
A Case Study on Automated Source-Code-Based TestingMethods

Ralf Gerlich, Rainer Gerlich

Dr. Rainer Gerlich System and Software Engineering

BSSE

Immenstaad, Germany

e-mail: Ralf.Gerlich@bsse.biz,

Rainer.Gerlich@bsse.biz

Kenneth Kvinnesland, Bengt Solheimdal Johansen

DetNorskeVeritas AS

Høvik,Norway

e-mail: Kenneth.Kvinnesland@dnv.com,

Bengt.Solheimdal.Johansen@dnv.com

Marek Prochazka

EuropeanSpaceAgency (ESA/ESTEC)

Noordwijk, The Netherlands

e-mail: Marek.Prochazka@esa.int

Abstract—We present results of a case study on a test

generation approach called Flow-optimized Automated

Source-code-based unit Testing (FAST) which generates test

stimuli from information available in the source code, in

particular taken from the detailed software interfaces. This

allows automation of a significant part of testing, ranging from

the test stimuli generation to the generation of the test report.

A huge number of stimuli can be generated exploring the

behaviour of the software under test under nominal and non-

nominal conditions. Symptoms like timeouts, unexpected

termination, run-time exceptions, out-of-range conditions and

missing coverage are applied for defect detection. The goal of

this study was to evaluate the FAST process in context of a real

spacecraft flight software application and to get a feedback on

its scalability regarding larger applications, its sensitivity on

detecting defects in the code, the achievable test coverage, its

compliance with software standards and potential limitations.

We also consider the impact of coding style on suitability for

automated testing. The results confirm that the approach (1)

provides acceptable code coverage results without requiring

manual intervention for test preparation and execution, (2)

raises the probability of activation of exotic fault conditions,

(3) may provide hints on locations in the code where

robustness needs to be verified, and (4) identifies defects not

found before by static analysis and intensive testing

Keywords-automatic test data generation, unit testing,

robustness testing, fault injection, test coverage, testability

I. INTRODUCTION

Software testing is a method for dynamic analysis of
software used to determine whether the software indeed
fulfils its requirements. Unit testing is one form of software
testing which focuses on isolated testing of software units,
such as individual modules or functions – in the sense of
subroutines.

While the automatic execution of unit test suites and the
automatic evaluation of results using test tools such as
JUnit[1] and its other language-specific variants are
widespread, preparation of test cases is still mostly
performed manually. Identification of test cases may be
performed targeting one or more types of code coverage or
requirements coverage. Of relevance for the European space

industry are the standards DO-178, versions B and CFehler!
Verweisquelle konnte nicht gefunden werden., and ECSS-
Q80, versions B and CFehler! Verweisquelle konnte nicht
gefunden werden., all of which suggest both approaches,
code and requirements coverage.

We present results from a case study applying an
alternative approach to software unit testing, complementary
to the traditional, manual approach: test stimuli are derived
automatically from computer-readable information, mainly
consisting of the source code[4]. This allows reaching a high
level of test coverage quickly, irrespective of the criticality
levels, especially for software for which unit testing was not
previously applied or required.

For the software under test in this exercise, a part of the
flight software of a European Earth observation satellite was
provided by the European Space Agency (ESA). Only the
source code of the software was used for the case study, but
no specification or design documents. Such documents rarely
contain information rigorously expressed in a computer-
readable form useful for the generation of test data.

A. Structure of the Paper

After a general description of the approach and related
work, we present in Chapter II some of the findings as well
as coverage data, followed by a general discussion of their
implications in Chapter III. In Chapter IV we derive
recommendations on how specific issues, constraining this
type of test automation, can be avoided by appropriate
planning in software development projects that aim to apply
the process. Finally we conclude and give an outlook on
future developments.

B. Description of the Approach

The approach is based on the knowledge of the source
code of the Software Under Test (SUT) and an extension of
the process flow towards automation and is thus called Flow-
optimised Automated Source-code-based Testing (FAST).
The tool used is called DCRTT (Dynamic C Random Test
Tool), indicating the origin of the tool from random testing –
and is developed and maintained by BSSE. Another variant
named DARTT – a predecessor of DCRTT – is available for
Ada.

1) The Process Flow
In Figure 1 the flow graph of the traditional test approach

is shown. In this approach, the specification is established
first, followed by coding and manual test case preparation as
parallel activities. The test cases already include the expected
output of the Functions Under Test (FUT). Once these two
activities are finished, the manually identified test cases are
executed, and their results are evaluated by comparing the
observed to the expected outputs. If the test shows that
critical defects are still present – indicated by one or more
test cases not being passed – corrective actions on the code
and possibly the specification are applied and tests are
repeated.

In contrast, Figure 2 depicts the flow graph of FAST
applying automated source-code-based testing. In this case
massive stimulation is performed by generating a large
number of stimuli from the information found in the source
code interfaces, with the intent to check robustness and to
identify test case candidates. The latter is based on
information recorded by the test environment – including
coverage, run-time exceptions and timeouts observed. The
selected candidates already include the output observed
during execution. They are provided in the code of
automatically generated test drivers and may achieve the
same level of coverage as the overall set of stimuli does,
depending on the configuration options used, when
executing the test drivers.

The test case candidates are upgraded to test cases by
manually reviewing the recorded output and comparing it to
what is expected according to the specification. If one or
more results do not conform to the specification, corrective
actions must be taken as for the classical approach. Once the
test case candidates have been upgraded to test cases, they
can be reused at any time for regression testing.

The FAST approach thus reverses the order in which test
cases are established and executed. In the classical approach,

each test case is established first and executed later, while in
the FAST approach, the software has already been executed
with the test stimulus as input when the test case candidate is
upgraded to a test case by comparison to the specification.

This approach avoids the issue that specifications are
typically not formal and computer-readable and thus cannot
be used for automatic test data generation without additional
effort. Instead, the code is used as a formal description of the
interfaces that must be stimulated.

Although not currently implemented, the verification of
test case candidates can of course be automated should
formal oracles be available.

The test case candidates may not be equivalent to those
normally derived from the specification, therefore test cases
may have to be added manually to obtain full requirements
coverage.

2) Stimuli Generation
Inputs can be selected either randomly or based on a

lattice spawning the input space of the individual functions
as defined by their function prototypes (interfaces, black-box
approach).

