
AutomatedAutomated SourceSource--coco
ObjectObject--OrieOrie

R. Gerlich1, R. Ge

Data Systems in Aer

June 3rd, 2014,

© Dr. Rainer Gerlich BSSE System an

1Dr. Rainer Gerlich System and Software Engineering BSSE
Immenstaad, Germany
E-Mail: Rainer.Gerlich@bsse.biz

Ralf.Gerlich@bsse.biz

BSSE System and Software Engineering

odeode--basedbased TestingTesting ofof
ntednted SoftwareSoftware

erlich1, C. Dietrich2

rospace DASIA 2014

Warsaw, Poland

nd Software Engineering, 2014 1

2Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)
Bonn, Germany
E-Mail: Carsten.Dietrich@dlr.de

Contents

! Introduction to the FAST
Fully / Flow-optimised Automate

! Advantages/Disadvanta
! Challenges for automate
! Consequences and Solu

© Dr. Rainer Gerlich BSSE System an

! Conclusions

BSSE System and Software Engineering

T Process
ed, Source-code-based Testing

ges of C++ in OBSW
ed test of OO-Software
utions

nd Software Engineering, 2014 2

The FAST Test Process
Principal Flow

© Dr. Rainer Gerlich BSSE System an

BSSE System and Software Engineering

s

Thousands of functions

nd Software Engineering, 2014 3

per software package

2 .. 10 per function

Advantages of the FAST

! Massive stimulation at lo
! Automatic Robustness T
! Increased probability of
! Post-Factum filtering of

instead of Pre-Factum g
! Critical Defects found af

© Dr. Rainer Gerlich BSSE System an

! Testing may start even if
⇒ missing functions are

as active stubs

BSSE System and Software EngineeringT Process

ow effort/cost
Testing
finding sporadic defects
test-case-candidates

guessing
fter finalisation of ISVV!

nd Software Engineering, 2014 4

e derived from prototypes
f system is incomplete
e derived from prototypes

Advantages of the FAST

! Analysis yields
" most faults found with

test process are a ma
stimulation

" if the number of autom
range of manually ge

© Dr. Rainer Gerlich BSSE System an

range of manually ge
⇒no significant differ
(as reported in literat

BSSE System and Software EngineeringT Process

h FAST after standard
atter of massive

mated stimuli is in the
enerated

nd Software Engineering, 2014 5

enerated
rence in faults detected
ture)

C++ in On-Board Softw

! Enforcement of Data Co
! Stricter type system than

Ada)
! Templates/Template Lib
! Implicit Initialisation of V

P di l l t h

© Dr. Rainer Gerlich BSSE System an

! Paradigm largely matche

BSSE System and Software Engineeringware: Pros

onsistency/Fault Isolation
n C (but nowhere near

raries
Variables (sometimes...)

UML

nd Software Engineering, 2014 6

es UML

C++ in On-Board Softw

! Class Model instead of C
! Template Matching comp g

complete!)
! Overloading of syntactic

readability
! Implicit behaviour (copy

constructors) may impac

© Dr. Rainer Gerlich BSSE System an

constructors) may impac
! Many language element

each other (e.g. type de
STL elements, ...)

BSSE System and Software Engineeringware: Cons

Component Model
mplicated (Turing-p (g

c elements impacts

y operators, default
ct comprehensibility

nd Software Engineering, 2014 7

ct comprehensibility
ts are inconsistent with

eduction, behaviour of

Basic OO Concepts

! Inheritance/Subtype Pol! Inheritance/Subtype Pol
! Encapsulation/�Data Hid
! Dynamic Dispatch
! Abstraction

© Dr. Rainer Gerlich BSSE System an

BSSE System and Software Engineering

ymorphismymorphism
ding�

nd Software Engineering, 2014 8

The Challenge

Generate stimuli c
profile, but properly

robustnessrobustness

�without any forma
the program

! Heur

© Dr. Rainer Gerlich BSSE System an

Still need to find mo
programmin

BSSE System and Software Engineering

lose to operational
y balance that with
s testings testing...

al information about
mers� intent!

istics!

nd Software Engineering, 2014 9

ore of these for OO
g languages

Challenges for Automa
Generation in Context o

! Encapsulation/�Data Hid
! Subtype Polymorphism
! Dynamic Dispatch
! Testing Templates
! Stubbing of Constructors

© Dr. Rainer Gerlich BSSE System an

! Use of Design Patterns
! Generation of Regressio
! Inaccessible Types and

BSSE System and Software Engineering

ted Test Data
of O-O

ding�

s

nd Software Engineering, 2014 10

on Test Suites
Methods

Challenge: Subtype
Polymorphism

class A {};

int foo(A* b); F

Substitution
Any subcla
applicable

!Consider all s

© Dr. Rainer Gerlich BSSE System an

Subclasses may be
compilati

BSSE System and Software Engineering

Foo expects pointer to A

n principle:
ass of A is
e as well.

subclasses of A.

nd Software Engineering, 2014 11

e declared in other
ion units!

