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The FAST Test Process }l || |}
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Advantages of the FAST Process

Massive stimulation at low effort/cost

Automatic Robustness Testing
Increased probability of finding sporadic defects

Post-Factum filtering of test-case-candidates
instead of Pre-Factum guessing

Critical Defects found after finalisation of ISVV!
Testing may start even if system is incomplete

— missing functions are derived from prototypes
as active stubs




Advantages of the FAST Process

m Analysis yields

« most faults found with FAST after standard
test process are a matter of massive
stimulation

< If the number of automated stimuli is in the
range of manually generated

—=no significant difference in faults detected

(as reported in literature) 7
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C++ 1N On-Board Software: Pros

Enforcement of Data Consistency/Fault Isolation

Stricter type system than C (but nowhere near

Ada)
Templates/Template Libraries

Implicit Initialisation of Variables (sometimes...)

Paradigm largely matches UML

y
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C++ 1n On-Board Software: Cons

Class Model instead of Component Model

Template Matching complicated (Turing-
complete!)

Overloading of syntactic elements impacts
readability

Implicit behaviour (copy operators, default
constructors) may impact comprehensibility

Many language elements are inconsistent with
each other (e.g. type deduction, behaviour of
STL elements, ...) 7




Basic OO Concepts

Inheritance/Subtype Polymorphism
Encapsulation/’Data Hiding”
Dynamic Dispatch

Abstraction
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The Challenge

Generate stimuli close to operational
profile, but properly balance that with
robustness testing...

...without any formal information about
the programmers’ intent!

= Heuristics!

Still need to find more of these for OO
programming languages
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Challenges for Automated Test Data
Generation in Context of O-0O

Encapsulation/"Data Hiding”

Subtype Polymorphism

Dynamic Dispatch

Testing Templates

Stubbing of Constructors

Use of Design Patterns

Generation of Regression Test Suites
Inaccessible Types and Methods
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Challenge: Subtype
Polymorphism

class A {};

int foo(A* b);

pd
~

Foo expects pointer to A

Substitution principle:
Any subclass of Ais
applicable as well.

=Consider all subclasses of A.

Subclasses may be declared in other
compilation units!
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Challenge: Dynamic Dispatch

Library:

class A {
publi c:

virtual void foo();

voi d bar() {

foo();

Application:

class B: public A {
publi c:
void foo() {

Overriding foo() also
changes behaviour of

No way to test libraries in isolation!
We can only test full applications!
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Challenge: Use of Design L[|

P atte r n S BSSE System and Software Engineering
class Singleton { Only constructor is
private: | hidden
Singleton() { ...} < .
public: _ :
static Singleton* getlnstance() { <« Get instance by calllng
I f (!instance) {
| nstance = new Si ngl eton(); getlnstance()
}
return instance,
}
private:

static Singleton* instance;

b
How should the test tool know?

—Heuristics, Annotations
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FAST

From Safety to Security

so far: focus put on safety / embedded systems
Increasing interest in security, also in space area

security may even be of higher interest for C++
software

safety vs. security:

+ safety assumes benevolent environment
Design-by-contract

< security assumes malevolent environment
attackers do not respect contracts

« — 'fuzzing”

+ FAST exactly addresses this point

y
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Status so far

Parsing and instrumenting C++
+ not for the faint of heart!

Generating test data using constructors and
assignment to public data members

Handling and recording C++ exceptions

Provision of stubs for missing functions / methods
On-going tests with software intended for use on

1SS

y
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Application software

Criticality Level C, OS Linux

Uses templates from STL, Boost, LOKI
Own templates

302 hpp-files, 229 cpp-files

53.200 physical lines of code

22.600 LOC

643 public methods

279 classes

364 class instantiations

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee



FAST and C++

m Near-term

+ Gaining advantages by massive stimulation

« Fault detection driven by assuming remaining faults

m Mid-term
+ Better handling of information hiding
« Native support for templates

m Long-term

« (Generation of regression test suites

y
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Findings so far

Random test data more suited for covering the
state space than regularly spaced data points

Internal enforcement of consistency (by
constructors, methods) reduces need for
external definition of constraints

Constraints for sequences of method invocations

required (e.g. protocol state machines)
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Conclusions

C++ S/W may be easier to verify (e.g. due to
enforcement of consistency)

OO Features (e.g. dynamic dispatch) heavily
iIncrease effort for manual testing

Only very limited pre-testing of libraries possible
Increased effectiveness with massive stimulation
=suggests automatic test approach

