	BSSE System and Softw	ware Enginee
NV	FAST	
	Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies	
	Data Systems in Aerospace DASIA 2013	
	May 16th, 2013, Porto, Portugal	

ESA Contract No. 4000102645

BSSE Team:Rainer Gerlich, Ralf Gerlich, Thomas BollDNV Team:Bengt Solheimdal Johansen, Kenneth KvinneslandESA Technical Officer:Marek Prochazka

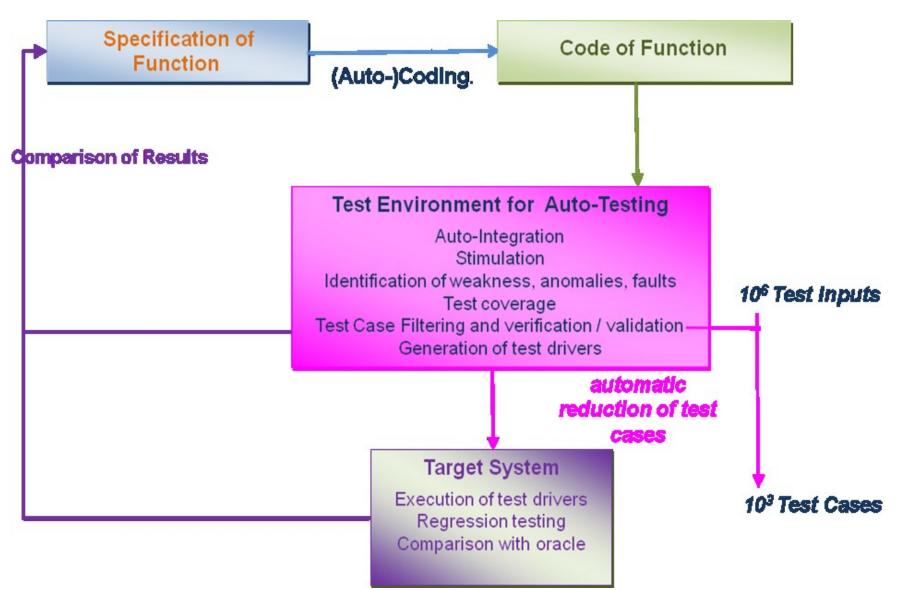
Dr. Rainer Gerlich BSSE Rainer.Gerlich@bsse.biz Ralf.Gerlich@bsse.biz ESA/ESTEC Marek.Prochazka@esa.int Det Norske Veritas AS (DNV) Kenneth.Kvinnesland@dnv.com Bengt.Solheimdal.Johansen@dnv.com

The FAST Process

Fully / Flow-optimised Automated, Source-code-based Testing

Verification Challenges and Findings

Conclusions



The FAST Process

The FAST Test Process Principal Flow

BSSE System and Software Engineering					
Boold official and contrare Engineering					

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies, Final Presentation, ESA Contract No. 4000102645

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies, Final Presentation, ESA Contract No. 4000102645

The Application Software

BCCE Custom and Coffman Engineering					
BSSE System and Software Engineering					

Earth Observation Satellite

assumed not to contain any further critical defects tested according to ECSS E-40 and Q-80, version B and ISVV Guide

Characteristics

Set 1: mission-critical (subset)

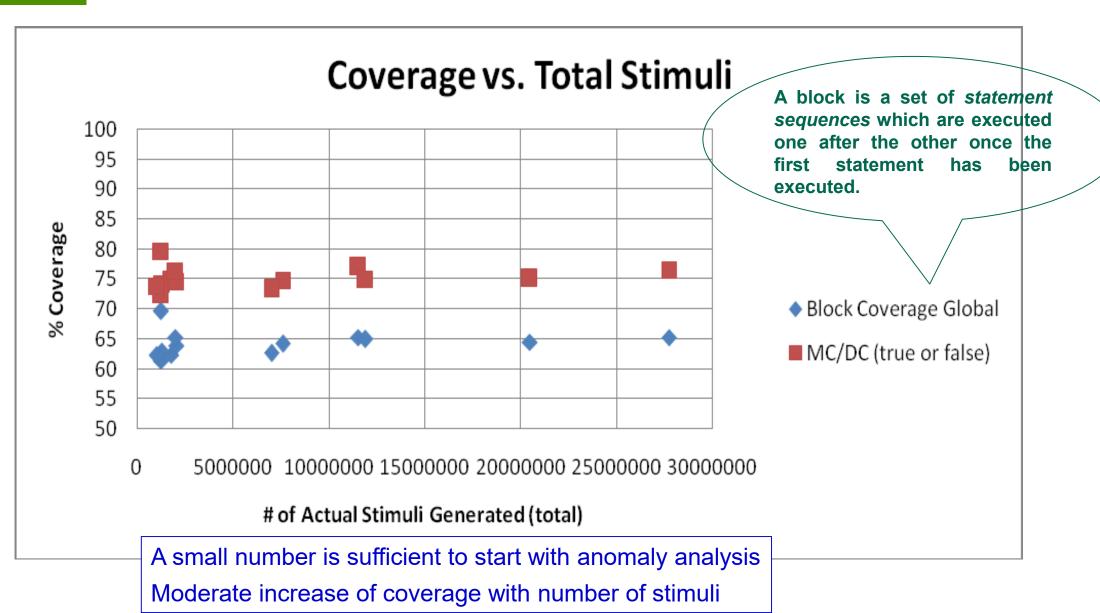
anomalous behaviour would cause or contribute to a failure of the satellite system resulting in permanent and/or non-recoverable loss of the satellite's capability to perform its planned mission