Challenge: Dynamic Dis

class A {
public:

virtual void foo();
void bar() {

Library:

void bar() {
…
foo();
…

}
};

© Dr. Rainer Gerlich BSSE System an

No way to test libr
We can only test

BSSE System and Software Engineeringspatch

class B: public A {
public:

void foo() {
}

Application:

Overriding foo() also
changes behaviour of

bar().

}
};

nd Software Engineering, 2014 12

raries in isolation!
full applications!

Challenge: Use of Desig
Patterns

class Singleton {
private:

Singleton() { … }
publi :public:

static Singleton* getInstance() {
if (!instance) {

instance = new Singleton();
}
return instance;

}
private:

static Singleton* instance;
};

© Dr. Rainer Gerlich BSSE System an

How should the

→Heuristics,

BSSE System and Software Engineering

gn

Only constructor is
hidden.

Get instance by calling
getInstance()

nd Software Engineering, 2014 13

test tool know?

 Annotations

FAST
From Safety to Security

! so far: focus put on safety
! increasing interest in secur
! security may even be of higy y g

software
! safety vs. security:

" safety assumes benevo
Design-by-contract

" security assumes malev

© Dr. Rainer Gerlich BSSE System an

y
attackers do not respec

" →�fuzzing�
" FAST exactly addresse

BSSE System and Software Engineering

y

/ embedded systems
rity, also in space area
gher interest for C++ g

olent environment

volent environment

nd Software Engineering, 2014 14

ct contracts

s this point

Status so far

! Parsing and instrumenti
" not for the faint of hea" not for the faint of hea

! Generating test data usi
assignment to public da

! Handling and recording
! Provision of stubs for m

© Dr. Rainer Gerlich BSSE System an

! On-going tests with softw
ISS

BSSE System and Software Engineering

ng C++
art!art!
ing constructors and
ta members
C++ exceptions
issing functions / methods

nd Software Engineering, 2014 15

g
ware intended for use on

Application software

! Criticality Level C, OS Li
! Uses templates from ST

O n templates! Own templates
! 302 hpp-files, 229 cpp-fi
! 53.200 physical lines of
! 22.600 LOC
! 643 public methods

© Dr. Rainer Gerlich BSSE System an

! 643 public methods
! 279 classes
! 364 class instantiations
! parsed, instrumented, ex

BSSE System and Software Engineering

inux
TL, Boost, LOKI

les
code

nd Software Engineering, 2014 16

xecuted

FAST and C++

! Near-term
" Gaining advantages by m
" Fault detection driven by

! Mid-term
" Better handling of inform

N ti t f t l

© Dr. Rainer Gerlich BSSE System an

" Native support for templ

! Long-term
" Generation of regression

BSSE System and Software Engineering

massive stimulation
y assuming remaining faults

mation hiding
t

nd Software Engineering, 2014 17

ates

n test suites

Findings so far

! Random test data more
t t th lstate space than regular

! Internal enforcement of
constructors, methods) r
external definition of con

! Constraints for sequenc

© Dr. Rainer Gerlich BSSE System an

q
required (e.g. protocol s

BSSE System and Software Engineering

suited for covering the
l d d t i trly spaced data points
consistency (by
reduces need for
nstraints
es of method invocations

nd Software Engineering, 2014 18

tate machines)

Conclusions

! C++ S/W may be easier
enforcement of consiste
OO F t (d! OO Features (e.g. dyna
increase effort for manu

! Only very limited pre-tes
! Increased effectiveness
! !suggests automatic te

© Dr. Rainer Gerlich BSSE System an

gg
! More research required
! Annotations may come f

(→code generation)

BSSE System and Software Engineering

r to verify (e.g. due to
ency)

i di t h) h ilmic dispatch) heavily
al testing
sting of libraries possible
 with massive stimulation

est approach

nd Software Engineering, 2014 19

pp
for better heuristics
from software models

ACKNOWLE

This activity was
DLR Space

(Deutsches Zentrum fue

Thank you for y

(
on beh

BMWi (German Federal Minist
Reference Numb

© Dr. Rainer Gerlich BSSE System an

Thank you for y

Quest

BSSE System and Software Engineering

EDGMENT

s supported by
e Agency

er Luft- und Raumfahrt)

your attention!

)
half of
ry of Economics and Energy)
ber 50 RA 1120

nd Software Engineering, 2014 20

your attention!

ions?

Back

© Dr. Rainer Gerlich BSSE System an

BSSE System and Software Engineering

kup

nd Software Engineering, 2014 21

Inheritance

class A {
public:

A(int aVal):val(aVal) {}
int getVal() onst { return val; }int getVal() const { return val; }

protected:
int val;

};

class B: public A {
public:

B(int aVal): A(aVal) {}
int getValTimesTwo() const { return 2*va

}

© Dr. Rainer Gerlich BSSE System an

int foo() {
B obj = B(10);
return obj.getVal();

}

BSSE System and Software Engineering

A has method getVal()

al; }

B is subtype of A.

and data member val.