In case of lattice-based test data generation, the requested
number of stimuli per function is distributed over the
parameters. For example, if 300 samples are requested and
the function has 4 integer parameters, 5 samples per
parameter are used based on the 4th root of 300 rounded
towards positive infinity, leading to 45=1024 samples in
total. For each parameter type some typical samples are
added, including values such as 0 or NULL for pointers.
Thus, the total number of stimuli actually generated may be
considerably larger than the number of stimuli requested.
When the resulting number of stimuli exceeds a given limit,
e.g. 1,000,000 per function, the test mode is automatically
switched to random testing to limit execution time.

Figure 1 Flow Graph of the traditional approach to software unit testing

Figure 2 Flow Graph of the approach using automatic source-code-based test data generation

In case of random testing the requested number of
random stimuli plus the set of typical values is injected.

Additional inputs may be determined heuristically by
using constants found in the code of the function or
complementing data observed during execution (white box
approach). Consequently, FAST applies a grey box approach
as a mix of the two.

Besides explicitly declared function parameters, the
result of a function may also depend on the value of global
variables. Therefore, such variables may also have to be
stimulated to sufficiently exercise the functionality of the
unit. As stimulation of all visible global variables for each
function is not feasible in most cases, a subset of global
variables applicable to the current FUT has to be identified.

A global variable is only considered for stimulation if it
is not declared constant and is used inside the FUT. The set
of variables used in the FUT is determined automatically by
a conservative heuristic analysis.

However, if deemed necessary and feasible by the user,
this analysis can be deactivated. In this case, all global
variables are stimulated, except for those declared constant.

With only basic configuration data and information
automatically extracted from the source code, a test
environment is established that records generated input,
delivered output, execution time, run-time exceptions and
timeouts for each individual test stimulus executed. The
source code is further instrumented automatically to record
structural coverage and – optionally – to perform data range
monitoring for variables used in the software. Structural
coverage criteria supported are block coverage – a criterion
similar to statement coverage based on continuous blocks of
statements – and modified condition/decision coverage
(MC/DC) Fehler! Verweisquelle konnte nicht gefunden
werden.on decision statements (if, do-while, while, and for).
Coverage measurement may be performed during integration
testing as well.

Each of the selected test case candidates consists of the
input provided to the function as well as the observed output.
In order to form a proper test case consisting of input and
expected output, the observed output must be confirmed to
be correct by reference to the software design or software
requirements specification. The candidate test cases are
provided in a format suitable for export to other test
management software.

3) Instrumentation and Stubbing
Further, the source code may be optionally modified

automatically to facilitate fault injection. One variant of fault
injection involves forcing specific functions to return values
typically indicating errors. An example of such a
modification could be to force a memory allocation function
– such as malloc from the C standard library – to return
NULL, indicating insufficient free memory.

Such a condition is normally very difficult to emulate in
actual unit testing and automatic instrumentation replaces
calls to malloc by calls to an intermediate function that
randomly or deterministically decides on each call whether
to return NULL or actually call malloc and pass on the return
value from that call.

Fault injection may also include modification of global
variables which are declared to be constant. This is a form of
parameter sensitivity analysis and may highlight possible
implicit data dependencies and thus issues which may not be
critical in the respective current version of the software but
may become active defects during maintenance later on or as
a matter of fault propagation.

Fault injection has turned out to be an efficient means for
raising probability of fault occurrence for faults otherwise
occurring only sporadically.

The use of massive stimulation overcomes the limited
expressiveness of structural coverage criteria as they are
currently in standard use in industry [5]. By first executing
the software using test stimuli in massive numbers –
effectively oversampling the domain normally exercised by
manual unit tests – and afterwards deciding on possible test
case candidates, not only additional information from meta-
analysis is made available, but also the decision on the
candidates is made on the basis of actual information about
their usefulness instead of engineer’s intuition.

Such massive stimulation is typically not possible on the
target of an embedded system, and the instrumentation
required imposes an additional significant resource burden.
To overcome this issue, the code is ported to a host platform
with sufficient computing and storage resources. In this
context, porting mainly means modifying the software such
that it can be compiled and linked for running on the host
platform. Of course this limits representativity of the results
obtained during stimulation, which is why the tool also
provides support for automatic re-execution on the target
platform for the identified subset of test cases. Further,
peripheral hardware is typically not available on the host
platform and if it is, the interfaces used in most cases are
very different from those on the target platform, so testing is
limited to the functions concerning the application logic.
However, this typically represents the major part of the
software even in embedded systems.

To support functions not available on the host platform,
to represent missing hardware interfaces or interfaces to the
target operating system, or to substitute functions not yet
(completely) coded, stubs may be generated for such
functions with randomly or grid-based output derived from
the specified output domain. More than 300 symbols,
functions and data, have been generated to complement the
application source code for the application under test.

Coverage in the automated approach becomes a property
of the software and not only a property of the test suite. For
example, low or missing coverage on a specific portion of
the code may be contrary to expectation and thus hint at a
defect[4].

C. Software under Test

The software under test in this exercise was the
application software of a European satellite. It was classified
as mission-critical meaning that anomalous behaviour would
cause or contribute to a failure of the satellite system
resulting in permanent and/or non-recoverable loss of the
satellite's capability to perform its planned mission.

The version used in the project was a near-final version
that had already gone through a number of thorough test
campaigns, design and code reviews and analyses, as
prescribed by the applicable European space industry
standards ECSS Q-80Fehler! Verweisquelle konnte nicht
gefunden werden.and ECSS E-40[6], both in version B, and
in addition Independent Software Verification and
Validation (ISVV) [7]was performed due to the software
criticality.

In a first step a mission-critical subset of the application
software was processed. This subset consists of 1530
individual C functions over about 64 KLOC lines of code
(not counting comments and blank lines). The total number
of blocks is 6434, the total number of conditions 3925

In a second step, the full set of software functions was
tested. This set amounts to 3375 functions, 166 KLOC and
14799 blocks and tbd conditions. This paper will focus on
findings and results derived from the subset of 1530 mission-
critical functions.

Slightly more than half of the functions – namely 773 –
consist of a single block without any decisions, representing
12% of the blocks. In contrast, the maximum number of
blocks per function found was 104 (in a single switch
statement) and the highest number of decisions per function
was 43, occurring in one function each.

Figure 3shows the distribution of block and decision
counts over the functions. Note that the x-axis has been cut
for better readability in the histogram on blocks. Only very
few functions have higher block or decision counts than
shown and would not be visible in the graph anyway.

A software support package could not be delivered due to
matters of intellectual property rights. Therefore the missing
functions were substituted by stubs as described above in
order to get linkable object code.

