BSSE System and Software Engineering

Automated Source-code-based Testing of
Object-Oriented Software
R. Gerlich', R. Gerlich', C. Dietrich?

Data Systems in Aerospace DASIA 2014
June 3rd, 2014, Warsaw, Poland

'Dr. Rainer Gerlich System and Software Engineering BSSE 2Deutsches Zentrum fiir Luft- und Raumfahrt e.V. (DLR)
Immenstaad, Germany Bonn, Germany

E-Mail: Rainer.Gerlich@bsse.biz E-Mail: Carsten.Dietrich@dlr.de
Ralf.Gerlich@bsse.biz

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014 1

Contents

Introduction to the FAST Process

Fully / Flow-optimised Automated, Source-code-based Testing

Advantages/Disadvantages of C++ in OBSW
Challenges for automated test of OO-Software
Consequences and Solutions

Conclusions

y

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014

The FAST Test Process }l || |}

P . . I F I BSSE System and Software Engineering

Specification > Code of Function

—> .
M. Function (Auto-ICoding

Thousands of functions

CGomparison of Results

108 Test Inputs

automatic
reduction of test
cases

Y

Execution of test 107 Test Cases

Regression testing
ison with oracle

per software package

2 .. 10 per function

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014 3

Advantages of the FAST Process

Massive stimulation at low effort/cost

Automatic Robustness Testing
Increased probability of finding sporadic defects

Post-Factum filtering of test-case-candidates
instead of Pre-Factum guessing

Critical Defects found after finalisation of ISVV!
Testing may start even if system is incomplete

— missing functions are derived from prototypes
as active stubs

Advantages of the FAST Process

m Analysis yields

« most faults found with FAST after standard
test process are a matter of massive
stimulation

< If the number of automated stimuli is in the
range of manually generated

—=no significant difference in faults detected

(as reported in literature) 7

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014

C++ 1N On-Board Software: Pros

Enforcement of Data Consistency/Fault Isolation

Stricter type system than C (but nowhere near

Ada)
Templates/Template Libraries

Implicit Initialisation of Variables (sometimes...)

Paradigm largely matches UML

y

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014

C++ 1n On-Board Software: Cons

Class Model instead of Component Model

Template Matching complicated (Turing-
complete!)

Overloading of syntactic elements impacts
readability

Implicit behaviour (copy operators, default
constructors) may impact comprehensibility

Many language elements are inconsistent with
each other (e.g. type deduction, behaviour of
STL elements, ...) 7

Basic OO Concepts

Inheritance/Subtype Polymorphism
Encapsulation/’Data Hiding”
Dynamic Dispatch

Abstraction

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014

The Challenge

Generate stimuli close to operational
profile, but properly balance that with
robustness testing...

...without any formal information about
the programmers’ intent!

= Heuristics!

Still need to find more of these for OO
programming languages

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014

Challenges for Automated Test Data
Generation in Context of O-0O

Encapsulation/"Data Hiding”

Subtype Polymorphism

Dynamic Dispatch

Testing Templates

Stubbing of Constructors

Use of Design Patterns

Generation of Regression Test Suites
Inaccessible Types and Methods

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014

10

Challenge: Subtype
Polymorphism

class A {};

int foo(A* b);

pd
~

Foo expects pointer to A

Substitution principle:
Any subclass of Ais
applicable as well.

=Consider all subclasses of A.

Subclasses may be declared in other
compilation units!

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014 11

Challenge: Dynamic Dispatch

Library:

class A {
publi c:

virtual void foo();

voi d bar() {

foo();

Application:

class B: public A {
publi c:
void foo() {

Overriding foo() also
changes behaviour of

No way to test libraries in isolation!
We can only test full applications!

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014

bar().

12

Challenge: Use of Design L[|

P atte r n S BSSE System and Software Engineering
class Singleton { Only constructor is
private: | hidden
Singleton() { ...} < .
public: _ :
static Singleton* getlnstance() { <« Get instance by calllng
I f (!instance) {
| nstance = new Si ngl eton(); getlnstance()
}
return instance,
}
private:

static Singleton* instance;

b
How should the test tool know?

—Heuristics, Annotations

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014 13

FAST

From Safety to Security

so far: focus put on safety / embedded systems
Increasing interest in security, also in space area

security may even be of higher interest for C++
software

safety vs. security:

+ safety assumes benevolent environment
Design-by-contract

< security assumes malevolent environment
attackers do not respect contracts

« — 'fuzzing”

+ FAST exactly addresses this point

y

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014

14

Status so far

Parsing and instrumenting C++
+ not for the faint of heart!

Generating test data using constructors and
assignment to public data members

Handling and recording C++ exceptions

Provision of stubs for missing functions / methods
On-going tests with software intended for use on

1SS

y

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014

15

Application software

Criticality Level C, OS Linux

Uses templates from STL, Boost, LOKI
Own templates

302 hpp-files, 229 cpp-files

53.200 physical lines of code

22.600 LOC

643 public methods

279 classes

364 class instantiations

ee

FAST and C++

m Near-term

+ Gaining advantages by massive stimulation

« Fault detection driven by assuming remaining faults

m Mid-term
+ Better handling of information hiding
« Native support for templates

m Long-term

« (Generation of regression test suites

y

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014

17

Findings so far

Random test data more suited for covering the
state space than regularly spaced data points

Internal enforcement of consistency (by
constructors, methods) reduces need for
external definition of constraints

Constraints for sequences of method invocations

required (e.g. protocol state machines)

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014

18

Conclusions

C++ S/W may be easier to verify (e.g. due to
enforcement of consistency)

OO Features (e.g. dynamic dispatch) heavily
iIncrease effort for manual testing

Only very limited pre-testing of libraries possible
Increased effectiveness with massive stimulation
=suggests automatic test approach

More research required for better heuristics

Annotations may come from software models
(—code generation) 7

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014

19

ACKNOWLEDGMENT

This activity was supported by
DLR Space Agency
(Deutsches Zentrum fuer Luft- und Raumfahrt)
on behalf of
BMWi (German Federal Ministry of Economics and Energy)
Reference Number 50 RA 1120

Thank you for your attention!