B inherits getVal() and
val.

nd Software Engineering, 2014 22

Subtype Polymorphism

class A { … };
class B: public A { … };

int foo(A* obj) { };int foo(* obj) { … };

int bar() {
A* obj = new B;
return foo(obj);

}

Substitution Princi

© Dr. Rainer Gerlich BSSE System an

Substitution Princi
object of type T is e

of any subtype T o

BSSE System and Software Engineeringm

B is subtype of A.

iple: Whenever an

obj has type A*, but
may point to B.

foo expects A*, but B*
may also be used.

nd Software Engineering, 2014 23

iple: Whenever an
xpected, any object
of S can be used.

Encapsulation/“Data H

class
publi

A(
in

prote

Class A encapsulates
data and operations

prote
in

};

int f
re

}

int b
re

}

Access to data
controlled by well-

defined interface (here:
getter-function)

© Dr. Rainer Gerlich BSSE System an

}

class
publi

B(
in

}

Subclasses may access
protected members, but

not private members.

BSSE System and Software EngineeringHiding“

A {
c:
(int aVal):val(aVal) {}
nt getVal() const { return val; }
ted

A itself may access val.

cted:
nt val;

oo(A* obj) {
eturn obj->val; // error

ar(A* obj) {
eturn obj->getVal(); // OK

But foo may not. val is
hidden.

nd Software Engineering, 2014 24

B: public A {
c:
(int aVal): A(aVal) {}
nt getValTimesTwo() const { return 2*val; }

Dynamic Dispatch

class A {
public:

int getSomething();
virtual int al Something();virtual int calcSomething();

};

class B: public A {
public:

int getSomething();
virtual int calcSomething();

}

int foo(A* obj) {
return obj->getSomething()+

© Dr. Rainer Gerlich BSSE System an

j g g
obj->calcSomething();

}

int bar() {
A* obj = new B;
return foo(obj);

}

BSSE System and Software Engineering

B overrides
getSomething() and

calcSomething()

Always calls
A::getSomething()

calls implementation
depending on the actual
type of obj at runtime.

nd Software Engineering, 2014 25

Object passed to foo is
actually of type B,

although parameter has
type A*.

Abstraction

class A {
public:

virtual void doSomething() = 0;
};};

class B: public A {
public:

virtual void doSomething();
}

void foo(A* obj) {
return obj->doSomething();

}

© Dr. Rainer Gerlich BSSE System an

int bar() {
A* obj = new B;
return foo(obj);

}

BSSE System and Software Engineering

A declares
doSomething(), but
does not provide an

implementationimplementation.

B provides an
implementation.

*obj is of abstract type,
but may take value of

concrete type

nd Software Engineering, 2014 26

concrete type.

Object passed to foo is
actually of type B,

although parameter has
type A*.

Challenge: Regression
Suites

class A;
class B {
public:

B():val(0) {}
int getVal() const { return val; }
int calcVal(int x) {

val=x*x+2*x+5;
}
bool operator==(const B& other) const {

return (other.val % 7)==(val % 7);
}

private:
int val;

};
B* foo(A* obj);
enum verdict_t testFoo_123() {

A* input_obj = new A(…);
B* t f (i t bj)

© Dr. Rainer Gerlich BSSE System an

B* ret = foo(input_obj);
B* refValue = new B();
refValue->calcVal(???);
if (*refValue==*ret) {

return success;
} else {

return failed;
}

}
→Heuristics, Ann

BSSE System and Software Engineering

Test

Hrm�how do we get the
state we had in the

stimulation run?

We know how to do this�

Is this the right concept of

nd Software Engineering, 2014 27

Is this the right concept of
equivalence for this test?

notations, �Patching� code (autom.)

Challenge: „Data Hidin

class Stream {
public:

Stream():readPtr(0),writePtr(0) {}
void read(har* data unsigned int size)void read(char* data, unsigned int size)

if (readPtr+size>writePtr) {
/* error */

}
…
readPtr+=size;

}
void write(const char* data, unsigned in

…
writePtr+=size;

}
Ho
i

© Dr. Rainer Gerlich BSSE System an

}
protected:

char* buffer;
unsigned int readPtr;
unsigned int writePtr;

};

ins

Exe
after c

BSSE System and Software Engineeringg“

) {

Only default constructor
present, ininitialises

readPtr, writePtr to fixed
value

) {

nt size) {

We want to test read()

But read() requires
writePtr to be different

from 0

ow do we automatically construct
t f St t t t d()?

nd Software Engineering, 2014 28

stance of Stream to test read()?

ecute a sequence of method calls
construction (→Heuristics, Protocol

State Machines).

Construction Patterns

! Abstract Factory Pattern
! Factory Method Pattern
! Prototype Pattern
! Builder Pattern
! ...

© Dr. Rainer Gerlich BSSE System an

" !Extensive variability fo
increased complexity for

BSSE System and Software Engineering

n

nd Software Engineering, 2014 29

or the developer,
r the tool