Note that no excerpts from actual source code are given
in the paper. Instead wherever we present example code, the
snippets are intended to show the basic idea behind the logic
present in the code.

D. Related Work

Random testing is a method for systematically selecting
test data using a specific probability distribution [8][9]. If the
probability distribution is suitable, estimates on the

remaining single-invocation fault probability can be
established for a specific distribution over the inputs under
the conditions to be considered, e.g. general operational
conditions.

Several refinements have been proposed to increase the
efficiency of the approach. One such refinement is Adaptive
Random Testing (ART)Fehler! Verweisquelle konnte nicht
gefunden werden.. In ART, selection of a new test stimulus
consists of first establishing a set of candidate stimuli from
the input set. From these candidates the element that
maximizes the distance from the previously selected test
stimuli is used for the next test case. The distance measure
can depend on the application, but typically Euclidian
distance is applied. It has been proven that, given no
information about the localisation of faults in the input space,
the expected number of test cases required to find the first
defect (the so-called F-measure) is minimal with this
approach, assuming specific patterns of fault occurrence over
the input space derived from typical mistakes in decisions
and calculations.

Lattice-based testing [11] is a corner case of ART. Given
the extents of the input space and the maximum number of
sample points in that space, a grid with regularly spaced grid
points maximises the distance of the individual points. In
lattice-based testing, the inputs are selected from this grid,
either iterating over all the points, or instead selecting
random test stimuli from the set of grid intersection points.
In DCRTT, the first of the two alternatives applied. This
strategy has been shown to improve coverage of conditions
such as direct comparisons, which are otherwise difficult to
cover with strict random testing.

Use of generic criteria to detect possible defects is
typically used for fuzzing [12], where software is massively
stimulated with random or specifically prepared inputs in
order to elicit run-time exceptions or other abnormal
behaviour. The main application of fuzzing is evaluation of
security and detection of possible attack vectors, but of
course it can also be applied for general robustness testing.

II. FINDINGS

We executed multiple test runs for the whole software,
varying configuration parameters such as the number of
stimuli to be generated per function and the activation of
various forms of fault injection. Depending on the

Figure 3Histograms of the distribution of block and condition counts over the functions (Y-axis: #functions+1)

1

10

100

1000

1 4 7 10131619222528313437404346495255
of Blocks in a Function

1

10

100

1000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43
of Decisions in a Function

configuration, between 1 million and 27 million test stimuli
were injected in total for the 1530 FUTs.

A. Analysis of Anomalies

1) Results
Depending on the configuration, between 50 and 233 of

the stimulated 1530 functions showed anomalies. In this
exercise, only run-time exceptions, timeouts and out-of-
range conditions of indices were considered as anomalies.
Data range monitoring was not used, so range violations
outside index expressions were not checked.

Some of these anomalies were examined for their cause,
leading to 52 findings in total, of which 50 were found to be
non-critical. For two findings the project implemented
corrective maintenance. Overall the software package was
found to be mature, which is not unexpected given that only
a near-final version was available that had already gone
through quite rigorous code inspection, static analysis and
classical software tests.

Most of the other anomalies could be attributed to the
fact that the stimulus generator cannot know a-priori about
function pre-conditions and thus cannot honour them. The
anomalies occurring due to such dependency on pre-
conditions do not necessarily indicate defects in the overall
software as long as it is shown that the pre-condition is
satisfied at all times when the function is called within the
whole software.

Consequently, in the course of analysis of such an
anomaly it is important to check whether fulfilment of pre-
conditions has already been proven, and if not, to provide a
proof.

To avoid anomalies due to conditions non-representative
for the environment during the operations phase, constraints
on function parameter and global data is typically provided
in a generic manner.

In context of out-of-range monitoring of indices such
constraints are derived automatically by the tool from
information on the upper limits of arrays found in the source
code.

From a general perspective, occurrence of such
anomalies indicates that the software is not protected against
such critical values and that a proof is necessary to show that
such conditions may not occur in the context of the whole
application. When the proof is already available or when it is
performed due to the finding, the anomaly can be ignored or
avoided by provision of a constraint.

2) Analysis Approach

Identification of the location of an anomaly is guided by

information provided in the automatically generated report.

Anomalies are classified into the following top-level

categories:

• Run-time exception as flagged by the operating system

e.g. access violation,

• Corrupted memory as identified by DCRTT

• Out-of-range conditions as identified by DCRTT

• Timeout conditions as identified by DCRTT

e.g. due to a deadlock, a livelock, or a crash (corruption of

essential memory)

The information required to efficiently identify the source of

an anomaly is compressed and filtered. Anomalies are

reported on the level of an index expression in case of an

out-of-range anomaly or on block level or condition level

for other anomalies depending on where the anomaly was

raised. If a low-level function causes an anomaly for several

FUTs, the single source is identified, so that the relevant

function and block, condition or index expression can

directly be entered without any need to search top-down

starting at every FUT. Tab. 1 shows examples on how the

anomalies are reported.

Anomaly Type File Function

Description

Line
Block

Id

Cond

Id
Test Id #Occ Index

Id

Dimension

Index

Min/max

observed

Index

Expr.

OutOfRangeLow File1.c Func1.c 2523 0 min=-1<0 idx1 297 1 n/a 232 2284

 236 2284

OutOfRangeLow File1.c Func1.c 2524 0 min=-1<0 idx2-1 298 1 n/a 232 2284

OutOfRangeHigh File2.c Func2.c 2844 2 max=965>27 idx3 239 1 n/a 281 2339

 275 2339

Excp file3.c func3.c 876 2 n/a 266 768

 267 1536

CorruptedMem File4.c Func4.c 639 5 n/a 314 2

DeadLock File5.c Func5.c 494 25 n/a 378 1

Tab. 1: Examples for Anomaly Reporting

 The block id points to the block in the function where the

anomaly was observed, the condition id is the id of the

Expr Type Violation Function File

idx1 low min= -1 < 0 func1 file1.c

idx2-1 low min= -1 < 0 func1 file1.c

idx3 high max=965 > 27 func2 file2.c

condition in a logical expression, and test id is the id of the

FUT which was tested when the anomaly was raised.

“#Occ” is the number of occurrences of the anomaly.

For out-of-range conditions more information is provided

describing the id of the index expression assigned by

DCRTT, the number of the index in a list of dimensions, the

minimum or maximum of the out-of-range value and the

index name.