- ✤ >1500 functions
- * 65 KLOC
- ✤ Set 2: full set
 - ✤ >3000 functions,
 - * 165 KLOC

Verification Challenges and Findings

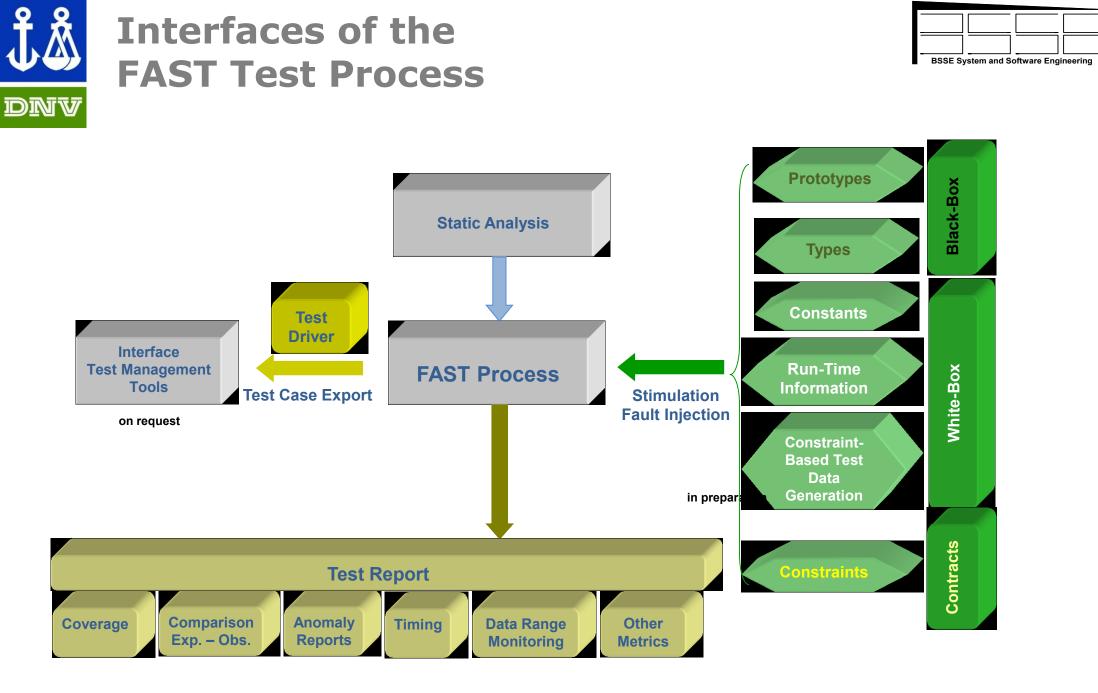
Category	Description	#Findings	Status	
Ι	Findings directly related to observat analysis required	2	update requested	
	analysis required		12	
II	Findings identified during analysis o	of a reported anomaly	11	non-critical,
111	Findings identified due to use of different utilities (diversification) /	DCRTT support utilities	16	either in the current version
	no analysis required	Compiler/Linker	11	or in general
IV	Findings identified by comparison o observed values	(n/a)		
Total			52	

