should be

noted that of course the compiler can be instructed to

inline some of the functions, avoiding the overhead

while at the same time keeping up the well-defined

interface.

5.1.3. Use Small Functions for Specific Purposes

Tasks like sorting, CRC-calculation, etc. should be

exported to small specialized functions. If there is

concern about the call overhead, the functions can be

inlined by the compiler.

In unit testing the test for a single unit – in our case a

single function – is often created under the assumption

that units used by the unit under test are working

correctly. So if a function checking the integrity of a

telecommand packet uses a CRC-calculation function,

the test of the former function assumes that the latter is

working correctly.

Due to the declarative nature of the algorithms

underlying CBTDG it is possible to replace individual

functions – except, of course, the function under test –

by their respective specification.

Coming back to the sorting function, for its

functionality it is only important to know that the result

is sorted and maybe whether the sort is stable – i.e.

whether the order of elements that are considered equal

is changed. It is not important to know how the sorting

takes place.

Additionally, symbolically executing the sorting

algorithm is almost certainly more computationally

expensive than asserting that the resulting list is sorted.

By splitting specific tasks into specialized functions

replacement of such functions by their respective

specification may be possible – given that the tool used

supports such a replacement.

This – in general – would be good engineering practice,

as it separates the code into small, self-contained

elements. These are also easier to manage in manual

testing,. In consequence, such coding issues are not only

a matter of CBDTG, but of good engineering practices

in general.

5.1.4. Prefer fixed-point calculations over floating-

point

This recommendation does not generally fit with the

other rules as it cannot be considered good

programming practice in general.

Further, it is not always possible or desirable from a

design point of view to replace floating-point

calculations by fixed-point calculations.

However, specification and design should in general

also consider testability of a system and the effort

impact implied by limited applicability of automatic

testing solutions as well as their current technical

limitations.

As mentioned previously, available constraint solvers

for CBTDG generally deal better with integer – and thus

also fixed-point – arithmetic than with floating-point.

5.1.5. Limit the range of parameters as far as

possible

The free variables present in the constraint system

represent the initial or intermediate states of variables of

the program and thus the values of these free variables

are implicitly limited to the type range of the associated

program variables.

Solving a constraint system typically also includes

search over the remaining search space, which, although

in many cases already being reduced due to the known

constraints, may in the worst case extend to the full type

range of a variable.

Further, limits imposed on one variable may also imply

further search space reductions for other variables. For

example, consider the program z=x+y, where z is an

unsigned 32-bit integer variable. Let us assume that the

range of has already been constrained to ,
whereas is an unconstrained unsigned 32-bit integer.

In that case, the solver cannot restrict the range of

beyond its regular type range.

If, however, by design shall only take values that all

fit in the range of an unsigned 16-bit integer, by

declaring with a matching type – e.g. unsigned short

in C – the range of can be constrained to
 . This is smaller than the full 32-bit

integer range by a factor of , meaning that the

solution may be found up to 16 times faster than with

the original setup.

5.2 Combining CBTDG with Random Testing

In the last years, random test data generation and similar

black-box approaches like grid-based testing have been

shown to reach high – although not necessarily

complete – test coverage on their own. Heuristic

methods are already in use in the practice of test data

generation that increase the coverage achieved without

using constraint solution algorithms[15].

So in terms of test-data generation there is no reason to

use CBTDG as the first and only method within a test

preparation process.

Random and grid-based test data generation, for

example, is able to generate and evaluate thousands of

test inputs based on type ranges visible in a prototype

within a few seconds, where evaluation includes

analysis of coverage. In contrast, generating a single test

input for practically relevant code with CBTDG may

take a tenth of a second up to many minutes, depending

on the code and the point in the code to be reached.

Further, type-range-based test data generation (TRTDG)

allows unbiased generation of test input as well as

generation of input data according to operational or

other profiles without much complication. However, it

is not perfect regarding reaching full coverage as it does

not consider constraints at all which in some cases is

required.

On the other hand, constraint-based methods require

considerable efforts and complexity in order to ensure

absence of bias. There are methods which, for example,

ensure that from all paths with a given maximum length

any path is selected with the same probability[14].

However, these methods may introduce issues with

infeasible paths[5] and are difficult to combine with

approaches for avoidance of such paths. This is where

TRTDG can easily complement CBTDG.

So CBTDG is best used to complement the test

coverage already provided by heuristic and type-range-

based test data generation.

6. POTENTIAL

Although CBTDG seems to be laden with performance

and theoretical limitations, its use can still be more

efficient than manual test data selection. This, of course,

can only be valid wherever CBTDG is applicable in the

first place, i.e. where formal test objectives are available

that can be translated into constraints. This is the case

for typical and also extended coverage criteria[6].

