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The FAST Test Process
Principal Flow
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Thousands of functions
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Advantages of the FAST

! Massive stimulation at lo
! Automatic Robustness T
! Increased probability of 
! Post-Factum filtering of 

instead of Pre-Factum g
! Critical Defects found af
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! Testing may start even if
⇒ missing functions are

as active stubs
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Advantages of the FAST

! Analysis yields
" most faults found with

test process are a ma
stimulation

" if the number of autom
range of manually ge

© Dr. Rainer Gerlich BSSE System an

range of manually ge
⇒no significant differ
(as reported in literat

BSSE System and Software EngineeringT Process

h FAST after standard 
atter of massive 

mated stimuli is in the 
enerated

nd Software Engineering, 2014 5

enerated
rence in faults detected
ture) 



C++ in On-Board Softw

! Enforcement of Data Co
! Stricter type system than

Ada)
! Templates/Template Lib
! Implicit Initialisation of V

P di l l t h
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! Paradigm largely matche
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raries
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UML
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C++ in On-Board Softw

! Class Model instead of C
! Template Matching comp g

complete!)
! Overloading of syntactic

readability
! Implicit behaviour (copy

constructors) may impac

© Dr. Rainer Gerlich BSSE System an

constructors) may impac
! Many language element

each other (e.g. type de
STL elements, ...) 
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Component Model
mplicated (Turing-p ( g

c elements impacts 
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ct comprehensibility
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Basic OO Concepts

! Inheritance/Subtype Pol! Inheritance/Subtype Pol
! Encapsulation/�Data Hid
! Dynamic Dispatch
! Abstraction
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The Challenge

Generate stimuli c
profile, but properly

robustnessrobustness

�without any forma
the program

! Heur
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Still need to find mo
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Challenges for Automa
Generation in Context o

! Encapsulation/�Data Hid
! Subtype Polymorphism
! Dynamic Dispatch
! Testing Templates
! Stubbing of Constructors
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! Use of Design Patterns
! Generation of Regressio
! Inaccessible Types and 
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Challenge: Subtype
Polymorphism

class A {};

int foo(A* b); F

Substitution
Any subcla
applicable

!Consider all s
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Subclasses may be
compilati
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Foo expects pointer to A

n principle: 
ass of A is
e as well.

subclasses of A.
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Challenge: Dynamic Dis

class A {
public:

virtual void foo();
void bar() {

Library:

void bar() {
…
foo();
…

}
};
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No way to test libr
We can only test

BSSE System and Software Engineeringspatch

class B: public A {
public:

void foo() {
}

Application:

Overriding foo() also 
changes behaviour of

bar().

}
};
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raries in isolation!
full applications!



Challenge: Use of Desig
Patterns

class Singleton {
private:

Singleton() { … }
publi :public:

static Singleton* getInstance() {
if (!instance) {

instance = new Singleton();
}
return instance;

}
private:

static Singleton* instance;
};
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How should the

→Heuristics,
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gn 

Only constructor is
hidden.

Get instance by calling
getInstance()
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test tool know?

 Annotations



FAST
From Safety to Security

! so far: focus put on safety 
! increasing interest in secur
! security may even be of higy y g

software
! safety vs. security:

" safety assumes benevo
Design-by-contract

" security assumes malev
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y
attackers do not respec

" →�fuzzing�
" FAST exactly addresse
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y

/ embedded systems
rity, also in space area
gher interest for C++ g

olent environment

volent environment
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Status so far

! Parsing and instrumenti
" not for the faint of hea" not for the faint of hea

! Generating test data usi
assignment to public da

! Handling and recording 
! Provision of stubs for m
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! On-going tests with softw
ISS
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ing constructors and 
ta members
C++ exceptions
issing functions / methods
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Application software

! Criticality Level C, OS Li
! Uses templates from ST

O n templates! Own templates
! 302 hpp-files, 229 cpp-fi
! 53.200 physical lines of 
! 22.600 LOC
! 643 public methods
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! 643 public methods
! 279 classes
! 364 class instantiations
! parsed, instrumented, ex
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FAST and C++ 

! Near-term
" Gaining advantages by m
" Fault detection driven by

! Mid-term
" Better handling of inform

N ti t f t l
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" Native support for templ

! Long-term
" Generation of regression
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massive stimulation
y assuming remaining faults

mation hiding
t
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Findings so far

! Random test data more 
t t th lstate space than regular

! Internal enforcement of 
constructors, methods) r
external definition of con

! Constraints for sequenc
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q
required (e.g. protocol s
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suited for covering the 
l d d t i trly spaced data points
consistency (by 
reduces need for 
nstraints
es of method invocations 
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Conclusions

! C++ S/W may be easier
enforcement of consiste
OO F t ( d! OO Features (e.g. dyna
increase effort for manu

! Only very limited pre-tes
! Increased effectiveness
! !suggests automatic te
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gg
! More research required 
! Annotations may come f

(→code generation)
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 with massive stimulation
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Inheritance

class A {
public:

A(int aVal):val(aVal) {}
int getVal() onst { return val; }int getVal() const { return val; }

protected:
int val;

};

class B: public A {
public:

B(int aVal): A(aVal) {}
int getValTimesTwo() const { return 2*va

}
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int foo() {
B obj = B(10);
return obj.getVal();

}

BSSE System and Software Engineering

A has method getVal() 

al; }

B is subtype of A.

and data member val.