As an out-of-range condition may occur multiple times in a

function – whenever the same index is used for the same

dimension – the report further compresses the information

to a list of critical indices of a function for which out-of-

range conditions were observed during test of FUTs as

Figure 4 shows.

Figure 4: Compressed List of Critical Indices

3) Examples of Anomalies Found
In Figure 5 an example of such a pre-condition involving

the use of memcpy is shown. The ground station may send
commands to the satellite, so-called telecommands (TC).
When such a TC arrives on the satellite, the data contained in
the TC packet is typically buffered and the TC is placed in a
queue to be handled later.

For that, part of the TC data needs to be copied to the
queue using memcpy. The number of bytes to be copied is
derived from the length field found in the TC packet itself. In
the example, this length field is found at the address
cmdData+offset.

The function that does the queuing and copying does not
check the validity of the data in the length field. Thus the
length retrieved from the packet may be out of range, leading
to a possible memory corruption.

As the stimulator forces using the value 0 for integer
parameters at least once, there was one stimulus in which the

length was 0. The calculation len-3 thus led to the result -3.
However, as the third parameter to memcpy is an unsigned
integer, this is actually interpreted as 232-3. Thus in that case
the block passed to memcpy was equivalent to almost all of
the available address space. Because the host system has a
memory management unit that performs memory access
checking, the copying process soon raised a memory access
exception, thus highlighting the issue.

It is obvious that if such an input was received by the on-
board software under test it would have grave consequences.
If mechanisms for fault detection, isolation and recovery
(FDIR) are implemented on the same processor in the same
address space, they would be rendered useless. Data
collected in RAM would be lost and the only chance for
recovery would be a restart of the application software.

However, considering the context in which the function
is called within the application software it can be shown that
the pre-condition is indeed fulfilled: every telecommand is
first thoroughly checked to be valid, before further
processing its data. It must be ensured that none of the
invariants is violated later by code modification during the
software maintenance.

Indeed the function is protected by a mechanism similar
to the one depicted in Figure 6. A table containing – amongst
other information – the allowed range of values for the len
field depending on the type of TC contained in the packet.
The minimum length was shown to be at least 3 for all TC,
ensuring that negative values cannot occur for the number of
bytes passed to the memcpy.

There were several anomalies which were raised due to
the existence of basic, not explicitly expressed pre-
conditions. A recurring pre-condition was the correlation of
two parameters, one being a pointer to a buffer and the other
being expected to give the length of that buffer, as shown in
Figure 7. The parameters may also be embedded in a
common structure type, one member being the buffer
pointer, the other being the length. This is a common pattern
in C as arrays do not carry their length, different from other
programming languages such as Ada, Pascal or Java.

char buffer[BUFFER_SIZE];

void bufferCmd(char* cmdData, unsigned int offset) {

 unsigned int len;

 memcpy(&len, cmdData+offset, sizeof(unsigned int));

 memcpy(buffer,

 cmdData+offset+sizeof(unsigned int),

 len-3);

}
Figure 5memcpy Example

In the basic FAST approach, the probability of selecting
stimuli that violate this pre-condition is very high. Such
parameter combinations invariably lead to run-time
exceptions, often early in the function under test, so that
further parts of the function cannot be exercised and receive
no coverage. For this reason we needed to find a way to
increase the probability of selecting inputs that fulfil the pre-
condition. Because the pattern was so common in the SUT,
the effort of making this constraint explicit by manually
annotating all the functions using it was considered
prohibitive for our case study.

However we found that there was a small set of
parameter names used for such pairs, so we were able to
introduce a generic pre-condition automatically correlating
all parameter pairs with such names. As a consequence,
coverage for the affected functions was increased
considerably and the number of false-positive anomalies
observed in them was reduced.

Consequently, in order to be able to use FAST
efficiently, our recommendation is to use identical names for
the same logical items to the extent possible.

B. Coverage Analysis

The coverage criteria considered by the tool are modified
condition/decision coverage (MC/DC)Fehler!
Verweisquelle konnte nicht gefunden werden. and so-
called block-coverage.

To understand what block-coverage means, consider the
instrumentation performed by the tool: At any point where a
change in control flow may occur – such as in conditional
statements or loops – checkpoint markers are inserted into

the source code. Whenever execution traverses such a
checkpoint marker, this is recorded. The markers are placed
in such a way that from the sequence of traversal of these
markers it is possible to derive which statements were
executed, except when an exception breaks the control flow.
In this case, the block is marked as being interrupted. Thus,
full block coverage is indeed equivalent to full statement
coverage: either an interruption is recorded or all the
statements of a block were executed.

However, in statement coverage figures blocks with
larger numbers of statements are overemphasised. In block
coverage, only one block consisting of n statements without
a branch is considered whereas in statement coverage n
statements are contributing. Therefore, achieving a given
percentage of block coverage is not necessarily the same as
achieving the same percentage of statement coverage.

For MC/DC the full decision tables for each individual
decision are considered. The decision tables do also consider
short-circuit code, marking a condition as “don’t care” if it
does not contribute to the outcome of a decision under the
circumstances represented by the table entry. An entry in the
table is covered when the conditions of that decision takes
the respective values associated with that entry, not
considering those entries marked as “don’t care”. The
MC/DC percentage is then calculated from the quotient of
entries covered over the number of entries in total.

1) Coverage Results
In our case study, in the test runs executed with different

test configurations with and without fault injection, block
coverage ranges from 64.3% to 80.0%, and MC/DC was
between 72.4% and 82.6%.

The number of automatically generated test case
candidates was between 3,082 and 16,925, giving a mean
number of test case candidates per function between 2 and
11. The higher figures reflect test case candidates related to
exceptions and injected faults, which are recorded in addition
to the ones considered for coverage, to make such
exceptional events reproducible.

Coverage figures from different stimulation and fault
injection modes are complementary to some degree. By
merging test stimulus sets from different test configurations
higher coverage figures could be achieved. The maximum
values we got were 82.6% for block coverage and 86.6% for
MC/DC.

2) Discussion of Dependencies
Coverage is subject to significant saturation even below

100%, as Figure 8 shows. For example, comparing two runs
without fault injection, the first one injecting 1 million
stimuli in total, the second one 20 million, we found that the
execution time of the second was more than 5 times the
execution time of the first one, but provided no significant
increase in coverage.