After all, CBTDG is able to generate test data for some

test objectives within less than a second on current

computers, with potential for further increase in

efficiency, while a test engineer might even require

more than that time for even understanding the test

objective.

An important benefit is that CBTDG can be advised to

provide test inputs for a code segment or branch which

could not be covered by TRTDG applied in a first step.

This way most of the branches can be covered by

TRTDG rather fast – typically up to 60 – 80 % - and the

remaining coverage is provided by CBTDG – if full

coverage is possible at all – by identifying the non-

covered elements after the first step and then asking

CBTDG for the remaining test inputs.

When combined with meta-heuristic testing

approaches[16][17], proper formal oracles or

plausibility checks, use of CBTDG may lead to a higher

number of test inputs and consequently provide higher

reliability of test results.

For example, the already introduced gcd function is

commutable, i.e. gcd(a,b)=gcd(b,a) for any

values of a and b. A constraint-based test data generator

could systematically explore the set of possible paths

through the function and check for violation of this

invariant. Alternatively it might be possible to explicitly

search for counter examples.

If there is a plausibility condition for the return value of

a function f, such as , then CBTDG could

be used to explicitly search for inputs for which this

plausibility condition is violated. These cases would

then be interesting material for further analysis.

The (relative) lack of bias in combination with the exact

representation of language semantics may lead to

unexpected test input being selected – which a test

engineer never would derive or consider as an

interesting input - resulting in evidence for unexpected

behaviour of the software under test.

For example, in context of machine representations the

condition (u-l)<100 with two signed integers u and l

may very well be true, while at the same time a loop

for (i=l;i<u;i++){...}

may take much more than 100 steps, for example if

 and . In this case, evaluates to

 . This is outside the range of unsigned int and

thus according to the C-standard is converted to ,

which obviously is less than 100. Also, holds. The

loop will iterate times

Similarly, the expression i+1 may very well be 0 even

if holds (as shown in the example below).

These are consequences of explicit modelling of two’s-

complement arithmetic of integers. Basically, the

expression z=i+1 in C is not equivalent to the

expression z=i+1 in classical integer arithmetic.

Rather, it must be translated into Eqs. (10) and (11). The

additional variable c represents the carry that occurs

during overflow. Note that these equations exactly

model the behaviour specified in the C-standard

ISO/IEC 9899:2011.With the translations shown in Eqs.

(10) and (11), it is easy to see that leads to

 , although holds.

 (10)

 (11)

This case was observed in a loop of the form

int getIncrement(...);

/*... */

unsigned int i,j;

i= getIncrement(...);

for (j=0;j<100;j+=i+1) {...}

The value returned from getIncrement was not

checked for whether i+1 would be zero in the memory

representation, so it was possible to send the function

into an endless loop.

This example demonstrates how the rather exotic value

of = 0xffffffff can occur for i: In this case it is

a matter of (implicit) type casting between signed and

unsigned. If the function returns -1 e.g. to flag an

error while in normal case only non-negative return

values are expected, i gets the highest value of

unsigned int, so that adding 1 evaluates to 0. In

terms of signed int this is also correct: -1 + 1 =0.

Similarly, a quasi-endless loop would occur for

for (j=0;j<i;j++) {...}

while at the first glance it could be expected from the

returned value -1 that the loop never would be executed

as 0 ≤ j < -1 is a contradiction. But the compiler

interprets the value 0xffffffff differently, depending on

the type.

7. OTHER POTENTIAL APPICATION AREAS

While in context of this paper we only discussed

constraint programming in the context of constraint-

based test-data generation, there is a large potential for

other applications [8].

Solutions based on constraint programming are already

in use for scheduling, not only in the computer-science

sense but also, e.g. for fleet planning in logistics or

aviation.

In a similar context they may be suitable for continuous

mission replanning and on-board autonomy, e.g. for

planning orbit manouvers for earth-observation based

on requests coming from ground.

In operations research constraint programming is used

for optimisation problems.

Also, constraint programming methods may be used for

implementing design choices in code generation or for

optimisation in compilers. One example for the latter is

the use in parallelisation of algorithms or rescheduling

of instructions.

8. CONCLUSIONS

While the original movement was already started in the

early 1990s, the area of CBTDG has seen a surge of

research activities in the last decade, some of which

have led to actual implementations close to industrial

requirements.

Effective use requires knowledge about the possibilities

and the limitations at the same time. Some of the

limitations highlighted in this paper do not only apply to

constraint-based test data generation, but also to other

formal and automated methods in software verification

and validation, most notably to many forms of model

checking and abstract interpretation.