B inherits getVal() and
val.
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Subtype Polymorphism

class A { … };
class B: public A { … };

int foo(A* obj) { };int foo( * obj) { … };

int bar() {
A* obj = new B;
return foo(obj);

}

Substitution Princi

© Dr. Rainer Gerlich BSSE System an

Substitution Princi
object of type T is e

of any subtype T o
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B is subtype of A.

iple: Whenever an

obj has type A*, but 
may point to B.

foo expects A*, but B* 
may also be used.
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iple: Whenever an 
xpected, any object
of S can be used.



Encapsulation/“Data H

class
publi

A(
in

prote

Class A encapsulates
data and operations

prote
in

};

int f
re

}

int b
re

}

Access to data
controlled by well-

defined interface (here: 
getter-function)
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}

class
publi

B(
in

}

Subclasses may access
protected members, but 

not private members.

BSSE System and Software EngineeringHiding“

A {
c:
(int aVal):val(aVal) {}
nt getVal() const { return val; }
ted

A itself may access val.

cted:
nt val;

oo(A* obj) {
eturn obj->val; // error

ar(A* obj) {
eturn obj->getVal(); // OK

But foo may not. val is
hidden.
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B: public A {
c:
(int aVal): A(aVal) {}
nt getValTimesTwo() const { return 2*val; }



Dynamic Dispatch

class A {
public:

int getSomething();
virtual int al Something();virtual int calcSomething();

};

class B: public A {
public:

int getSomething();
virtual int calcSomething();

}

int foo(A* obj) {
return obj->getSomething()+
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j g g
obj->calcSomething();

}

int bar() {
A* obj = new B;
return foo(obj);

}

BSSE System and Software Engineering

B overrides
getSomething() and

calcSomething()

Always calls
A::getSomething()

calls implementation
depending on the actual
type of obj at runtime.
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Object passed to foo is
actually of type B, 

although parameter has
type A*.



Abstraction

class A {
public:

virtual void doSomething() = 0;
};};

class B: public A {
public:

virtual void doSomething();
}

void foo(A* obj) {
return obj->doSomething();

}
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int bar() {
A* obj = new B;
return foo(obj);

}

BSSE System and Software Engineering

A declares
doSomething(), but 
does not provide an 

implementationimplementation.

B provides an 
implementation.

*obj is of abstract type, 
but may take value of

concrete type
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concrete type.

Object passed to foo is
actually of type B, 

although parameter has
type A*.



Challenge: Regression 
Suites

class A;
class B {
public:

B():val(0) {}
int getVal() const { return val; }
int calcVal(int x) {

val=x*x+2*x+5;
}
bool operator==(const B& other) const {

return (other.val % 7)==(val % 7);
}

private:
int val;

};
B* foo(A* obj);
enum verdict_t testFoo_123() {

A* input_obj = new A(…);
B* t f (i t bj)
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B* ret = foo(input_obj);
B* refValue = new B();
refValue->calcVal(???);
if (*refValue==*ret) {

return success;
} else {

return failed;
}

}
→Heuristics, Ann
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Test 

Hrm�how do we get the
state we had in the

stimulation run?

We know how to do this�

Is this the right concept of
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Is this the right concept of
equivalence for this test?

notations, �Patching� code (autom.)



Challenge: „Data Hidin

class Stream {
public:

Stream():readPtr(0),writePtr(0) {}
void read( har* data unsigned int size)void read(char* data, unsigned int size)

if (readPtr+size>writePtr) {
/* error */

}
…
readPtr+=size;

}
void write(const char* data, unsigned in

…
writePtr+=size;

}
Ho
i
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}
protected:

char* buffer;
unsigned int readPtr;
unsigned int writePtr;

};

ins

Exe
after c

BSSE System and Software Engineeringg“

) {

Only default constructor
present, ininitialises

readPtr, writePtr to fixed
value

) {

nt size) {

We want to test read()

But read() requires
writePtr to be different 

from 0

ow do we automatically construct
t f St t t t d()?
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stance of Stream to test read()?

ecute a sequence of method calls
construction (→Heuristics, Protocol 

State Machines).



Construction Patterns

! Abstract Factory Pattern
! Factory Method Pattern
! Prototype Pattern
! Builder Pattern
! ...
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" !Extensive variability fo
increased complexity for
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or the developer, 
r the tool


