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Abstract—We present results of a case study on a test 

generation approach called Flow-optimized Automated 

Source-code-based unit Testing (FAST) which generates test 

stimuli from information available in the source code, in 

particular taken from the detailed software interfaces. This 

allows automation of a significant part of testing, ranging from 

the test stimuli generation to the generation of the test report. 

A huge number of stimuli can be generated exploring the 

behaviour of the software under test under nominal and non-

nominal conditions. Symptoms like timeouts, unexpected 

termination, run-time exceptions, out-of-range conditions and 

missing coverage are applied for defect detection. The goal of 

this study was to evaluate the FAST process in context of a real 

spacecraft flight software application and to get a feedback on 

its scalability regarding larger applications, its sensitivity on 

detecting defects in the code, the achievable test coverage, its 

compliance with software standards and potential limitations. 

We also consider the impact of coding style on suitability for 

automated testing. The results confirm that the approach (1) 

provides acceptable code coverage results without requiring 

manual intervention for test preparation and execution, (2) 

raises the probability of activation of exotic fault conditions, 

(3) may provide hints on locations in the code where 

robustness  needs to be verified, and (4) identifies defects not 

found before by static analysis and intensive testing 

Keywords-automatic test data generation, unit testing, 

robustness testing, fault injection, test coverage, testability 

I.  INTRODUCTION 

Software testing is a method for dynamic analysis of 
software used to determine whether the software indeed 
fulfils its requirements. Unit testing is one form of software 
testing which focuses on isolated testing of software units, 
such as individual modules or functions – in the sense of 
subroutines. 

While the automatic execution of unit test suites and the 
automatic evaluation of results using test tools such as 
JUnit[1] and its other language-specific variants are 
widespread, preparation of test cases is still mostly 
performed manually. Identification of test cases may be 
performed targeting one or more types of code coverage or 
requirements coverage. Of relevance for the European space 

industry are the standards DO-178, versions B and CFehler! 
Verweisquelle konnte nicht gefunden werden., and ECSS-
Q80, versions B and CFehler! Verweisquelle konnte nicht 
gefunden werden., all of which suggest both approaches, 
code and requirements coverage. 

We present results from a case study applying an 
alternative approach to software unit testing, complementary 
to the traditional, manual approach: test stimuli are derived 
automatically from computer-readable information, mainly 
consisting of the source code[4]. This allows reaching a high 
level of test coverage quickly, irrespective of the criticality 
levels, especially for software for which unit testing was not 
previously applied or required. 

For the software under test in this exercise, a part of the 
flight software of a European Earth observation satellite was 
provided by the European Space Agency (ESA). Only the 
source code of the software was used for the case study, but 
no specification or design documents. Such documents rarely 
contain information rigorously expressed in a computer-
readable form useful for the generation of test data. 

A. Structure of the Paper 

After a general description of the approach and related 
work, we present in Chapter II some of the findings as well 
as coverage data, followed by a general discussion of their 
implications in Chapter III. In Chapter IV we derive 
recommendations on how specific issues, constraining this 
type of test automation, can be avoided by appropriate 
planning in software development projects that aim to apply 
the process. Finally we conclude and give an outlook on 
future developments. 

B. Description of the Approach 

The approach is based on the knowledge of the source 
code of the Software Under Test (SUT) and an extension of 
the process flow towards automation and is thus called Flow-
optimised Automated Source-code-based Testing (FAST). 
The tool used is called DCRTT (Dynamic C Random Test 
Tool), indicating the origin of the tool from random testing – 
and is developed and maintained by BSSE. Another variant 
named DARTT – a predecessor of DCRTT – is available for 
Ada. 



1) The Process Flow 
In Figure 1 the flow graph of the traditional test approach 

is shown. In this approach, the specification is established 
first, followed by coding and manual test case preparation as 
parallel activities. The test cases already include the expected 
output of the Functions Under Test (FUT). Once these two 
activities are finished, the manually identified test cases are 
executed, and their results are evaluated by comparing the 
observed to the expected outputs. If the test shows that 
critical defects are still present – indicated by one or more 
test cases not being passed – corrective actions on the code 
and possibly the specification are applied and tests are 
repeated. 

In contrast, Figure 2 depicts the flow graph of FAST 
applying automated source-code-based testing. In this case 
massive stimulation is performed by generating a large 
number of stimuli from the information found in the source 
code interfaces, with the intent to check robustness and to 
identify test case candidates. The latter is based on 
information recorded by the test environment – including 
coverage, run-time exceptions and timeouts observed. The 
selected candidates already include the output observed 
during execution. They are provided in the code of 
automatically generated test drivers and may achieve the 
same level of coverage as the overall set of stimuli does, 
depending on the configuration options used, when 
executing the test drivers. 

The test case candidates are upgraded to test cases by 
manually reviewing the recorded output and comparing it to 
what is expected according to the specification. If one or 
more results do not conform to the specification, corrective 
actions must be taken as for the classical approach. Once the 
test case candidates have been upgraded to test cases, they 
can be reused at any time for regression testing. 

The FAST approach thus reverses the order in which test 
cases are established and executed. In the classical approach, 

each test case is established first and executed later, while in 
the FAST approach, the software has already been executed 
with the test stimulus as input when the test case candidate is 
upgraded to a test case by comparison to the specification. 

This approach avoids the issue that specifications are 
typically not formal and computer-readable and thus cannot 
be used for automatic test data generation without additional 
effort. Instead, the code is used as a formal description of the 
interfaces that must be stimulated. 

Although not currently implemented, the verification of 
test case candidates can of course be automated should 
formal oracles be available. 

The test case candidates may not be equivalent to those 
normally derived from the specification, therefore test cases 
may have to be added manually to obtain full requirements 
coverage. 

2) Stimuli Generation 
Inputs can be selected either randomly or based on a 

lattice spawning the input space of the individual functions 
as defined by their function prototypes (interfaces, black-box 
approach). 

In case of lattice-based test data generation, the requested 
number of stimuli per function is distributed over the 
parameters. For example, if 300 samples are requested and 
the function has 4 integer parameters, 5 samples per 
parameter are used based on the 4th root of 300 rounded 
towards positive infinity, leading to 45=1024 samples in 
total. For each parameter type some typical samples are 
added, including values such as 0 or NULL for pointers. 
Thus, the total number of stimuli actually generated may be 
considerably larger than the number of stimuli requested.  
When the resulting number of stimuli exceeds a given limit, 
e.g. 1,000,000 per function, the test mode is automatically 
switched to random testing to limit execution time. 