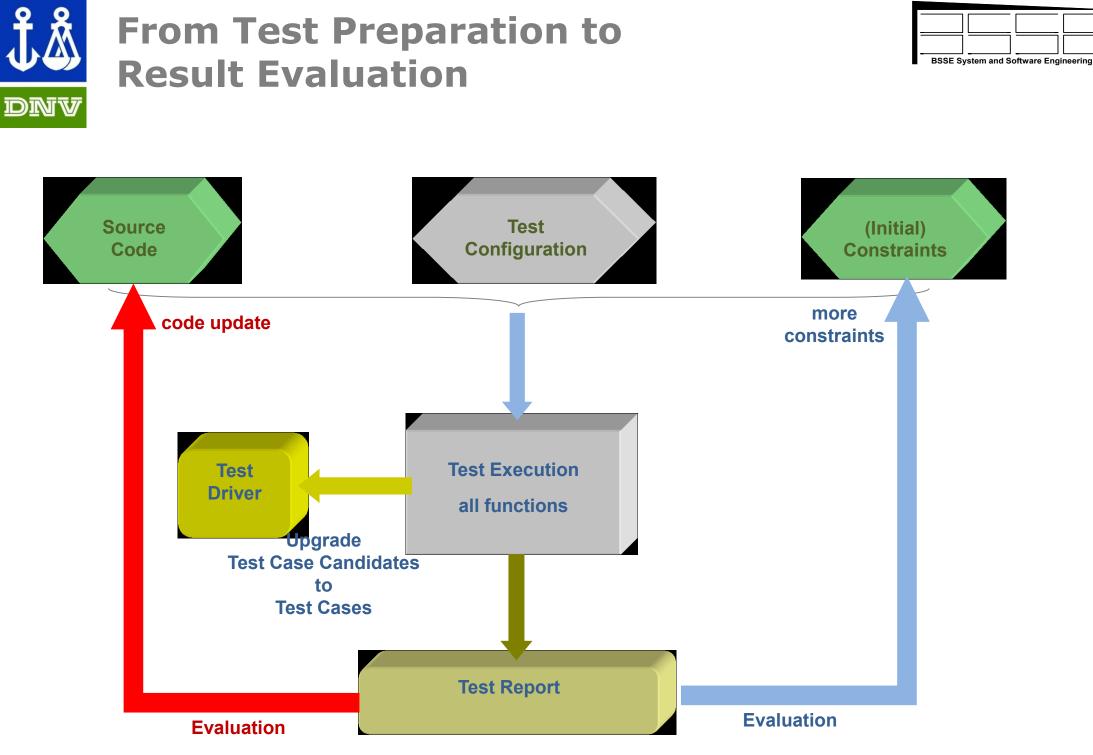
Finding Examples


DINV

#define QUEUE_SIZE	10 1024
#define BUFFER_SIZE	1024
<pre>typedef struct TyQueue { unsigned int start; unsigned int len; } TyQueue;</pre>	
unsigned int head=0;	
unsigned int tail=0;	
unsigned int next=0;	
bool full=FALSE;	
TyQueue queue[QUEUE]	;
char *buffer[BUF]	<pre>FER_SIZE];</pre>
<pre>void storeQueue(char *bu: if (head != tail full</pre>	
next = queue[hea	
queue[head	1-1].len;
if ((next + len) < BUF	FER SIZE) {
queue[head].start=nex	<t;< td=""></t;<>
queue[head].len =ler	ı;
<pre>memcpy(buffer+next,bu</pre>	uff,len);
head++;	
if (head >= QUEUE_SI2	ZE)
head=0;	
if (head == tail)	
<pre>full=TRUE;</pre>	
}	
}	

Coverage Stimuli Dependency





[©] Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies, Final Presentation, ESA Contract No. 4000102645

Tool Interfaces

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies, Final Presentation, ESA Contract No. 4000102645

Conclusions

L1

Since the theoretical number of input combinations may be very large, the tool may not select the particular input combination necessary to exercise specific parts.

L2

Coverage of requirements is not considered in test data generation

Additional test cases typically need to be added manually

L3

Unknown "Design by Contract" may lead to false positives

Have to be manually removed by introduction of (few) constraints

L4

✤ Tool not yet qualified

* Interface to qualified test management tools would remove this limitation

Advantages

- **A1**
- Automatically generated unit test suite providing high structural coverage
- Amount of coverage depends on code structure
- **A2**
 - * Large amount of stimuli exposes S/W to inputs normally not considered
 - * Reduced impact of engineer's bias, additional validation element
- **A3**
 - Assumed to increase path coverage over usual coverage requirements
 - Measurement of basis path coverage in tool available
- **A4**
 - Multiple levels of software are tested together instead of test in isolation
 - No classical integration test, but useful in finding problems
 - **A5**
 - Can reveal complex programming style problems
 - Can find defects that cannot be found by rule-based static analysers

[©] Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies, Final Presentation, ESA Contract No. 4000102645


Use in the Software Suppliers Test Process

- Apply static analysis tool to remove as many poor coding practices as possible
- Apply DCRTT tool
- Investigate issues reported by DCRTT as potential errors
- Review auto-generated test suite using objectives from e.g. ECSS E-40 or DO178 regarding:
 - requirement coverage,
 - * additional robustness issues.
 - This should give you the structural coverage, as well.
 - Add test cases manually based on the output from the review /