Instead, other configuration options have much higher
influence on coverage. For example, activating stimulation
of global variables, fault injection by modification of return
values or by ignoring const-qualifiers show a significant
increase of coverage compared to the same configuration
with these options disabled. Understanding of latter effect

typedef struct TyCmdDescr{

 unsignedintminLen;

 unsignedintmaxLen;

} TyCmdDescr;

TyCmdDescr cmdDescr[]={

 {3,10},

 /* ... */

};

void recvCmd(char* cmdData, unsigned int offset,

 unsigned int entry) {

 unsigned int len;

 memcpy(&len,cmdData+offset,sizeof(unsigned int));

 if (len>=cmdDescr[entry].minLen &&

 len<=cmdDescr[entry].maxLen) {

 bufferCmd(cmdData,offset);

 }

}
Figure 6 Plausibility Check of Telecommands

void processBuffer(char* buffer, unsigned intlen) {

 unsigned int i;

 for (i=0;i<len;i++) {

 /* Do something with buffer[i] */

 }

}
Figure 7 Example showing Correlation of Buffer and Length

requires detailed analysis of the code which has not been
done so far.

Further analysis shows that, for example, fault injection
leads to better coverage of error handling code that
specifically checks for error codes being returned by called
functions. This is not surprising, as error conditions such as
insufficient memory do not normally occur without being
explicitly provoked.

a) Optimisation Potential

However, achievement of coverage can also be difficult
due to use of insufficiently constrained data types, which
was observed at some places in the software. Consider the
example in Figure 9. The input parameter is of type unsigned
int, thus having 232 possible values. Of these only 4 are used,
all others lead to error handling. Stimulating this function
randomly or even using a lattice-based approach will most
probably result in many stimuli exercising the default-
branch, while the other branches have a very low probability
of being covered.

In case of a random stimulation with a uniform
distribution, the probability of covering at least one of these
with 10,000 stimuli is about 9.3*10-6.

If unsigned char was used for the parameter – still having
64 times more values than are actually used – the probability
of hitting at least one of the non-default branches with only
300 stimuli would be slightly more than 99% in case of
random testing and 100% for the lattice-based approach.

As a reminder: The runs requesting 10,000 stimuli per
function took more than 3 days (feeding in about 27 million
of stimuli in total), while runs requesting 300 stimuli per
function were finished after a little more than 1 day.

Performance could be improved further if an
enumeration type would be defined and used, as shown in
Figure 10.

The presence of the enumeration type is a hint to the
stimulus generator that these are the preferred values to be
used. The generator would use only the enumeration literals
defined if fault injection was deactivated, thereby covering
the four branches with four stimuli in any case. Other values
would be used with fault injection activated, thus covering
the default branch.

Besides enhancing coverage when applying automated
source-code-based test generation, the use of enumeration
types also improves readability and maintainability of the
source code and even for this reason alone can be considered
a good engineering practice.

a) Reconsidering Block Coverage

As 773 functions have one block only one may ask how
these simple functions impact the overall coverage figure
and what is the average number of blocks reached in the
more complex functions.

Considering a block coverage of 65% (an a reasonable
figure observed for a single set of tests without merging
contributions from several runs at different configurations)
and the total number of blocks of 6434, the number of blocks
actually covered is 4182 and the corresponding number of
total blocks – not considering the single-block functions – is
6434-773=5661. This corresponds to an overall block
coverage over all non-single-block functions of about 60,2%.
The number of remaining functions is 1530-773=757. On the
average these functions have 7.5 blocks of which 5.5 were
covered.

Asking for the equivalent figures without counting the
top-level block of a function we get 3425 blocks covered and
4904 blocks in total, corresponding to an overall block
coverage of about 69,8%. This yields 6.5 blocks on the
average and 4.5 actually covered in addition to the top-level
block, equivalent to just subtracting 1 from the previous
figures.

b) General Considerations

The weak dependency of achieved coverage on the
number of injected stimuli (about 10% points increase of
coverage while the number of injected stimuli varies by a
factor of about 20 – from about 700 to about 18.000 stimuli
per FUT) is a matter of the following constraints:

• Coverage in some cases is independent of the number of
stimuli

o 773 functions have one block only, full coverage is
achieved with one stimulus already

o 179 functions do not have parameters, they cannot be
stimulated at all. They may depend on global data
which should be stimulated as well in such a case.
Remark: there may be an overlap between the 773
functions with one block and the 179 functions
without input parameter.

typedef enum {

 cmd1,cmd2,cmd3,cmd4

} TyCommand;

void executeCommand(TyCommand cmd) {

switch (cmd) {

case cmd1: /* ... */ break;

case cmd2: /* ... */ break;

case cmd3: /* ... */ break;

case cmd4: /* ... */ break;

default: /* error handling */ break;

 }

}
Figure 10Improving Coverage by using Enumeration Types

Figure 8 Achieved coverage vs. number of injected stimuli and various

test modes

void executeCommand(unsigned int cmd) {

 switch (cmd) {

 case 1: /* ... */ break;

 case 2: /* ... */ break;

 case 3: /* ... */ break;

 case 4: /* ... */ break;

 default: /* error handling */ break;

 }

}
Figure 9Use of inappropriate types may prevent sufficient coverage

o Parameters of enumeration type are always
stimulated with the full number of literals. A
variation of the number of requested stimuli does not
change the number of injected stimuli for
enumeration types.

• The range of a type is so large that a variation of about
even 20 does not increase the probability to hit a certain
value significantly.
E.g. in case of a 32bit integer type the probability to hit
a certain value is 2-25≈10-8 at 128 stimuli and 2-18≈10-6
at 16K stimuli.
This strongly suggests careful selection of type ranges
and application of constraints.

• Reachability conditions depend on certain complex
environmental or spacecraft / application specific
conditions, which cannot easily be met by selecting
samples randomly or grid-based out of the input domain,
e.g. in case of expected condition coincidences between
data.

An example for smart selection of a type range are the
following examples: for two functions each having one
enumeration type parameter with 256 and 66 cases. In both
cases 100% block coverage was achieved, while in another
case where a 32-bit integer switch-variable was used only a
few cases were and the default were hit (see Subsection a)
above).

These results indicate that by an improved programming
style a much better result can be achieved without any
additional effort.

III. DISCUSSION OF RESULTS

A. Defect Analysis

In general, the high number of stimuli injected – derived
from the function interface – considerably increases the
probability that a defect becomes active. Appropriate means
of making the resulting error visible could therefore increase
the probability of detecting defects. The higher sampling
density better approaches the demands of standards like DO-
178, versions B and C, and ECSS E-40-C for exercising
boundary values and considering equivalence classes – fully
independent of the criticality class of the software under test.
Normally, more rigorous coverage criteria are only applied
to software with higher criticality levels (such as our SUT),
thus reducing the effort in case of classical manual testing for
lower criticality levels, but at the same time diminishing the
validity of test results for these cases.