Questions?

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014

20

Backup

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014

BSSE System and Software Engineering

21

BSSE System and Software Engineering

INnheritance

class A {
publi c:
A(int aval):val (aval) {} A has method getVal()
int getVal () const { return val; } <
or ot ect o (and data member val.
I nt val;
}
class B: public A { < B is subtype of A.
publi c:
B(int aval): A(aval) {} : "
int getVal Ti nesTwo() const { return 2*val; }< B inherits getval() and
} val.
int foo() {

B obj = B(10);
return obj.getVal ();

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014 22

Subtype Polymorphism

class A{ ...}; i
class B: public A{ ..}; < B is subtype of A.

int foo(A* obj) { ..}; obj has type A*, but

i nt bar(). { (may point to B.
A* obj = new B;

return foo(obj);_ foo expects A*, but B*

may also be used.

}

Substitution Principle: Whenever an
object of type T is expected, any object
of any subtype T of S can be used.

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014

23

Encapsulation/“Data Hiding*

BSSE System and Software Engineering

A itself may access val.
Class A encapsulates class A { ;

: public:
data and operatlons A(int aval):val (aval) {}

int getVal () const { return val; }
ot ect ed:

ected: _
e But foo may not. val is

| | / hidden.
i nt foo(A* obj) {

return obj->val; // error

Access to data
controlled by well-
defined interface (here:
getter-function)

}

i nt bar (A* obj) {
return obj->getVval (); // K
}

class B: public A {
publ i c:
B(int aval): A(aval) {}

Subclasses may access int getVal TinesTwo() const { return 2*val; }

protected members, but —— 1
not private members.

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014 24

Dynamic Dispatch

B overrides
getSomething() and
calcSomething()

class A {
publi c:
I nt get Sonet hi ng() ;
virtual int cal cSonething();

b Always calls

A::getSomething()

class B: public A {
publi c:

I nt get Sonet hi ng() ; - -
virtual int cal cSonething(); calls Implementatlon

} depending on the actual

‘nt foo(A* obi) { type of obj at runtime.

return obj->get Sonmet hi ng() +
obj - >cal cSonet hi ng() ;

} Object passed to foo is
ot O actually of type B,

Ceturn foo(obj) : < although parameter has
} type A*.

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014 25

Abstraction

A declares

cl ass A { doSomething(), but
publi c: / .

virtual void doSonething() = O does not provide an
}; Implementation.
class B: public A {
publi c: I

virtual void doSonething(); < . B prOVIdeS .an
} iImplementation.

void foo(A* obj) { * A~
return obj->doSonet hi ng(); < ObJ is of abstract type’

} but may take value of
concrete type.

int bar() {
A* obj = B; ' '
obj = new Object passed to foo is

return foo(obj);
} (actually of type B,

although parameter has
type A*.

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014 26

Challenge: Regression Test

BSSE System and Software Engineering

Suites

class A
class B {
publi c:
B():val (0) {}
int getVval () const { return val; }
int calcval (int x) {
val =x* x+2* x+5;
}
bool operator==(const B& other) const {

return (other.val % 7)==(val %7); We know how to do this...

}

privat e:
I nt val;

Hrm...how do we get the
state we had in the
stimulation run?

};

B* foo(A* obj);

enum verdict _t testFoo _123() {
A* i nput_obj = new A(.); : :
B* ret = foo(input_obj); Is this the rlght Concept of

B* refValue = new B(); : :)
r ef Val ue- >cal cVal (277) ; equivalence for this test”
i f (*refValue==*ret) {

return success;
} else {
return fail ed;

} —Heuristics, Annotations, ,Patching” code (autom.)

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014 27

Challenge: ,,Data Hiding*“

BSSE System and Software Engineering

Only default constructor
present, ininitialises

class Stream / readPtr, writePtr to fixed
publ i c:

Stream():readPtr(0),witePtr(0) {} value

voi d read(char* data, unsigned int size)

i f (readPtr+size>witePtr) { — We want to test read()

[* error */
} \ But read() requires
readPt r +=si ze: writePtr to be different

oo . o from O
void wite(const char* data, unsigned int size) {

} WritePtr+=size; How do we automatically construct

or ot ect ed: instance of Stream to test read()?
char* buffer,;
unsi gned int readPtr; Execute a sequence of method calls
unsigned int writeptr; after construction (—Heuristics, Protocol

State Machines).

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014 28

Construction Patterns

BSSE System and Software Engineering

m Abstract Factory Pattern
m Factory Method Pattern
m Prototype Pattern

m Builder Pattern

+ =Extensive variability for the developer,
increased complexity for the tool

y

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2014

29