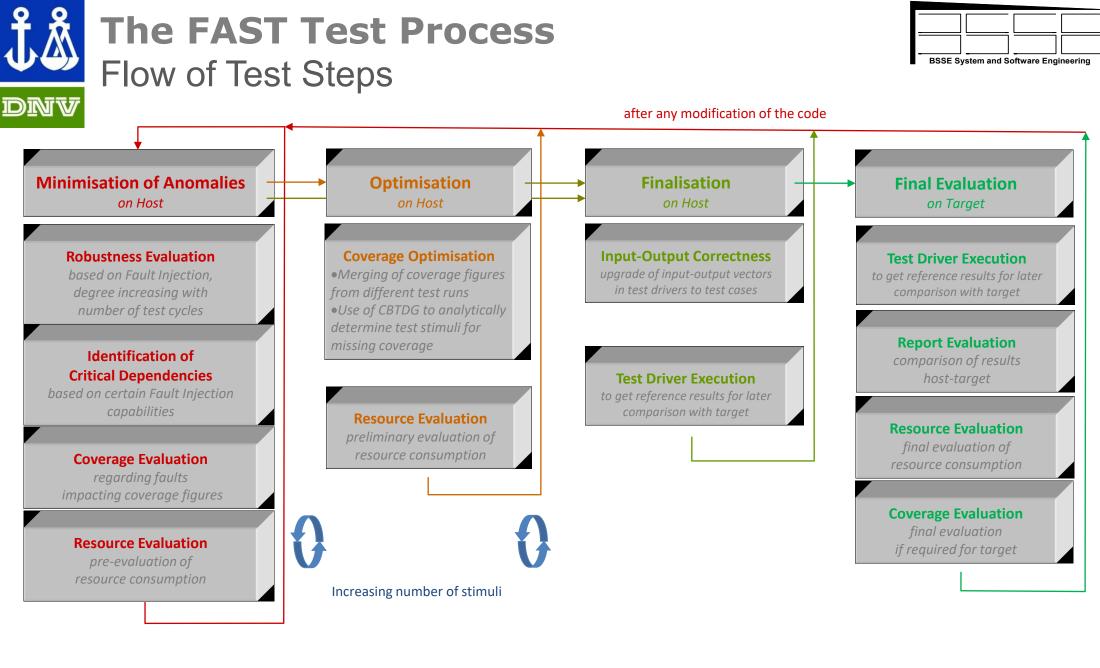
Acknowledgement

The FAST team would like to thank

- the ESA project which provided sources of its flight software,
- SciSys for providing QERx,
- EADS Astrium for providing the RTEMS Product,
- the German and Norwegian national space agencies for funding the activity.

Thank you for your attention!

Questions?


DINV

Finding Examples

file1.h

typedef struct TyCmdDescr{ unsigned int cmd; unsigned int minLen; unsigned int maxLen; } TyCmdDescr; TyCmdDescr cmdDescr[]; file1.c #include "file1.h" #include ``file2.h" TyCmdDescr cmdDescr[]={{cmd1,3,10}, ... }; void recvCmd(char *cmdData, unsigned int offset, unsigned int entry) { unsigned int len; memcpy(&len,cmdData+offset,Sizeof(unsigned int)); if (len >= cmdDescr[entry].minLen) execCmd(cmdData,offset) check on length file2.h void execCmd(char *cmdData, unsigned int offset) implicit dependency file2.c #include "file2.h" between two different. independent entities char buffer[10000]; void execCmd(char *cmdData, unsigned int offset) { unsigned int len; memcpy(&len,cmdData+offset,sizeof(unsigned int)); memcpy(buffer,cmdData+offset+ sizeof(unsigned int),len-3); 4 GB corruption!

Iterations over FI modes and modifications of the code Iterations to improve coverage and resource consumption requiring modifications of the code Iterations to achieve compliance between specification and implementation requiring modifications of the code

Iterations to achieve compliance between specification and implementation requiring modifications of the code

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies, Final Presentation, ESA Contract No. 4000102645

The Project and the Application Software

DINV

Objective 1

Perform an assessment of the fully automated, source-code-based testing (FAST) by applying it on realistic spacecraft flight software.

Objective 2

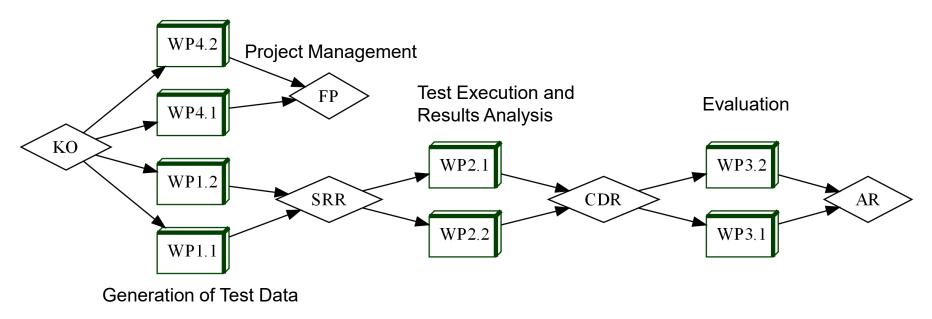
Evaluate applicability and scalability of the approach in the space domain, with focus on efficiency and effectiveness in spacecraft flight software as a whole or some of its subsystems.

Objective 3

Evaluate source-code-based testing for fault identification sensitivity, testing coverage, cost efficiency, and usability both in nominal validation and Independent Software Verification and Validation (ISVV).

Objective 4

Prepare and disseminate a set of guidelines and recommendations for the automated source-code-based testing process, and put it in the context of the ESA software development process.