 
Figure 1 Flow Graph of the traditional approach to software unit testing 

 

 
Figure 2 Flow Graph of the approach using automatic source-code-based test data generation 



In case of random testing the requested number of 
random stimuli plus the set of typical values is injected. 

Additional inputs may be determined heuristically by 
using constants found in the code of the function or 
complementing data observed during execution (white box 
approach). Consequently, FAST applies a grey box approach 
as a mix of the two. 

Besides explicitly declared function parameters, the 
result of a function may also depend on the value of global 
variables. Therefore, such variables may also have to be 
stimulated to sufficiently exercise the functionality of the 
unit. As stimulation of all visible global variables for each 
function is not feasible in most cases, a subset of global 
variables applicable to the current FUT has to be identified. 

A global variable is only considered for stimulation if it 
is not declared constant and is used inside the FUT. The set 
of variables used in the FUT is determined automatically by 
a conservative heuristic analysis. 

However, if deemed necessary and feasible by the user, 
this analysis can be deactivated. In this case, all global 
variables are stimulated, except for those declared constant. 

With only basic configuration data and information 
automatically extracted from the source code, a test 
environment is established that records generated input, 
delivered output, execution time, run-time exceptions and 
timeouts for each individual test stimulus executed. The 
source code is further instrumented automatically to record 
structural coverage and – optionally – to perform data range 
monitoring for variables used in the software. Structural 
coverage criteria supported are block coverage – a criterion 
similar to statement coverage based on continuous blocks of 
statements – and modified condition/decision coverage 
(MC/DC) Fehler! Verweisquelle konnte nicht gefunden 
werden.on decision statements (if, do-while, while, and for). 
Coverage measurement may be performed during integration 
testing as well. 

Each of the selected test case candidates consists of the 
input provided to the function as well as the observed output. 
In order to form a proper test case consisting of input and 
expected output, the observed output must be confirmed to 
be correct by reference to the software design or software 
requirements specification. The candidate test cases are 
provided in a format suitable for export to other test 
management software. 

3) Instrumentation and Stubbing 
Further, the source code may be optionally modified 

automatically to facilitate fault injection. One variant of fault 
injection involves forcing specific functions to return values 
typically indicating errors. An example of such a 
modification could be to force a memory allocation function 
– such as malloc from the C standard library – to return 
NULL, indicating insufficient free memory.  

Such a condition is normally very difficult to emulate in 
actual unit testing and automatic instrumentation replaces 
calls to malloc by calls to an intermediate function that 
randomly or deterministically decides on each call whether 
to return NULL or actually call malloc and pass on the return 
value from that call. 

Fault injection may also include modification of global 
variables which are declared to be constant. This is a form of 
parameter sensitivity analysis and may highlight possible 
implicit data dependencies and thus issues which may not be 
critical in the respective current version of the software but 
may become active defects during maintenance later on or as 
a matter of fault propagation. 

Fault injection has turned out to be an efficient means for 
raising probability of fault occurrence for faults otherwise 
occurring only sporadically. 

The use of massive stimulation overcomes the limited 
expressiveness of structural coverage criteria as they are 
currently in standard use in industry [5]. By first executing 
the software using test stimuli in massive numbers – 
effectively oversampling the domain normally exercised by 
manual unit tests – and afterwards deciding on possible test 
case candidates, not only additional information from meta-
analysis is made available, but also the decision on the 
candidates is made on the basis of actual information about 
their usefulness instead of engineer’s intuition. 

Such massive stimulation is typically not possible on the 
target of an embedded system, and the instrumentation 
required imposes an additional significant resource burden. 
To overcome this issue, the code is ported to a host platform 
with sufficient computing and storage resources. In this 
context, porting mainly means modifying the software such 
that it can be compiled and linked for running on the host 
platform. Of course this limits representativity of the results 
obtained during stimulation, which is why the tool also 
provides support for automatic re-execution on the target 
platform for the identified subset of test cases. Further, 
peripheral hardware is typically not available on the host 
platform and if it is, the interfaces used in most cases are 
very different from those on the target platform, so testing is 
limited to the functions concerning the application logic. 
However, this typically represents the major part of the 
software even in embedded systems. 

To support functions not available on the host platform, 
to represent missing hardware interfaces or interfaces to the 
target operating system, or to substitute functions not yet 
(completely) coded, stubs may be generated for such 
functions with randomly or grid-based output derived from 
the specified output domain. More than 300 symbols, 
functions and data, have been generated to complement the 
application source code for the application under test. 

Coverage in the automated approach becomes a property 
of the software and not only a property of the test suite. For 
example, low or missing coverage on a specific portion of 
the code may be contrary to expectation and thus hint at a 
defect[4]. 

C. Software under Test 

The software under test in this exercise was the 
application software of a European satellite. It was classified 
as mission-critical meaning that anomalous behaviour would 
cause or contribute to a failure of the satellite system 
resulting in permanent and/or non-recoverable loss of the 
satellite's capability to perform its planned mission. 



The version used in the project was a near-final version 
that had already gone through a number of thorough test 
campaigns, design and code reviews and analyses, as 
prescribed by the applicable European space industry 
standards ECSS Q-80Fehler! Verweisquelle konnte nicht 
gefunden werden.and ECSS E-40[6], both in version B, and 
in addition Independent Software Verification and 
Validation (ISVV) [7]was performed due to the software 
criticality. 

In a first step a mission-critical subset of the  application 
software was processed. This subset consists of 1530 
individual C functions over about 64 KLOC lines of code 
(not counting comments and blank lines). The total number 
of blocks is 6434, the total number of conditions 3925  

In a second step, the full set of software functions was 
tested. This set amounts to 3375 functions, 166 KLOC and 
14799 blocks and tbd conditions. This paper will focus on 
findings and results derived from the subset of 1530 mission-
critical functions. 

Slightly more than half of the functions – namely 773 – 
consist of a single block without any decisions, representing 
12% of the blocks. In contrast, the maximum number of 
blocks per function found was 104 (in a single switch 
statement) and the highest number of decisions per function 
was 43, occurring in one function each. 