In order for a defect to be activated, three conditions
must be fulfilled: The statement containing the defect must
be executed, the activation conditions for the defect must be
met and the resulting fault must affect further computations,
either by passing wrong values or by interrupting the control
flow.

The first condition is ensured by statement coverage.
However, neither statement nor decision or condition
coverage, not even MC/DC generally ensures that the second
condition is met.

For a simple example, consider a function that at some
point is supposed to calculate n2 but instead calculates 2n–

for both of which most computers provide single-instruction
implementations. This function could be considered as
covered completely by a test case that implies n=2, but as
the desired and the actual output for that case are the same,
the defect would not be detected.

Given an appropriate distribution of inputs – and in this
case a way to verify the output – the chance of detection of
the defect increases with the number of stimuli injected.

In order for a defect to be detected, it must be activated
and the erroneous result must be detected either by an oracle
[13] or via visual inspection by the engineer. An oracle
which can be integrated into the automated test flow
increases efficiency and is the best way to detect a defect.

The oracles used in this activity were the simple anomaly
detectors, i.e. the watchdogs waiting for a timeout or an
unexpected termination of the FUT or out-of-range
conditions. These are pretty generic oracles which typically
are not sufficient to detect functional defects, but they are
sufficient for robustness testing and in some cases, run-time
exceptions or timeouts occur due to functional defects.

The probability of detecting, e.g., an invalid memory
access, may also be increased by platform diversification as
it was performed in this case study as a matter of the FAST
approach by porting to the host platform. For example, if the
target platform does not provide hardware checking of
memory accesses – as is the case for many microcontrollers
and microprocessors used in embedded systems – testing the
software on a host platform that supports such hardware
checks may be advantageous, as the host platform can raise
run-time exceptions as the result of an invalid memory
access, while the target platform does not.

Defects of the kind where functionality was defined in
the specification but not implemented in the code can only
be detected if coverage of requirements by the test case
candidates is evaluated. If requirements are not specified
formally so that input data and/or output data can be
automatically mapped onto requirements, determination of
requirements coverage is bound to be a manual activity.

This task may be partially or completely automated given
a fully or partially formal specification allowing deter-
mination of one requirement or a small set of requirements to
which a single test case candidate applies to, just based on
the input and output data associated with that candidate.

Similarly, if links between requirements and the code are
established manually into the code – which often is the case
in critical systems implementations – also requirements
coverage can be automatically derived from code coverage.

It should be noted, however, that the correctness of such
evaluation always depends on the correctness of the formal
specification of the requirements or the requirements
annotations in the code.

B. Coverage

Although complete coverage was not achieved, the
measured coverage figures are quite impressive given the
simple means of stimulation, within an acceptable timeframe
between one day and several days for 1530 FUTs, requiring
only computer time.

The points of manual intervention are the definition of
the test configuration, identification of constraints as
discussed above, the analysis of reported anomalies, the
upgrade of identified test case candidates to test cases and
the evaluation of the generated test suite against relevant
specifications.

In addition, violation of implicit pre-conditions by the
stimulus generator leads to false positives as indicated by the
anomalies recorded in this project.

The effort for investigation of false positives can be
reduced by covering a high number of pre-conditions by a
minimum or at least reasonable number of rules, e.g. by
applying good naming conventions together with well
organised documentation.

In the case study about 1400 pre-conditions on
parameters could be covered by 27 generic pre-conditions.
This number would be even smaller if naming would have
been better harmonised in the software. The number of false
alarms could be reduced significantly and the coverage
figures increased. The software was written with well-
defined coding standard, however this does not take into
account exact naming of function parameters corresponding
to their intended function.

In case of out-of-range conditions of indices pre-
conditions on stimulation can be derived automatically by
correlating parameters occurring as indices with the
boundaries defined in type and data declarations. This led to
a reduction of false alarms.

Another recurring pre-condition was the use of
initialisation functions before starting stimulation of a FUT.
As again these pre-conditions were not formally documented
we had to apply heuristics to identify candidate initialisation
functions by simple data flow analysis and patterns for file
and function names. One common pattern was looking for
function names containing the pattern init. If common
naming conventions for such functions are applied, their
identification becomes much easier.

Such documentation could also be used by static analysis
tools to verify that the pre-conditions are indeed fulfilled
whenever the function is called. In this context what seems
to be an overhead turns out as information which should
already be available, but is not provided today due to effort
constraints and missing requests in the test and verification
process.

The question remains whether a static analysis tool can
actually lift the burden of verification considerably. Rice’s
theorem states that there is no algorithm that can decide for
any program provided as input whether a specific, nontrivial
property holds for that program. This theorem – a
consequence of the Halting Problem – limits the capabilities
of static analysis tools, leading either to “don’t know”-
answers by the tool or the necessity to restrict the set of
programs accepted. The typical approach of static analysis
tools is the “don’t know”-route, which again leaves the
engineer to verify those properties that the static analysis tool
cannot verify.

In similar situations, where the software lacks
appropriate documentation of the pre-conditions usable for
formal verification, stimulation ignoring the pre-conditions –

just by not knowing about them – could thus highlight some
critical pre-conditions, the violation of which could have
grave consequences. As a consequence of the reported
anomalies, appropriate measures have to be taken to ensure
that these pre-conditions are always met, e.g. by provision of
a formal proof or by use of additional static analysis tools.

Even if it can be proven that the pre-conditions are met,
effectively rendering the anomalies hinting at the pre-
conditions to be false positives, these false positives would
still have additional value for the project by highlighting a
condition for correctness of the software that was previously
unknown or not considered explicitly. This may be of
specific importance for maintenance, as the explicit
documentation of these conditions may be used to ensure
that the conditions are still fulfilled after changes to the
software were made.

The memcpy-example from Section II-II.A is a case of a
specific kind of pre-condition. Here we find a dependency
between the contents of the configuration table listing the
plausibility requirements for telecommand checking and the
expression used for calculating the number of bytes to copy.
In this case the – hidden – dependency was detected just by
applying the range specification of a parameter. Specifically
fault injection by overwriting global data marked as constant
may also reveal such interdependencies. What seems to be of
no use at first glance, turns out to be helpful in detecting
hidden, non-documented dependencies.