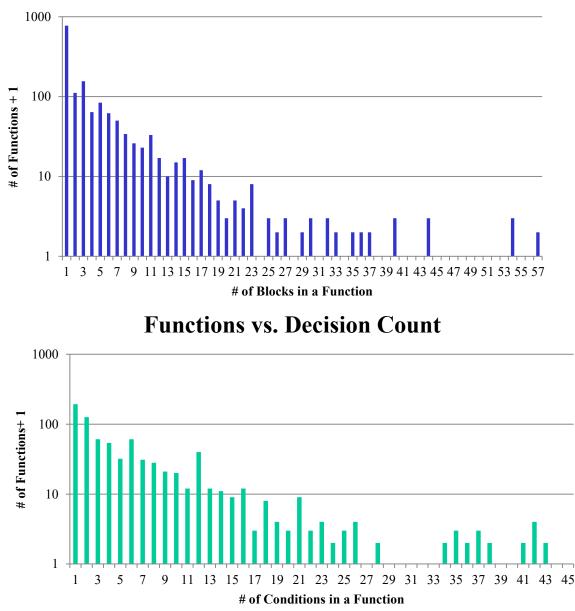


Project Organisation

BSSE Sy	stem and So	oftware Engi	neering

Team

- BSSE, prime
 - experience with the FAST process
 - o demonstration of capabilities of BSSE tool "DCRTT",
- DNV
 - experience in testing and verification
 - \circ experience in ISVV



Histograms on Blocks and Conditions

		<u> </u>	
BSSE Sy	stem and So	oftware Engi	neering

Functions vs. Block Count

DIVI

[©] Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies, Final Presentation, ESA Contract No. 4000102645

Verification Issues

Verification Issue	Done	Comment
Robustness	\checkmark	Injection of invalid inputs, modification of return values, stimulation of const-elements, overriding of initialisers
Resource Consumption		Figures were recorded, but not evaluated
Critical Dependencies	\checkmark	
Internal Interfaces	\checkmark	Injection of invalid inputs, modification of return values, stimulation of const-elements, overriding of initialisers
Code – Data Interfaces	\checkmark	Injection of invalid inputs, modification of return values, stimulation of const-elements, overriding of initialisers
Platform Dependencies	\checkmark	Different gcc-compiler versions
Reachability of Code	\checkmark	Deadcode in context of anomaly analysis
reachability of Code		Coverage figures
Input – Output Correctness		No references available

Finding Examples (1 of 4)

BSSE System and Software Engineering				

memcpy(dest,src,para-3);

for (i=0;i<limit;i+=para)</pre>

What if para < 3 ?

Nothing copied at all ?

Nearly 4 GB copied !

High fault potential, if activated !

Check if relevant

What if para == 0 ?

Endless loop !

High fault potential, if activated !

Check whether of relevance !

file1.c

#define MYLIT 999

file2.c

typedef enum{ myLit=999} TyLit;

What if value is changed ?

Maintenance !

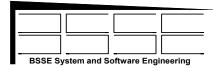
Inconsistency !

Dependency known?

Which part needs to be re-tested ?

Finding Examples (3 of 4)

DINT


int myCopyFunc(const int * const src, const int * const dest, unsigned int len); library function: body is hidden int myCopyFunc(const int * const src, const int * const dest, unsigned int len) { /* something else */ memcpy(dest,src,len); /* something else */ return <value>; } Not issued:passing arg 1 of `memcpy' discards qualifiers from pointer target type Found by analysis of an anomaly

```
common.h
typedef enum { ... } TyEnum1;
typedef enum { ... } TyEnum2;
prototypes.h:
#include "common.h"
extern void func1(TyEnum1 paral);
extern void func2(TyEnum2 paral);
bodies.c:
#include "common.h"
#include "prototypes.h"
void func1(TyEnum1 paral) { ... }
gcc 3.2.3: no message issued
gcc 3.4.5: message issued
Found by platform diversification / porting
```

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies, Final Presentation, ESA Contract No. 4000102645

False Alarms Issues

What is a false alarm?

- violation of a rule without having fault impact?
- Identification of fault potential without having fault impact in the current version?
- request for confirmation of fulfilment of a pre- or post-condition?

How are alarms raised in case of FAST / DCRTT?

- Solution states to by analysis of required conditions for building an executable
- Solution States Stat
- symissing coverage identified at post-run-time
- Solution by code analysis in context of an observed anomaly

Required: clear rules for assessment

- How to deal with "design-by-contract"?
- What are the demands on robustness?

Constraints and Initialisation

BSSE System and Se	oftware Engi	neering

int myFunc(int ind, int len,	char *buffer);					
PARA const 7 =< elem len =< size buffer ; const 5 =< elem ind < elem len ;						
Constraint Set Atomic Constraint Atomic Constraint						
<pre>STRUCT TyMyStruct const 7 =< elem len <= size buffer; const 5 =< elem ind < elem len ; typedef struct TyMyStruct {</pre>						
<pre>int ind; int len; char *buffer;</pre>	Constrain Sets	t Atomic Constraints	Instances	Reduction		
<pre>} TyMyStruct; int myFunc(TyMyStruct paral)</pre>	2	8 52	1328	25.5		

Initialisation Patterns

cond	case	filesToLook	funcsToLook	void return	void paraLis		funcsToTest
u	С	file1.c	funclinitialise	*	void	error_manager	.c *
u	С	file2.c	func2_initialise	*	void	start_up.c	*
С	n	*.C	*init*	*	void	*.C	*