More research required for better heuristics

Annotations may come from software models
(—code generation) 7
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Backup
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INnheritance

class A {
publi c:
A(int aval):val (aval) {} A has method getVal()
int getVal () const { return val; } <
or ot ect o (  and data member val.
I nt val;
}
class B: public A { < B is subtype of A.
publi c:
B(int aval): A(aval) {} : "
int getVal Ti nesTwo() const { return 2*val; }< B inherits getval() and
} val.
int foo() {

B obj = B(10);
return obj.getVal ();
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Subtype Polymorphism

class A{ ...}; i
class B: public A{ ..}; < B is subtype of A.

int foo(A* obj) { ..}; obj has type A*, but

i nt bar(). { (  may point to B.
A* obj = new B;

return foo(obj);_ foo expects A*, but B*

may also be used.

}

Substitution Principle: Whenever an
object of type T is expected, any object
of any subtype T of S can be used.
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Encapsulation/“Data Hiding*

BSSE System and Software Engineering

A itself may access val.
Class A encapsulates class A { ;

: public:
data and operatlons A(int aval):val (aval) {}

int getVal () const { return val; }
ot ect ed:

ected: _
e But foo may not. val is

| | / hidden.
i nt foo(A* obj) {

return obj->val; // error

Access to data
controlled by well-
defined interface (here:
getter-function)

}

i nt bar (A* obj) {
return obj->getVval (); // K
}

class B: public A {
publ i c:
B(int aval): A(aval) {}

Subclasses may access int getVal TinesTwo() const { return 2*val; }

protected members, but —— 1
not private members.
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Dynamic Dispatch

B overrides
getSomething() and
calcSomething()

class A {
publi c:
I nt get Sonet hi ng() ;
virtual int cal cSonething();

b Always calls

A::getSomething()

class B: public A {
publi c:

I nt get Sonet hi ng() ; - -
virtual int cal cSonething(); calls Implementatlon

} depending on the actual

‘nt foo(A* obi) { type of obj at runtime.

return obj->get Sonmet hi ng() +
obj - >cal cSonet hi ng() ;

} Object passed to foo is
ot O actually of type B,

Ceturn foo(obj ) : < although parameter has
} type A*.
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Abstraction

A declares

cl ass A { doSomething(), but
publi c: / .

virtual void doSonething() = O does not provide an
}; Implementation.
class B: public A {
publi c: I

virtual void doSonething(); < . B prOVIdeS .an
} iImplementation.

void foo( A* obj) { * A~
return obj->doSonet hi ng(); < ObJ is of abstract type’

} but may take value of
concrete type.

int bar() {
A* obj = B; ' '
obj = new Object passed to foo is

return foo(obj);
} (  actually of type B,

although parameter has
type A*.
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Challenge: Regression Test

BSSE System and Software Engineering

Suites

class A
class B {
publi c:
B():val (0) {}
int getVval () const { return val; }
int calcval (int x) {
val =x* x+2* x+5;
}
bool operator==(const B& other) const {

return (other.val % 7)==(val %7); We know how to do this...

}

privat e:
I nt val;

Hrm...how do we get the
state we had in the
stimulation run?

};

B* foo(A* obj);

enum verdict _t testFoo _123() {
A* i nput_obj = new A(.); : :
B* ret = foo(input_obj); Is this the rlght Concept of

B* refValue = new B(); : : )
r ef Val ue- >cal cVal (277) ; equivalence for this test”
i f (*refValue==*ret) {

return success;
} else {
return fail ed;

} —Heuristics, Annotations, ,Patching” code (autom.)
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Challenge: ,,Data Hiding*“

BSSE System and Software Engineering

Only default constructor
present, ininitialises

class Stream / readPtr, writePtr to fixed
publ i c:

Stream():readPtr(0),witePtr(0) {} value

voi d read(char* data, unsigned int size)

i f (readPtr+size>witePtr) { — We want to test read()

[* error */
} \ But read() requires
readPt r +=si ze: writePtr to be different

oo . o from O
void wite(const char* data, unsigned int size) {

} WritePtr+=size; How do we automatically construct

or ot ect ed: instance of Stream to test read()?
char* buffer,;
unsi gned int readPtr; Execute a sequence of method calls
unsigned int writeptr; after construction (—Heuristics, Protocol

State Machines).
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Construction Patterns

BSSE System and Software Engineering

m Abstract Factory Pattern
m Factory Method Pattern
m Prototype Pattern

m Builder Pattern

+ =Extensive variability for the developer,
increased complexity for the tool

y
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