Figure 3shows the distribution of block and decision 
counts over the functions. Note that the x-axis has been cut 
for better readability in the histogram on blocks. Only very 
few functions have higher block or decision counts than 
shown and would not be visible in the graph anyway. 

A software support package could not be delivered due to 
matters of intellectual property rights. Therefore the missing 
functions were substituted by stubs as described above in 
order to get linkable object code. 

Note that no excerpts from actual source code are given 
in the paper. Instead wherever we present example code, the 
snippets are intended to show the basic idea behind the logic 
present in the code. 

 

D. Related Work 

Random testing is a method for systematically selecting 
test data using a specific probability distribution [8][9]. If the 
probability distribution is suitable, estimates on the 

remaining single-invocation fault probability can be 
established for a specific distribution over the inputs under 
the conditions to be considered, e.g. general operational 
conditions. 

Several refinements have been proposed to increase the 
efficiency of the approach. One such refinement is Adaptive 
Random Testing (ART)Fehler! Verweisquelle konnte nicht 
gefunden werden.. In ART, selection of a new test stimulus 
consists of first establishing a set of candidate stimuli from 
the input set. From these candidates the element that 
maximizes the distance from the previously selected test 
stimuli is used for the next test case. The distance measure 
can depend on the application, but typically Euclidian 
distance is applied. It has been proven that, given no 
information about the localisation of faults in the input space, 
the expected number of test cases required to find the first 
defect (the so-called F-measure) is minimal with this 
approach, assuming specific patterns of fault occurrence over 
the input space derived from typical mistakes in decisions 
and calculations. 

Lattice-based testing [11] is a corner case of ART. Given 
the extents of the input space and the maximum number of 
sample points in that space, a grid with regularly spaced grid 
points maximises the distance of the individual points. In 
lattice-based testing, the inputs are selected from this grid, 
either iterating over all the points, or instead selecting 
random test stimuli from the set of grid intersection points. 
In DCRTT, the first of the two alternatives applied. This 
strategy has been shown to improve coverage of conditions 
such as direct comparisons, which are otherwise difficult to 
cover with strict random testing. 

Use of generic criteria to detect possible defects is 
typically used for fuzzing [12], where software is massively 
stimulated with random or specifically prepared inputs in 
order to elicit run-time exceptions or other abnormal 
behaviour. The main application of fuzzing is evaluation of 
security and detection of possible attack vectors, but of 
course it can also be applied for general robustness testing. 

II. FINDINGS 

We executed multiple test runs for the whole software, 
varying configuration parameters such as the number of 
stimuli to be generated per function and the activation of 
various forms of fault injection. Depending on the 

 
Figure 3Histograms of the distribution of block and condition counts over the functions (Y-axis: #functions+1) 
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configuration, between 1 million and 27 million test stimuli 
were injected in total for the 1530 FUTs. 

 
 

A. Analysis of Anomalies 

1) Results 
Depending on the configuration, between 50 and 233 of 

the stimulated 1530 functions showed anomalies. In this 
exercise, only run-time exceptions, timeouts and out-of-
range conditions of indices were considered as anomalies. 
Data range monitoring was not used, so range violations 
outside index expressions were not checked. 

Some of these anomalies were examined for their cause, 
leading to 52 findings in total, of which 50 were found to be 
non-critical. For two findings the project implemented 
corrective maintenance. Overall the software package was 
found to be mature, which is not unexpected given that only 
a near-final version was available that had already gone 
through quite rigorous code inspection, static analysis and 
classical software tests. 

Most of the other anomalies could be attributed to the 
fact that the stimulus generator cannot know a-priori about 
function pre-conditions and thus cannot honour them. The 
anomalies occurring due to such dependency on pre-
conditions do not necessarily indicate defects in the overall 
software as long as it is shown that the pre-condition is 
satisfied at all times when the function is called within the 
whole software. 

Consequently, in the course of analysis of such an 
anomaly it is important to check whether fulfilment of pre-
conditions has already been proven, and if not, to provide a 
proof. 

To avoid anomalies due to conditions non-representative 
for the environment during the operations phase, constraints 
on function parameter and global data is typically provided 
in a generic manner. 

In context of out-of-range monitoring of indices such 
constraints are derived automatically by the tool from 
information on the upper limits of arrays found in the source 
code. 

From a general perspective, occurrence of such 
anomalies indicates that the software is not protected against 
such critical values and that a proof is necessary to show that 
such conditions may not occur in the context of the whole 
application. When the proof is already available or when it is 
performed due to the finding, the anomaly can be ignored or 
avoided by provision of a constraint. 

2) Analysis Approach 

Identification of the location of an anomaly is guided by 

information provided in the automatically generated report. 

Anomalies are classified into the following top-level 

categories: 

• Run-time exception as flagged by the operating system 

e.g. access violation,  

• Corrupted memory as identified by DCRTT 

• Out-of-range conditions as identified by DCRTT 

• Timeout conditions as identified by DCRTT 

e.g. due to a deadlock, a livelock, or a crash (corruption of 

essential memory) 

The information required to efficiently identify the source of 

an anomaly is compressed and filtered. Anomalies are 

reported on the level of an index expression in case of an 

out-of-range anomaly or on block level or condition level 

for other anomalies depending on where the anomaly was 

raised. If a low-level function causes an anomaly for several 

FUTs, the single source is identified, so that the relevant 

function and block, condition or index expression can 

directly be entered without any need to search top-down 

starting at every FUT. Tab.  1 shows examples on how the 

anomalies are reported. 

Anomaly Type File Function 

Description 

Line 
Block 

Id 

Cond 

Id 
Test Id #Occ Index 

Id 

Dimension 

Index 

Min/max 

observed 

Index 

Expr. 

OutOfRangeLow File1.c Func1.c 2523 0 min=-1<0 idx1 297 1 n/a 232 2284 

          236 2284 

OutOfRangeLow File1.c Func1.c 2524 0  min=-1<0 idx2-1 298 1 n/a 232 2284 

OutOfRangeHigh File2.c Func2.c 2844 2 max=965>27 idx3 239 1 n/a 281 2339 

          275 2339 

Excp file3.c func3.c     876 2 n/a 266 768 

          267 1536 

CorruptedMem File4.c Func4.c     639 5 n/a 314 2 

DeadLock File5.c Func5.c     494 25 n/a 378 1 

Tab.  1: Examples for Anomaly Reporting 

 The block id points to the block in the function where the 

anomaly was observed, the condition id is the id of the 



Expr Type Violation Function File 

idx1 low min= -1  < 0 func1 file1.c 

idx2-1 low min= -1  < 0 func1 file1.c 

idx3 high max=965 > 27 func2 file2.c 

condition in a logical expression, and test id is the id of the 

FUT which was tested when the anomaly was raised. 