Although there is still a lot of research potential left,

most specifically in the area of solvers and the

application to parallelised environments, CBTDG has

the potential to become an important tool of the trade of

software testing within the near future.

BSSE is also contributing to industry-ready solutions to

many of these issues in the course of industrial research

accompanying the development and maintenance of an

industry-ready CBTDG tool integrated with its already

existing tools for random, heuristic and grid-based

testing.

9. REFERENCES

[1] D. Hoffman, “Using Oracles in Test Automation,”

in Proceedings of the Pacific Northwest Software

Quality Conference (PNSQC 2011), 2001.

[2] R. A. DeMillo and A. J. Offutt, “Constraint-Based

Automatic Test Data Generation,” IEEE

Transactions on Software Engineering, vol. 17, no.

9, pp. 900-910, 1991.

[3] R. Ferguson and B. Korel, “The chaining approach

for software test data generation,” ACM

Transactions on Software Engineering

Methodology, vol. 5, no. 1, pp. 63-86, 1996.

[4] T. S. Nguyen and Y. Deville, “Automatic Test

Data Generation for Programs with Integer and

Float Variables,” in Procedings of 16th IEEE

International Conference on Automated Software

Engineering (ASE), 2001.

[5] S.-D. Gouraud, “AuGuSTe: a Tool for Statistical

Testing - Experimental results,” Université Paris

Sud, 2005.

[6] R. Gerlich, Verallgemeinertes Rahmenwerk zur

constraintbasierten Testdatenerzeugung aus

Programmflussgraphen, Universität Ulm, 2009.

[7] A. Gotlieb, B. Botella and M. Rueher, “A CLP

Framework for Computing Structural Test Data,”

in CL '00 Proceedings of the First International

Conference on Computational Logic, 2000.

[8] T. Frühwirth and S. Abdennadher, Essentials of

Constraint Programming, Springer, 2003.

[9] W. Pugh, “A practical algorithm for exact array

dependence analysis,” Communications of the

ACM, vol. 35, no. 8, pp. 102-114, 1992.

[10] B. Botella, A. Gotlied and C. Michel, “Symbolic

execution of floating-point computations,”

Software Testing, Verification and Reliability, vol.

16, no. 2, pp. 97-121, June 2006.

[11] B. Korel, “Automated Software Test Data

Generation,” IEEE Transactions on Software

Engineering, vol. 16, no. 8, pp. 870-879, 1990.

[12] T. Denmat, A. Gotlieb and M. Ducassé,

“Improving constraint-based testing with dynamic

linear relaxations,” in Proceedings of the 18th

IEEE International Symposium on Software

Reliability Engineering, 2007.

[13] R. Hamlet and R. Taylor, “Partition Testing does

not inspire confidence,” IEEE Transactions on

Software Engineering, vol. 16, no. 12, pp. 206-215,

1990.

[14] A. Denise, M.-C. Gaudel and S.-D. Gouraud, “A

generic method for statistical testing,” in

Proceedings of the 15th IEEE International

Symposium on Software Reliability Engineering

(ISSRE), 2004.

[15] R. Gerlich, R. Gerlich and C. Dietrich, “Fault

Identification Strategies,” in DASIA 2009 DAta

Systems In Aerospace, 2009.

[16] A. Gotlied, “Exploiting Symmetries to Test

Programs,” in Proceedings of the 14th

International Symposium on Software Reliability

Engineeering (ISSRE), 2003.

[17] J. Mayer and R. Guderlei, “Test Oracles using

Statistical Methods,” in Testing of Component-

Based Systems and Software Quality, Gesellschaft

für Informatik, e.V., 2004, pp. 179-189.

[18] P. Godefroid, “Random testing for security:

blackbox vs. whitebox fuzzing,” in RT'07:

Proceedings of the 2nd international workshop on

Random testing, Atlanta, 2007.

[19] A. Gotlieb, “INKA: An Automatic Software Test

Data Generator,” in Proceedings of DASIA 2001 -

DAta Systems in Aerospace, Nice, 2001.

[20] A. Offutt, Z. Jin and J. Pan, “The dynamic domain

reduction procedure for test data generation,”

Software: Practice and Experience, vol. 29, no. 2,

pp. 167-193, 1997.

[21] A. Brillout, D. Kroening and T. Wahl, “Mixed

Abstractions for Floating-Point Arithmetic,” in

Formal Methods in Computer-Aided Design, 2009.

FMCAD 2009, 2009, pp. 69-76.