An important observation is that false alarms gave
valuable hints on critical issues. Even if the issue pointed to
turned out as uncritical in the system context, the related
review of the code often lead to identification of other issues
not seen before. This can be considered as a psychological
aspect: if the goal is to review all the code without having
any indication for issues, the motivation is different
compared to the case when the review needs to explain and
understand a reported anomaly.

C. Standards

A process to integrate the FAST process in the overall
test development process and stay compliant with the ECSS-
E-40 and ECSS-Q-80, versions B and C and DO178 versions
B and C is proposed in the project.

In order to adapt the FAST process to the objectives in
ECSS-E-ST-40 or DO-178, the following process is
proposed:

1. The DCRTT tool should be applied as described in this

paper. In particular note the need to develop a file

containing constraints to eliminate false positives.

2. Remaining issues reported by the tool should be

investigated as possible errors and the software and/or

test suite updated as necessary to remove those problems.

3. When all problems have been resolved all tests should

pass without failing. A relatively high structural coverage

should be expected, but full structural coverage will not

have been obtained at this stage.

4. The auto-generated test suite must now be manually

reviewed against the unit test objectives in ECSS-E-ST-

40 or the objectives relevant for low level requirements

based testing in DO-178 as applicable. For each function

under test the review should focus on:

a. Functional and design requirements allocated to the

FUT. As in standard unit test process, test cases

cannot be based on interfaces only. It will be

necessary to add tests to check correctness of the

requirements allocated to the FUT in order to obtain

requirements coverage.

b. The need for additional robustness test cases to

cover input combinations that are of special interest

based on the unit testers knowledge about

requirements and design and to comply with all the

objectives in ECSS-E-ST-40 or DO-178.

5. Based on the output from the review, manually develop

the additional test cases needed. After this step the

required structural coverage is also expected to be

obtained.
Note that step 5 can be done by manually adding test

cases using the DCRTT tool. However, it may in the future
also be done by exporting the test cases to a standard unit test
tool, if the software supplier for some commercial and/or
practical reasons still wants to keep such a tool operational.

A project using the process above will be able to benefit
from all advantages of the method, while mitigating all the
limitations and stay fully compliant with ECSS-E-ST-40C or
DO-178B.

IV. RECOMMENDATIONS

The software under test used in this case study was not
written with application of automated source-code-based
testing in mind. Therefore some effort was needed for
annotating the software, e.g. by adding constraints. The
functionality of the software was not changed. Based on this
experience a set of coding guidelines was defined with the
intent to meet better the needs for this kind of test
automation in future projects if followed.

The FAST approach allows early commencement of
testing activities as soon as compilable code is available.
This way testability issues can be detected without much
effort and fixed early in the process. Further, early feedback
on code quality in general and robustness and stability in
particular is available and indications on pre-conditions
previously not considered can be found.

Early fixing of such issues decreases the effort to be
spent for analysis of false alarms. In the case study no
recommendations could be implemented as the coding phase
was already almost completed.

The most convenient case – not only for testing, but also
for ensuring consistency – is a function without any pre-
conditions. Such a function accepts all possible values in the
set of inputs defined by its formal parameters and provides a
meaningful output for each of these inputs. This requires
proper parameterisation of the input space using orthogonal
parameters, the value range of which should exactly match
the range of language-provided types. In that case, violation
of pre-conditions is either not possible or is reported by the
compiler due to basic type checking.

Such a parameterisation is not always possible and even
if it is possible, it may not always be desirable, as a complex
mapping may increase the complexity of the software to an
inacceptable level. Nevertheless it is worthwhile to pursue
pre-condition-free functions wherever possible.

If pre-conditions cannot be avoided, it is recommended to
use concepts provided by the programming language to hint
at these pre-conditions. One example is the use of
enumeration types in C. Another is the use of the const
specifier in C to constrain directionality of a parameter.

In the case that the programming language does not
provide a way of expressing the pre-condition or hinting at it,
introduce common rules for example for naming the
parameters involved in an often-used pre-condition to both
increase comprehensibility of the code but also to allow easy
introduction of generic pre-condition based on naming
patterns or similar.

Another alternative can be the introduction of new
language features. The tool DCRTT, for example, uses
special tags _IN_, _OUT_ and _INOUT_ to specify
directionality of parameters. The tags are removed
automatically before the source code is submitted to the
compiler, but the parser of DCRTT sees the tags and uses
them.

If these two alternatives of specifying pre-conditions are
not applicable, common forms of expressions for such pre-
conditions could be defined in annotations. To avoid
unnecessary complexity for the developer, specialized forms
of expression for specific, recurring types of constraints
should be preferred over generalized forms such as higher
order logic.

For example, C does not support specific ranges on
parameters, but DCRTT does. However, such concepts need
to be known before coding starts to make it efficient.

Pre-conditions which are documented in a formal and
computer-readable way may also be of advantage for static
analysis.

If post-conditions or other properties of the FUT are
documented, this may also be used for static analysis or for
establishing oracles. For example, symmetries in functions
can be exploited for fault detection [14].

The process may be used to aid in establishing basic unit
test suites. The effort of confirming the outputs from the test
case candidates to be the actual expected outputs is of course
still remaining. No conclusion on the amount of this effort so
far is possible, but it should be possible to compare the mean
number of test case candidates per function to the typical
mean number of test cases per function used in classical test
processes. Further reduction of the number of test case
candidates seems to be possible and we recently made
progress in that regard.

V. CONCLUSIONS

The case study has shown that the approach can be
applied to real-life embedded software without any
unreasonable constraints imposed on the way developers
implement the software.

The FAST process can be used in the nominal unit test
process without any changes to the process as described in

the ECSS-E-ST-40C standard and also in projects that must
comply with safety standards and guidelines, e.g. DO-178B.

However, the test cases automatically generated by the
DCRTT tool must be complemented with manually derived
test cases to meet all the objectives of the standards. The
Final Report of the study describes a process that will make
it possible to benefit from all the advantages of the method,
while mitigating all its limitations and stay fully compliant
with ECSS-E-ST-40C or DO-178B.

Problems that were neither detected by the static analysis
tool used in Independent Software Verification and
Validation (ISVV), nor by the static analysis tools used by
the supplier, were found in the project. This illustrates the
benefits of using tools that are as different as possible for
ISVV, and that it therefore could be cost-effective to use the
DCRTT tool instead of a static analyser to complement the
manual code inspection in ISVV.