Anomaly Identification

BSSE System and Software Engineering						

Anom. Type	Checkpt. Type	Critical Function	Id Critical Function	Block Id	Cond. Id	Test Id FUT Id	#Events
Ехср	Cond	Func1	428	13	1	428	1
Ехср	Block	Func2	464	1	none reached	464	51
	o Block Func3 605 0 none reached		607	26			
Ехср		Func3	605	0		608	26
						609	26
						610	26
						611	26
						612	26

6 anomalies reported,

but all have the same source 605

Anomaly Identification / Extended – Index Monitoring

Anom. Type	Critical Function	Index Id	Dim. Index	Min/Max Observed	Index Expr.	Test Id FUT Id	#Event s
OutOfRange Low	Func1	2523	0	min=-1<0	idx1	232	2284
						236	2284
OutOfRange Low	Func2	2524	0	min=-1<0	idx2-1	232	2284
OutOfRange High	Func3	2844	2	0	idx3	281	2339
			2 anomalies reported each for			275	2339
			functions with test id 232 and 281				

Expr	Туре	Violation	Function	File
idx1	low	min = -1 < 0	funcl	file1.c
idx2-1	low	min = -1 < 0	func1	file1.c
idx3	high	max=965 > 27	func2	file2.c
				Z


Compressed information: List on Criticial Indices

Test Runs

Host and target platform

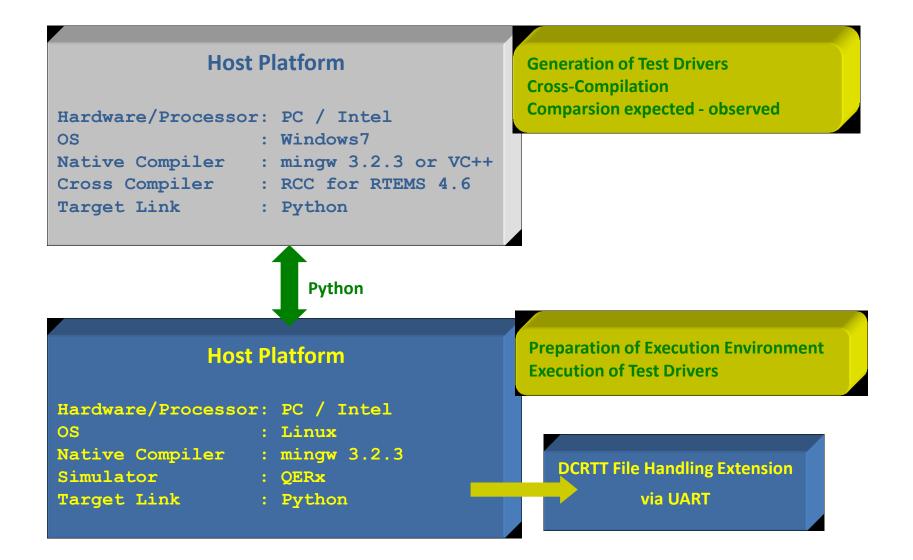
FAST: most activities on host, test drivers / regression tests on target

Sensitivity Analysis for the Process

stimuli per function: 50, 300, 3000, 10000

resulting in a total number of stimuli for all functions

- 1..27 millions
- stimulation of parameters


function parameters, optional global data directly accessed by a function

♦ fault injection

- > invalid stimuli (input), NULL pointer
- invalid return (modification of return), NULL pointer
- > assign to const-elements
- blanking (0's) of initialised data
- **Complementing the application software**
- ✤ generation of stubs for missing function bodies

Performance / Build

Step	Duration / s	Comment				
Preparation phase	~4000	It covers all analysis activities	for all 84 files and 1530 functions under test			
	150	performed before the first test of a FUT is started	for two files under test, 21 functions			
Test Build Phase	a few seconds	Generation of all files required to run a test for a FUT				
Test of a FUT	45	50 stimuli, one function, including execution of the test drivers on	50 stimuli			
	980	host and target and generation of part of inputs for documentation, of course, this figure depends on a FUT	1 Mio. stimuli			
		stimulation, identification of test	1.1 Mio. stimuli, 2 files, 21 functions			
Complete test run	1900	drivers, test driver execution on host and target, test report generation	one of the 21 FUTs took 980 seconds (1 Mio. Stimuli), i.e. 50% of the overall time			
	170		200 stimuli, 1 file, 1 function			