“#Occ” is the number of occurrences of the anomaly. 

For out-of-range conditions more information is provided 

describing the id of the index expression assigned by 

DCRTT, the number of the index in a list of dimensions, the 

minimum or maximum of the out-of-range value and the 

index name. 

As an out-of-range condition may occur multiple times in a 

function – whenever the same index is used for the same 

dimension – the report further compresses the information 

to a list of critical indices of a function for which out-of-

range conditions were observed during test of FUTs as 

Figure 4 shows. 

Figure 4: Compressed List of Critical Indices 

 

3) Examples of Anomalies Found 
In Figure 5 an example of such a pre-condition involving 

the use of memcpy is shown. The ground station may send 
commands to the satellite, so-called telecommands (TC). 
When such a TC arrives on the satellite, the data contained in 
the TC packet is typically buffered and the TC is placed in a 
queue to be handled later. 

For that, part of the TC data needs to be copied to the 
queue using memcpy. The number of bytes to be copied is 
derived from the length field found in the TC packet itself. In 
the example, this length field is found at the address 
cmdData+offset. 

The function that does the queuing and copying does not 
check the validity of the data in the length field. Thus the 
length retrieved from the packet may be out of range, leading 
to a possible memory corruption. 

As the stimulator forces using the value 0 for integer 
parameters at least once, there was one stimulus in which the 

length was 0. The calculation len-3 thus led to the result -3. 
However, as the third parameter to memcpy is an unsigned 
integer, this is actually interpreted as 232-3. Thus in that case 
the block passed to memcpy was equivalent to almost all of 
the available address space. Because the host system has a 
memory management unit that performs memory access 
checking, the copying process soon raised a memory access 
exception, thus highlighting the issue. 

It is obvious that if such an input was received by the on-
board software under test it would have grave consequences. 
If mechanisms for fault detection, isolation and recovery 
(FDIR) are implemented on the same processor in the same 
address space, they would be rendered useless. Data 
collected in RAM would be lost and the only chance for 
recovery would be a restart of the application software. 

However, considering the context in which the function 
is called within the application software it can be shown that 
the pre-condition is indeed fulfilled: every telecommand is 
first thoroughly checked to be valid, before further 
processing its data. It must be ensured that none of the 
invariants is violated later by code modification during the 
software maintenance.  

Indeed the function is protected by a mechanism similar 
to the one depicted in Figure 6. A table containing – amongst 
other information – the allowed range of values for the len 
field depending on the type of TC contained in the packet. 
The minimum length was shown to be at least 3 for all TC, 
ensuring that negative values cannot occur for the number of 
bytes passed to the memcpy. 

There were several anomalies which were raised due to 
the existence of basic, not explicitly expressed pre-
conditions. A recurring pre-condition was the correlation of 
two parameters, one being a pointer to a buffer and the other 
being expected to give the length of that buffer, as shown in 
Figure 7. The parameters may also be embedded in a 
common structure type, one member being the buffer 
pointer, the other being the length. This is a common pattern 
in C as arrays do not carry their length, different from other 
programming languages such as Ada, Pascal or Java. 

char buffer[BUFFER_SIZE]; 

void bufferCmd(char* cmdData, unsigned int offset) { 

 unsigned int len; 

 memcpy(&len, cmdData+offset, sizeof(unsigned int)); 

 memcpy(buffer, 

  cmdData+offset+sizeof(unsigned int), 

  len-3); 

} 
Figure 5memcpy Example 



In the basic FAST approach, the probability of selecting 
stimuli that violate this pre-condition is very high. Such 
parameter combinations invariably lead to run-time 
exceptions, often early in the function under test, so that 
further parts of the function cannot be exercised and receive 
no coverage. For this reason we needed to find a way to 
increase the probability of selecting inputs that fulfil the pre-
condition. Because the pattern was so common in the SUT, 
the effort of making this constraint explicit by manually 
annotating all the functions using it was considered 
prohibitive for our case study. 

However we found that there was a small set of 
parameter names used for such pairs, so we were able to 
introduce a generic pre-condition automatically correlating 
all parameter pairs with such names. As a consequence, 
coverage for the affected functions was increased 
considerably and the number of false-positive anomalies 
observed in them was reduced. 

Consequently, in order to be able to use FAST 
efficiently, our recommendation is to use identical names for 
the same logical items to the extent possible. 

B. Coverage Analysis 

The coverage criteria considered by the tool are modified 
condition/decision coverage (MC/DC)Fehler! 
Verweisquelle konnte nicht gefunden werden. and so-
called block-coverage. 

To understand what block-coverage means, consider the 
instrumentation performed by the tool: At any point where a 
change in control flow may occur – such as in conditional 
statements or loops – checkpoint markers are inserted into 

the source code. Whenever execution traverses such a 
checkpoint marker, this is recorded. The markers are placed 
in such a way that from the sequence of traversal of these 
markers it is possible to derive which statements were 
executed, except when an exception breaks the control flow. 
In this case, the block is marked as being interrupted. Thus, 
full block coverage is indeed equivalent to full statement 
coverage: either an interruption is recorded or all the 
statements of a block were executed. 

However, in statement coverage figures blocks with 
larger numbers of statements are overemphasised. In block 
coverage, only one block consisting of n statements without 
a branch is considered whereas in statement coverage n 
statements are contributing. Therefore, achieving a given 
percentage of block coverage is not necessarily the same as 
achieving the same percentage of statement coverage. 

For MC/DC the full decision tables for each individual 
decision are considered. The decision tables do also consider 
short-circuit code, marking a condition as “don’t care” if it 
does not contribute to the outcome of a decision under the 
circumstances represented by the table entry. An entry in the 
table is covered when the conditions of that decision takes 
the respective values associated with that entry, not 
considering those entries marked as “don’t care”. The 
MC/DC percentage is then calculated from the quotient of 
entries covered over the number of entries in total. 