The FAST process does not contradict European space
software standards ECSS-E-40 and ECSS-E-80 and can
complement it with additional test cases, and also covers
some of testing requirements of DO-178B, especially
regarding robustness.

The main conclusions are:

• The process is an excellent way to reach a reasonably
high level of coverage quickly and with not much effort.

• The large number of test stimuli may select much more
combinations than achievable by a unit tester, thereby
increasing the quality of robustness testing and the
number of findings.

• The tool may ease the transition to more rigorous
standards like ECSS-E-40C which focus more on
robustness.

• Tool adaptation may be required, in particular when
coding practices as discussed above are not applied.

• The auto-generated test suite must be evaluated against
test completeness criteria in relevant standards. E.g. if
100% requirements coverage and 100% code coverage
cannot be achieved automatically, the remaining test
cases still have to be implemented manually. This may
either be done by defining test cases by file input or
writing test drivers in context of DCRTT or using
another tool supporting definition of test cases.

We have seen that adaptations in coding style – such as
use of properly constrained parameter types – may increase
the efficiency of source-code-based automated testing
significantly.

Minor annotations may be necessary to allow for more
efficient test data generation and recording of test results,
such as annotating parameters with their directionality or
using appropriate names to facilitate application of generic
pre-conditions. Test data generation still works without these
annotations, although it is less efficient and more effort may
have to be spent in the later stages in evaluation of the data
or complementation of the test cases for coverage.

The process of introducing these annotations may be
eased by applying the concepts of source-code-based
automatic testing early in projects as soon as compilable
source code is available. An early feedback may help

increasing the robustness and testability as well as the
general quality of the code at lower effort than when this is
done as an afterthought shortly before or during the test
activities.

Unfortunately, no effectively untested software was
available for the case study, so that no conclusions are
possible on whether this approach in general and the
suggested test cases in particular are as effective in detecting
defects as manually selected test cases.

The selection of inputs by an automaton free of bias may
on one hand improve the fault detection capability by
spreading the test cases out more evenly over the input
space, but on the other hand an engineer might know quite
well which are the critical cases which are important to test.

A considerable reduction of effort is achieved by
automatic generation of the test environment, all of the test
scripts and the test drivers for regression testing on host and
target platform.

The approach is clearly suitable for evaluating robustness
and fault tolerance of the functions involved. This feature
may be of special interest in complementary verification and
validation activities such as ISVV, which is performed by a
contractor independent of the original provider of the
software and with tools independent from the tools the
original provider used for verification and validation.

The test case candidates already provide a considerable
amount of the coverage required, and thus may form a good
basis for an actual unit test suite. Complete coverage is still
difficult to achieve with random or lattice-based testing, even
if heuristics such as using constants found in the source code
are applied.

If complete structural coverage is achievable at all –
generally meaning that no dead-code is present inside the
system under test – it could be achieved automatically using
constraint-based test data generation approaches[15][16][17].
Such an approach is currently in development at BSSE and
will be integrated with the already available tools for
automatic testing. Due to the high computational effort
associated with constraint-based approaches priority will be
given to random and lattice-based testing, as these have
higher stimulus throughput and thus can also provide the
oversampling that is considered one of the advantages of the
approach. Only for those parts that cannot be covered by
random or lattice-based testing, constraint-based test data
generation will be applied.

ACKNOWLEDGMENT

This case study was funded by national Norwegian and
German budgets in context of the ESA GSTP programme,
ESA Contract No. 4 000 102 645.

REFERENCES

[1] JUnit Homepage, http://www.junit.org/, last retrieved April 30th 2013

[2] RTCA/DO-178 / ED-12: Software Considerations in Airborne
Systems and Equipment Certification, versions B and C

[3] Space product assurance: Software product assurance, ECSS-Q-ST-
80, version B dated 10 October 2003, version C dated 6 March 2009

[4] R.Gerlich, C.Dietrich, R.Gerlich: „Fault Identifcation Strategies“,
Eurospace Symposium DASIA'09 "Data Systems in Aerospace",
2009, Istanbul

[5] Richard Hamlet and Ross Taylor, „Partition Testing does not inspire
confidence,“ IEEE Transactions on Software Engineering, vol. 16,
Dezember 1990, pp. 206-215.

[6] Space Engineering: Software, ECSS-E-ST-40, version B dated 28
November 2003, version C dated 6 March,2009

[7] ESA Guide for Independent Software Verification & Validation,
v2.0, 29 December 2008

[8] Richard Hamlet, “Random testing,” in Encyclopedia of Software
Engineering, J. Marciniak, Ed. Wiley, 1994, pp. 970-978.

[9] Rainer Gerlich and G. Fercher, “A Random-Testing Environment for
Ada Programs,” Eurospace Symposium “Ada in Aerospace”, 1993.

[10] T.Y. Chen, Hing Leung and I.K. Mak, “Adaptive random testing,” In
Advances in Computer Science-ASIAN 2004. Higher-Level Decision
Making. Springer, 2005, pp. 320-329.

[11] Johannes Mayer, „Lattice-based adaptive random testing,“
Proceedings of the 20th IEEE/ACM international Conference on
Automated software engineering (ASE ’05), ACM, 2005, pp. 333-
336.

[12] Patrice Godefroid, “Random testing for security: blackbox vs.
whitebox fuzzing,” Proceedings of the 2nd international workshop on
Random testing (RT’07), ACM, 2007, p. 1.

[13] Douglas Hoffman, “Using Oracles in Test Automation,” Proceedings
of the Pacific Northwest Software Quality Conference (PNSQC
2001), 2001, pp. 99-107.

[14] Arnaud Gotlieb, „Exploiting Symmetries to Test Programs,“
Proceedings of the 14th International Symposium on Software
Reliability Engineering (ISSRE), IEEE, 2003, pp. 365-374.

[15] A. Jefferson Offutt, Zhenyi Jin and Jie Pan, „The dynamic domain
reduction procedure for test data generation,“ Softw. Pract. Exper.,
vol. 29, 1997, pp. 167-193.

[16] Arnaud Gotlieb, Bernard Botella and Michel Rueher, „A CLP
Framework for Computing Structural Test Data,“ Lecture Notes in
Computer Science, vol. 1861, 200, pp. 399-413.

[17] Ralf Gerlich and Rainer Gerlich, „Potentials of Constraint-based
Methods in Software Verfication and Validation,”Proceedings of
Data Systems in Aerospace 2012 (DASIA’2012), SP-701, ESA
Communications, 2012