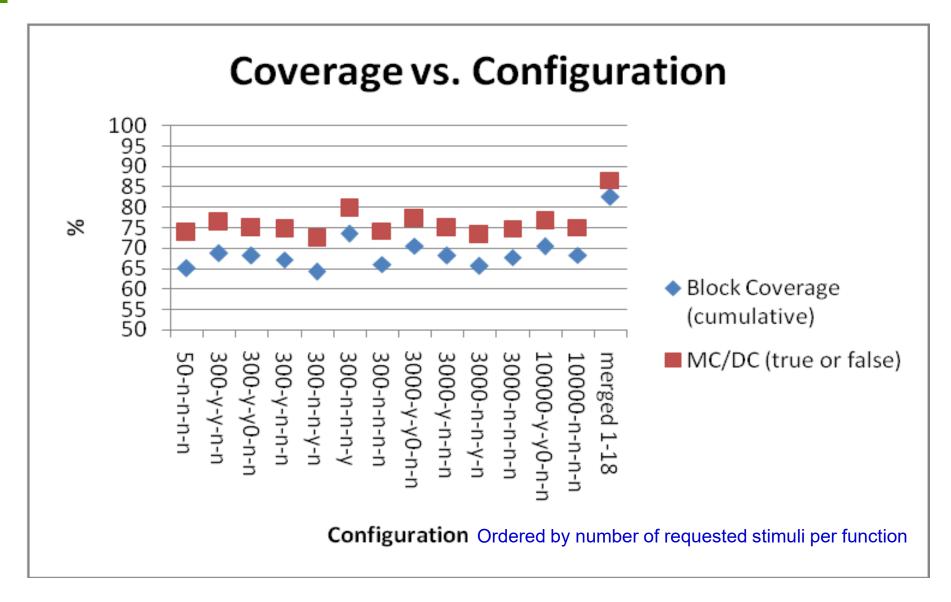
© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies, Final Presentation, ESA Contract No. 4000102645

Performance / Evaluation

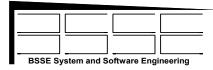
BSSE System and S	oftware Engineering

Step	Duration / s	Comment
Test Driver Generation	~10 - 60	Time to generate a test driver derived from the total test duration (col. 1 in Tab. 5-6) and the number of suggested TC (col. 5). The time to create the source code is significantly smaller and is in the range of a few seconds only.
Generation of png- files	~1860	8163 png-files for documentation (in preview and full size, 16326 in total) to document structural coverage of 1530 functions (per function and every filtered TC, i.e. differential structural coverage for every test driver)
Tast report	~5400	~1½ hour for all supported evaluation facilities, 84 files and 1530 functions under test
Test report	130	2 files, 21 functions

Performance (1530 Functions)


#Injected Stimuli per FUT	# Injected Stimuli in total	Duration / h	Comment
700	1 Mio.	17	
1200	1.8 Mio	26	
5000	7.6 Mio	41	without target execution
13500	20.5 Mio	88	
18000	27.8 Mio	129	
700	1 Mio.	32	with target execution index checking and basic path coverage

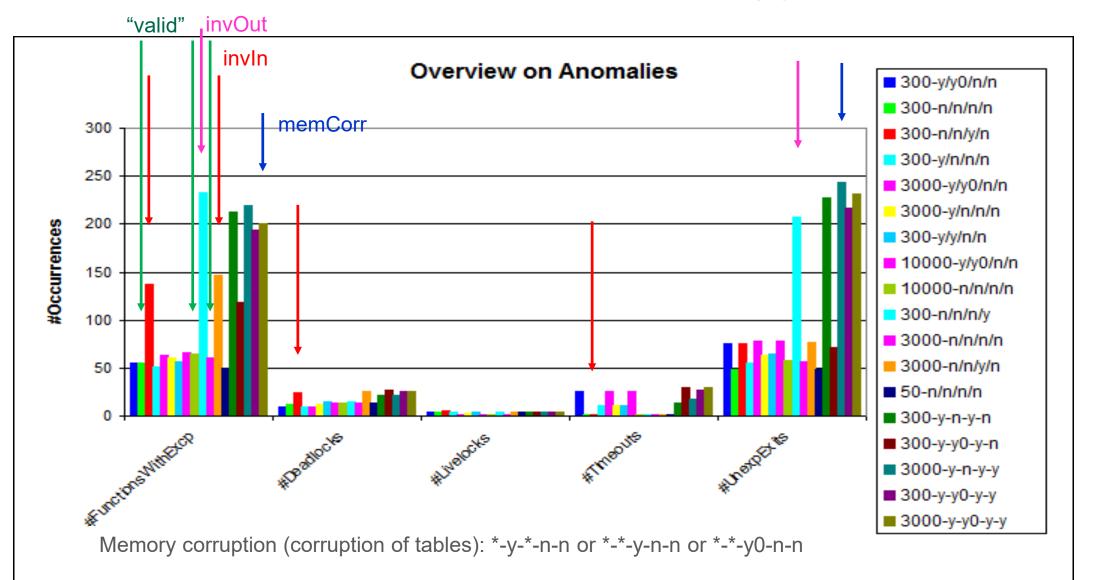
Host:	Target:
i5-2400@3.1GHz	Pentium4@3GHz
4 GB RAM	3 GB RAM
Windows7	Linux 2.6


Coverage Configuration Dependency

Coverage, Summary

		Сол				
Coverage Type	merged merged m		merged	best of	best of	Comment
	1 – 13	1-18	14-18	1 – 13	14 – 18	
Block	80.4	82.6	79.4	73.5	77.2	
MC/DC						
true OR false	84.8	86.6	84.7	79.7	82.6	At least one of the boolean values occurred
true AND false	67.8	70.4	62.4	not available	not available	Both boolean values occurred
Configuration				300-n-n- n-y	3000-у- у0-у-у	