1) Coverage Results 
In our case study, in the test runs executed with different 

test configurations with and without fault injection, block 
coverage ranges from 64.3% to 80.0%, and MC/DC was 
between 72.4% and 82.6%. 

The number of automatically generated test case 
candidates was between 3,082 and 16,925, giving a mean 
number of test case candidates per function between 2 and 
11. The higher figures reflect test case candidates related to 
exceptions and injected faults, which are recorded in addition 
to the ones considered for coverage, to make such 
exceptional events reproducible. 

Coverage figures from different stimulation and fault 
injection modes are complementary to some degree. By 
merging test stimulus sets from different test configurations 
higher coverage figures could be achieved. The maximum 
values we got were 82.6% for block coverage and 86.6% for 
MC/DC. 

2) Discussion of Dependencies 
Coverage is subject to significant saturation even below 

100%, as Figure 8 shows. For example, comparing two runs 
without fault injection, the first one injecting 1 million 
stimuli in total, the second one 20 million, we found that the 
execution time of the second was more than 5 times the 
execution time of the first one, but provided no significant 
increase in coverage. 

Instead, other configuration options have much higher 
influence on coverage. For example, activating stimulation 
of global variables, fault injection by modification of return 
values or by ignoring const-qualifiers show a significant 
increase of coverage compared to the same configuration 
with these options disabled. Understanding of latter effect 

typedef struct TyCmdDescr{ 

 unsignedintminLen; 

 unsignedintmaxLen; 

} TyCmdDescr; 
 

TyCmdDescr cmdDescr[]={ 

 {3,10}, 

 /* ... */ 

}; 

void recvCmd(char* cmdData, unsigned int offset, 

  unsigned int entry) { 

 unsigned int len; 

 memcpy(&len,cmdData+offset,sizeof(unsigned int)); 

 if (len>=cmdDescr[entry].minLen && 

  len<=cmdDescr[entry].maxLen) { 

   bufferCmd(cmdData,offset); 

 } 

} 
Figure 6 Plausibility Check of Telecommands 

 

void processBuffer(char* buffer, unsigned intlen) { 

 unsigned int i; 

 for (i=0;i<len;i++) { 

  /* Do something with buffer[i] */ 

 } 

} 
Figure 7 Example showing Correlation of Buffer and Length 

 



requires detailed analysis of the code which has not been 
done so far. 

Further analysis shows that, for example, fault injection 
leads to better coverage of error handling code that 
specifically checks for error codes being returned by called 
functions. This is not surprising, as error conditions such as 
insufficient memory do not normally occur without being 
explicitly provoked. 



a) Optimisation Potential 

However, achievement of coverage can also be difficult 
due to use of insufficiently constrained data types, which 
was observed at some places in the software. Consider the 
example in Figure 9. The input parameter is of type unsigned 
int, thus having 232 possible values. Of these only 4 are used, 
all others lead to error handling. Stimulating this function 
randomly or even using a lattice-based approach will most 
probably result in many stimuli exercising the default-
branch, while the other branches have a very low probability 
of being covered. 

In case of a random stimulation with a uniform 
distribution, the probability of covering at least one of these 
with 10,000 stimuli is about 9.3*10-6. 

If unsigned char was used for the parameter – still having 
64 times more values than are actually used – the probability 
of hitting at least one of the non-default branches with only 
300 stimuli would be slightly more than 99% in case of 
random testing and 100% for the lattice-based approach. 

As a reminder: The runs requesting 10,000 stimuli per 
function took more than 3 days (feeding in about 27 million 
of stimuli in total), while runs requesting 300 stimuli per 
function were finished after a little more than 1 day. 

Performance could be improved further if an 
enumeration type would be defined and used, as shown in 
Figure 10. 

The presence of the enumeration type is a hint to the 
stimulus generator that these are the preferred values to be 
used. The generator would use only the enumeration literals 
defined if fault injection was deactivated, thereby covering 
the four branches with four stimuli in any case. Other values 
would be used with fault injection activated, thus covering 
the default branch. 

Besides enhancing coverage when applying automated 
source-code-based test generation, the use of enumeration 
types also improves readability and maintainability of the 
source code and even for this reason alone can be considered 
a good engineering practice. 

a) Reconsidering Block Coverage 

As 773 functions have one block only one may ask how 
these simple functions impact the overall coverage figure 
and what is the average number of blocks reached in the 
more complex functions. 

Considering a block coverage of 65% (an a reasonable 
figure observed for a single set of tests without merging 
contributions from several runs at different configurations) 
and the total number of blocks of 6434, the number of blocks 
actually covered is 4182 and the corresponding number of 
total blocks – not considering the single-block functions – is 
6434-773=5661. This corresponds to an overall block 
coverage over all non-single-block functions of about 60,2%. 
The number of remaining functions is 1530-773=757. On the 
average these functions have 7.5 blocks of which 5.5 were 
covered. 

Asking for the equivalent figures without counting the 
top-level block of a function we get 3425 blocks covered and 
4904 blocks in total, corresponding to an overall block 
coverage of about 69,8%. This yields 6.5 blocks on the 
average and 4.5 actually covered in addition to the top-level 
block, equivalent to just subtracting 1 from the previous 
figures. 

b) General Considerations 

The weak dependency of achieved coverage on the 
number of injected stimuli (about 10% points increase of 
coverage while the number of injected stimuli varies by a 
factor of about 20 – from about 700 to about 18.000 stimuli 
per FUT) is a matter of the following constraints: 

• Coverage in some cases is independent of the number of 
stimuli 

o 773 functions have one block only, full coverage is 
achieved with one stimulus already 

o 179 functions do not have parameters, they cannot be 
stimulated at all. They may depend on global data 
which should be stimulated as well in such a case. 
Remark: there may be an overlap between the 773 
functions with one block and the 179 functions 
without input parameter. 

typedef enum { 

    cmd1,cmd2,cmd3,cmd4 

} TyCommand; 

void executeCommand(TyCommand cmd) { 

switch (cmd) { 

case cmd1: /* ... */ break; 

case cmd2: /* ... */ break; 

case cmd3: /* ... */ break; 

case cmd4: /* ... */ break; 

default: /* error handling */ break; 

    } 

} 
Figure 10Improving Coverage by using Enumeration Types 

 
Figure 8 Achieved coverage vs. number of injected stimuli and various 

test modes 

void executeCommand(unsigned int cmd) { 

 switch (cmd) { 

 case 1: /* ... */ break; 

 case 2: /* ... */ break; 

 case 3: /* ... */ break; 

 case 4: /* ... */ break; 

 default: /* error handling */ break; 

 } 

} 
Figure 9Use of inappropriate types may prevent sufficient coverage 

 



o Parameters of enumeration type are always 
stimulated with the full number of literals. A 
variation of the number of requested stimuli does not 
change the number of injected stimuli for 
enumeration types. 

• The range of a type is so large that a variation of about 
even 20 does not increase the probability to hit a certain 
value significantly. 
E.g. in case of a 32bit integer type the probability to hit 
a certain value is 2-25≈10-8 at 128 stimuli and 2-18≈10-6 
at 16K stimuli. 
This strongly suggests careful selection of type ranges 
and application of constraints. 

• Reachability conditions depend on certain complex 
environmental or spacecraft / application specific 
conditions, which cannot easily be met by selecting 
samples randomly or grid-based out of the input domain, 
e.g. in case of expected condition coincidences between 
data. 

An example for smart selection of a type range are the 
following examples: for two functions each having one 
enumeration type parameter with 256 and 66 cases. In both 
cases 100% block coverage was achieved, while in another 
case where a 32-bit integer switch-variable was used only a 
few cases were and the default were hit (see Subsection a) 
above). 

These results indicate that by an improved programming 
style a much better result can be achieved without any 
additional effort. 

III. DISCUSSION OF RESULTS 

A. Defect Analysis 

In general, the high number of stimuli injected – derived 
from the function interface – considerably increases the 
probability that a defect becomes active. Appropriate means 
of making the resulting error visible could therefore increase 
the probability of detecting defects. The higher sampling 
density better approaches the demands of standards like DO-
178, versions B and C, and ECSS E-40-C for exercising 
boundary values and considering equivalence classes – fully 
independent of the criticality class of the software under test. 
Normally, more rigorous coverage criteria are only applied 
to software with higher criticality levels (such as our SUT), 
thus reducing the effort in case of classical manual testing for 
lower criticality levels, but at the same time diminishing the 
validity of test results for these cases. 

In order for a defect to be activated, three conditions 
must be fulfilled: The statement containing the defect must 
be executed, the activation conditions for the defect must be 
met and the resulting fault must affect further computations, 
either by passing wrong values or by interrupting the control 
flow. 

The first condition is ensured by statement coverage. 
However, neither statement nor decision or condition 
coverage, not even MC/DC generally ensures that the second 
condition is met. 

For a simple example, consider a function that at some 
point is supposed to calculate n2 but instead calculates 2n– 

for both of which most computers provide single-instruction 
implementations. This function could be considered as 
covered completely by a test case that implies n=2, but as 
the desired and the actual output for that case are the same, 
the defect would not be detected. 

Given an appropriate distribution of inputs – and in this 
case a way to verify the output – the chance of detection of 
the defect increases with the number of stimuli injected. 

In order for a defect to be detected, it must be activated 
and the erroneous result must be detected either by an oracle 
[13] or via visual inspection by the engineer. An oracle 
which can be integrated into the automated test flow 
increases efficiency and is the best way to detect a defect. 

The oracles used in this activity were the simple anomaly 
detectors, i.e. the watchdogs waiting for a timeout or an 
unexpected termination of the FUT or out-of-range 
conditions. These are pretty generic oracles which typically 
are not sufficient to detect functional defects, but they are 
sufficient for robustness testing and in some cases, run-time 
exceptions or timeouts occur due to functional defects. 

The probability of detecting, e.g., an invalid memory 
access, may also be increased by platform diversification as 
it was performed in this case study as a matter of the FAST 
approach by porting to the host platform. For example, if the 
target platform does not provide hardware checking of 
memory accesses – as is the case for many microcontrollers 
and microprocessors used in embedded systems – testing the 
software on a host platform that supports such hardware 
checks may be advantageous, as the host platform can raise 
run-time exceptions as the result of an invalid memory 
access, while the target platform does not. 

Defects of the kind where functionality was defined in 
the specification but not implemented in the code can only 
be detected if coverage of requirements by the test case 
candidates is evaluated. If requirements are not specified 
formally so that input data and/or output data can be 
automatically mapped onto requirements, determination of 
requirements coverage is bound to be a manual activity. 

This task may be partially or completely automated given 
a fully or partially formal specification allowing deter-
mination of one requirement or a small set of requirements to 
which a single test case candidate applies to, just based on 
the input and output data associated with that candidate. 

Similarly, if links between requirements and the code are 
established manually into the code – which often is the case 
in critical systems implementations – also requirements 
coverage can be automatically derived from code coverage. 

It should be noted, however, that the correctness of such 
evaluation always depends on the correctness of the formal 
specification of the requirements or the requirements 
annotations in the code. 

B. Coverage 

Although complete coverage was not achieved, the 
measured coverage figures are quite impressive given the 
simple means of stimulation, within an acceptable timeframe 
between one day and several days for 1530 FUTs, requiring 
only computer time. 



The points of manual intervention are the definition of 
the test configuration, identification of constraints as 
discussed above, the analysis of reported anomalies, the 
upgrade of identified test case candidates to test cases and 
the evaluation of the generated test suite against relevant 
specifications. 

In addition, violation of implicit pre-conditions by the 
stimulus generator leads to false positives as indicated by the 
anomalies recorded in this project. 

The effort for investigation of false positives can be 
reduced by covering a high number of pre-conditions by a 
minimum or at least reasonable number of rules, e.g. by 
applying good naming conventions together with well 
organised documentation.  

In the case study about 1400 pre-conditions on 
parameters could be covered by 27 generic pre-conditions. 
This number would be even smaller if naming would have 
been better harmonised in the software. The number of false 
alarms could be reduced significantly and the coverage 
figures increased. The software was written with well-
defined coding standard, however this does not take into 
account exact naming of function parameters corresponding 
to their intended function. 

In case of out-of-range conditions of indices pre-
conditions on stimulation can be derived automatically by 
correlating parameters occurring as indices with the 
boundaries defined in type and data declarations. This led to 
a reduction of false alarms.  

Another recurring pre-condition was the use of 
initialisation functions before starting stimulation of a FUT. 
As again these pre-conditions were not formally documented 
we had to apply heuristics to identify candidate initialisation 
functions by simple data flow analysis and patterns for file 
and function names. One common pattern was looking for 
function names containing the pattern init. If common 
naming conventions for such functions are applied, their 
identification becomes much easier. 