Runs 1 – 13 : no combination of fault injection modes "invalid stimuli" and "modified return"


Runs 14 – 18: combination of "invalid stimuli" and "modified return" at varying number of stimuli

Robustness Sensitivity on Invalid Values

This figure shows that invalid input (*-n-n-y-n) and invalid output (*-n-n-y) may cause problems. Therefore confirmation is required that such values will not occur during system operations

Types of comparison

- ✤ general statistics on host and target execution
- comparison of output vectors observed expected on host <u>and</u> target expected values should be the confirmed reference vectors confirmation not a matter in the project
- comparison of changes of parameters before and after test on host <u>and</u> target depending on parameter mode IN, OUT, INOUT, RETURN
- comparison of results host vs. target

How are comparisons performed?

- comparisons are done automatically
- ✤ built-in code as part of the generated test environment, for every user-defined type
- ✤ results are printed to a log-file
- * evaluation of the log-file contents for the test report
- A diversification of evaluation algorithms to support correctness checks

Host – Target Execution Global Figures

Subject	Native	Host	Target								
#Tests started	1530	1511	1488								
#Tests completed	1529	1504	1186								
#Tests not launched on target	n/a	n/a	1								
#Tests killed on target due to timeout	n/a	n/a	59								
#TC generated	4014	n/a	n/a								
#TC executed	n/a	3972	3341								
not all test drivers could be cor	not all test drivers could be compiled and linked due to anomalies not all test drivers could be compiled and linked for target not all test drivers could be compiled and linked for target										

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies, Final Presentation, ESA Contract No. 4000102645

Host – Target Comparison Input – Output, summary

Plat	#Test		#Pa	nrameters			#Fully Identical Parameters					
form	Drvs.	Total	IN	OUT	INOUT	RET	Total	IN	OUT	INOUT	RET	
Host	3972	8336	5815	0	1627	894	6491	5813 99.97%	0	581 35.71%	97 10.85%	
Target	3341	6845	4645	0	1482	718	5623	4644 99.98%	0	637 42.98%	342 47.63%	

DNV

Host – Target Comparison Input – Output, detailed

BSSE SV	stem and Se	oftware Engi	neerina

							#TC					
File	Function	Test ID	Parameter Name	Parame ter Type	#Eleme nts	#TC total	#Identical		#Partly different		#Different	
							Н	Т	Η	Т	Н	Т
\appl_main.c	Func1	0	Para1	IN	1	1	1	1	0	-	0	-
\file1.c	Func2	1	Para2	IN	61	2	2	2	0	0	0	0
	Funcz		Para3	INOUT	1	2	0	0	0	0	2	2
	Funo?	2	Para4	IN	61	6	6	6	0	0	0	0
\file1.c	Func3	2	Para5	INOUT	1	6	0	0	0	0	6	6
	Func4	3	Para6	INOUT	39	4	0	0	4	4	0	0
\file1.c			Para7	INOUT	9		0	0	0	0	4	4
\file1.c	Func5	4	Para8	INOUT	51	1	0	0	1	1	0	0
\file1.c	Func6	5	Para9	INOUT	161	1	0	0	0	0	1	1
\file1.c	Func7	6	Para10	INOUT	61	1	0	0	0	0	1	1
\file1.c	Func8	7	Para11	INOUT	1	1	0	0	0	0	1	1
\file1.c	Func9	8	Para12	IN	1	4	4	4	0	0	0	0
\file1.c	Func10	9	Para13	INOUT	1	1	0	0	0	0	1	1
	Funct1	10	Para14	INOUT	36		0	0	0	0	1	1
\file1.c	Func11		Para15	INOUT	1	1	0	0	0	0	1	1

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies, Final Presentation, ESA Contract No. 4000102645

Host – Target Comparison Expected – Observed, summary

		-	
BSSE Sv	stem and Se	oftware Engi	neering

		Parameter Mode									
Result	Plat form	IN		OUT		INOUT		RET	URN	Total	
Туре		#	%	#	%	#	%	#	%	#	%
identical	host	2855751	37.09	0	0.00	1664818	21.62	3173639	41.22	7694208	99.93
Identical		145033	44.14	0	0.00	167814	51.07	12635	3.85	325482	99.05
different	host	16	0.00	0	0.00	2051	0.03	3565	0.05	5632	0.07
ullerent	target	135	0.04	0	0.00	INOUT RETURN $Tottell \# \% \# $	0.95				
total	host	2855767	37.09	0	0.00	1666869	21.65	3177204	41.26	7699840	100.00
iolai	target	145168	44.18	0	0.00	170569	51.91	12856	3.91	# 22 7694208 1 35 325482 1 05 5632 1 07 3111 1 26 7699840 1	100.00

host.lgExecDCRTT18:175: check double DCRTT -0.000000!=0.000000

diff=1.04569253121074490000e-309