Such documentation could also be used by static analysis 
tools to verify that the pre-conditions are indeed fulfilled 
whenever the function is called. In this context what seems 
to be an overhead turns out as information which should 
already be available, but is not provided today due to effort 
constraints and missing requests in the test and verification 
process. 

The question remains whether a static analysis tool can 
actually lift the burden of verification considerably. Rice’s 
theorem states that there is no algorithm that can decide for 
any program provided as input whether a specific, nontrivial 
property holds for that program. This theorem – a 
consequence of the Halting Problem – limits the capabilities 
of static analysis tools, leading either to “don’t know”-
answers by the tool or the necessity to restrict the set of 
programs accepted. The typical approach of static analysis 
tools is the “don’t know”-route, which again leaves the 
engineer to verify those properties that the static analysis tool 
cannot verify.  

In similar situations, where the software lacks 
appropriate documentation of the pre-conditions usable for 
formal verification, stimulation ignoring the pre-conditions – 

just by not knowing about them – could thus highlight some 
critical pre-conditions, the violation of which could have 
grave consequences. As a consequence of the reported 
anomalies, appropriate measures have to be taken to ensure 
that these pre-conditions are always met, e.g. by provision of 
a formal proof or by use of additional static analysis tools. 

Even if it can be proven that the pre-conditions are met, 
effectively rendering the anomalies hinting at the pre-
conditions to be false positives, these false positives would 
still have additional value for the project by highlighting a 
condition for correctness of the software that was previously 
unknown or not considered explicitly. This may be of 
specific importance for maintenance, as the explicit 
documentation of these conditions may be used to ensure 
that the conditions are still fulfilled after changes to the 
software were made. 

The memcpy-example from Section II-II.A is a case of a 
specific kind of pre-condition. Here we find a dependency 
between the contents of the configuration table listing the 
plausibility requirements for telecommand checking and the 
expression used for calculating the number of bytes to copy. 
In this case the – hidden – dependency was detected just by 
applying the range specification of a parameter. Specifically 
fault injection by overwriting global data marked as constant 
may also reveal such interdependencies. What seems to be of 
no use at first glance, turns out to be helpful in detecting 
hidden, non-documented dependencies. 

An important observation is that false alarms gave 
valuable hints on critical issues. Even if the issue pointed to 
turned out as uncritical in the system context, the related 
review of the code often lead to identification of other issues 
not seen before. This can be considered as a psychological 
aspect: if the goal is to review all the code without having 
any indication for issues, the motivation is different 
compared to the case when the review needs to explain and 
understand a reported anomaly. 

C. Standards 

A process to integrate the FAST process in the overall 
test development process and stay compliant with the ECSS-
E-40 and ECSS-Q-80, versions B and C and DO178 versions 
B and C is proposed in the project.  

In order to adapt the FAST process to the objectives in 
ECSS-E-ST-40 or DO-178, the following process is 
proposed: 

1. The DCRTT tool should be applied as described in this 

paper. In particular note the need to develop a file 

containing constraints to eliminate false positives. 

2. Remaining issues reported by the tool should be 

investigated as possible errors and the software and/or 

test suite updated as necessary to remove those problems. 

3. When all problems have been resolved all tests should 

pass without failing. A relatively high structural coverage 

should be expected, but full structural coverage will not 

have been obtained at this stage. 

4. The auto-generated test suite must now be manually 

reviewed against the unit test objectives in ECSS-E-ST-

40 or the objectives relevant for low level requirements 



based testing in DO-178 as applicable. For each function 

under test the review should focus on: 

a. Functional and design requirements allocated to the 

FUT. As in standard unit test process, test cases 

cannot be based on interfaces only. It will be 

necessary to add tests to check correctness of the 

requirements allocated to the FUT in order to obtain 

requirements coverage. 

b. The need for additional  robustness test cases to 

cover input combinations that are of special interest 

based on the unit testers knowledge about 

requirements and design and to comply with all the 

objectives in ECSS-E-ST-40 or DO-178.  

5. Based on the output from the review, manually develop 

the additional test cases needed. After this step the 

required structural coverage is also expected to be 

obtained. 
Note that step 5 can be done by manually adding test 

cases using the DCRTT tool. However, it may in the future 
also be done by exporting the test cases to a standard unit test 
tool, if the software supplier for some commercial and/or 
practical reasons still wants to keep such a tool operational. 

A project using the process above will be able to benefit 
from all advantages of the method, while mitigating all the 
limitations and stay fully compliant with ECSS-E-ST-40C or 
DO-178B.  

IV. RECOMMENDATIONS 

The software under test used in this case study was not 
written with application of automated source-code-based 
testing in mind. Therefore some effort was needed for 
annotating the software, e.g. by adding constraints. The 
functionality of the software was not changed. Based on this 
experience a set of coding guidelines was defined with the 
intent to meet better the needs for this kind of test 
automation in future projects if followed. 

The FAST approach allows early commencement of 
testing activities as soon as compilable code is available. 
This way testability issues can be detected without much 
effort and fixed early in the process. Further, early feedback 
on code quality in general and robustness and stability in 
particular is available and indications on pre-conditions 
previously not considered can be found. 

Early fixing of such issues decreases the effort to be 
spent for analysis of false alarms. In the case study no 
recommendations could be implemented as the coding phase 
was already almost completed. 

The most convenient case – not only for testing, but also 
for ensuring consistency – is a function without any pre-
conditions. Such a function accepts all possible values in the 
set of inputs defined by its formal parameters and provides a 
meaningful output for each of these inputs. This requires 
proper parameterisation of the input space using orthogonal 
parameters, the value range of which should exactly match 
the range of language-provided types. In that case, violation 
of pre-conditions is either not possible or is reported by the 
compiler due to basic type checking. 

Such a parameterisation is not always possible and even 
if it is possible, it may not always be desirable, as a complex 
mapping may increase the complexity of the software to an 
inacceptable level. Nevertheless it is worthwhile to pursue 
pre-condition-free functions wherever possible. 

If pre-conditions cannot be avoided, it is recommended to 
use concepts provided by the programming language to hint 
at these pre-conditions. One example is the use of 
enumeration types in C. Another is the use of the const 
specifier in C to constrain directionality of a parameter. 

In the case that the programming language does not 
provide a way of expressing the pre-condition or hinting at it, 
introduce common rules for example for naming the 
parameters involved in an often-used pre-condition to both 
increase comprehensibility of the code but also to allow easy 
introduction of generic pre-condition based on naming 
patterns or similar. 

Another alternative can be the introduction of new 
language features. The tool DCRTT, for example, uses 
special tags _IN_, _OUT_ and _INOUT_ to specify 
directionality of parameters. The tags are removed 
automatically before the source code is submitted to the 
compiler, but the parser of DCRTT sees the tags and uses 
them. 

If these two alternatives of specifying pre-conditions are 
not applicable, common forms of expressions for such pre-
conditions could be defined in annotations. To avoid 
unnecessary complexity for the developer, specialized forms 
of expression for specific, recurring types of constraints 
should be preferred over generalized forms such as higher 
order logic. 

For example, C does not support specific ranges on 
parameters, but DCRTT does. However, such concepts need 
to be known before coding starts to make it efficient. 

Pre-conditions which are documented in a formal and 
computer-readable way may also be of advantage for static 
analysis. 

If post-conditions or other properties of the FUT are 
documented, this may also be used for static analysis or for 
establishing oracles. For example, symmetries in functions 
can be exploited for fault detection [14]. 

The process may be used to aid in establishing basic unit 
test suites. The effort of confirming the outputs from the test 
case candidates to be the actual expected outputs is of course 
still remaining. No conclusion on the amount of this effort so 
far is possible, but it should be possible to compare the mean 
number of test case candidates per function to the typical 
mean number of test cases per function used in classical test 
processes. Further reduction of the number of test case 
candidates seems to be possible and we recently made 
progress in that regard. 

V. CONCLUSIONS 

The case study has shown that the approach can be 
applied to real-life embedded software without any 
unreasonable constraints imposed on the way developers 
implement the software.  

The FAST process can be used in the nominal unit test 
process without any changes to the process as described in 



the ECSS-E-ST-40C standard and also in projects that must 
comply with safety standards and guidelines, e.g. DO-178B.  

However, the test cases automatically generated by the 
DCRTT tool must be complemented with manually derived 
test cases to meet all the objectives of the standards. The 
Final Report of the study describes a process that will make 
it possible to benefit from all the advantages of the method, 
while mitigating all its limitations and stay fully compliant 
with ECSS-E-ST-40C or DO-178B.  

Problems that were neither detected by the static analysis 
tool used in Independent Software Verification and 
Validation (ISVV), nor by the static analysis tools used by 
the supplier, were found in the project. This illustrates the 
benefits of using tools that are as different as possible for 
ISVV, and that it therefore could be cost-effective to use the 
DCRTT tool instead of a static analyser to complement the 
manual code inspection in ISVV. 

The FAST process does not contradict European space 
software standards ECSS-E-40 and ECSS-E-80 and can 
complement it with additional test cases, and also covers 
some of testing requirements of DO-178B, especially 
regarding robustness.  

The main conclusions are: 

• The process is an excellent way to reach a reasonably 
high level of coverage quickly and with not much effort. 

• The large number of test stimuli may select much more 
combinations than achievable by a unit tester, thereby 
increasing the quality of robustness testing and the 
number of findings. 

• The tool may ease the transition to more rigorous 
standards like ECSS-E-40C which focus more on 
robustness. 

• Tool adaptation may be required, in particular when 
coding practices as discussed above are not applied. 

• The auto-generated test suite must be evaluated against 
test completeness criteria in relevant standards. E.g. if 
100% requirements coverage and 100% code coverage 
cannot be achieved automatically, the remaining test 
cases still have to be implemented manually. This may 
either be done by defining test cases by file input or 
writing test drivers in context of DCRTT or using 
another tool supporting definition of test cases. 

We have seen that adaptations in coding style – such as 
use of properly constrained parameter types – may increase 
the efficiency of source-code-based automated testing 
significantly. 

Minor annotations may be necessary to allow for more 
efficient test data generation and recording of test results, 
such as annotating parameters with their directionality or 
using appropriate names to facilitate application of generic 
pre-conditions. Test data generation still works without these 
annotations, although it is less efficient and more effort may 
have to be spent in the later stages in evaluation of the data 
or complementation of the test cases for coverage. 

The process of introducing these annotations may be 
eased by applying the concepts of source-code-based 
automatic testing early in projects as soon as compilable 
source code is available. An early feedback may help 

increasing the robustness and testability as well as the 
general quality of the code at lower effort than when this is 
done as an afterthought shortly before or during the test 
activities. 

Unfortunately, no effectively untested software was 
available for the case study, so that no conclusions are 
possible on whether this approach in general and the 
suggested test cases in particular are as effective in detecting 
defects as manually selected test cases. 

The selection of inputs by an automaton free of bias may 
on one hand improve the fault detection capability by 
spreading the test cases out more evenly over the input 
space, but on the other hand an engineer might know quite 
well which are the critical cases which are important to test. 

A considerable reduction of effort is achieved by 
automatic generation of the test environment, all of the test 
scripts and the test drivers for regression testing on host and 
target platform. 

The approach is clearly suitable for evaluating robustness 
and fault tolerance of the functions involved. This feature 
may be of special interest in complementary verification and 
validation activities such as ISVV, which is performed by a 
contractor independent of the original provider of the 
software and with tools independent from the tools the 
original provider used for verification and validation. 

The test case candidates already provide a considerable 
amount of the coverage required, and thus may form a good 
basis for an actual unit test suite. Complete coverage is still 
difficult to achieve with random or lattice-based testing, even 
if heuristics such as using constants found in the source code 
are applied. 

If complete structural coverage is achievable at all – 
generally meaning that no dead-code is present inside the 
system under test – it could be achieved automatically using 
constraint-based test data generation approaches[15][16][17]. 
Such an approach is currently in development at BSSE and 
will be integrated with the already available tools for 
automatic testing. Due to the high computational effort 
associated with constraint-based approaches priority will be 
given to random and lattice-based testing, as these have 
higher stimulus throughput and thus can also provide the 
oversampling that is considered one of the advantages of the 
approach. Only for those parts that cannot be covered by 
random or lattice-based testing, constraint-based test data 
generation will be applied.  
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