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Abstract—Mastering the continuously increasing amount of 
software requires identification of more efficient strategies for 
software verification. Currently, fault coverage is only 
indirectly addressed, e.g. by code coverage. The idea as 
presented in this paper is to get a better understanding of fault 
coverage by a systematic classification of software fault types, 
derivation of footprints of verification tools regarding coverage 
of such fault types, and recording of required effort. A number 
of issues regarding fault identification and classification are 
discussed in this context. 
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I. INTRODUCTION 
The objective of software verification is driven by two 

goals 
•  to demonstrate that a software product performs as 

intended, and 
•  to identify sources which could prevent the product 

from performing as intended.  
Such sources are called defects, bugs, faults, errors or 

failures. Definitions of such terms are given below in 
Section A. 

If both goals could be fully covered, only one of both 
would be sufficient. However, in practice it is impossible – 
especially for complex systems – to achieve full coverage for 
both. Therefore both goals must be tackled in parallel during 
the verification process. 

For software products of high complexity or large size, 
tools need to be used in the verification process. Such tools 
are also software products and their output might be wrong 
or incomplete. 

In this paper, we present a planned activity addressing 
the capabilities of verification tools regarding identification 
of faults – the Fault Coverage – and related reporting, 
targeting an evaluation of the efficiency of fault 
identification, also considering the required effort. 

A. Definition of Terms 
In the context of this paper the following definitions 

apply to the terms fault, error, failure and defect (as used in 
ECSS-Q-HB-80-03A[1]: 

•  An error is a bad or undesired state in a software 
system. 

•  A fault is the cause of an error having its origin in the 
code which may be called a mistake. 

•  A failure is a non-compliance regarding external 
behavior being recognized between expected and 
observed properties of the software product as a 
consequence of an error. 

•  A defect commonly refers to troubles with a software 
product, with its external behavior or its internal 
features (e.g., its maintainability). This includes 
consideration of the risk of faults by potential changes 
of the context. 

In this terminology, faults are considered as a subset of 
defects. A fault may cause an undesired, observable behavior 
of a system. A defect, which is not a fault, will not, but it still 
addresses issues to be considered1. 

Note that an error can be encountered either while 
abstractly reasoning about the software, e.g. in the context of 
the virtual semantics of a programming language, or during 
actual execution. 

From these definitions the following chain of causality 
results as shown in Fig.I-1. 

Term Scope 
Fault Mistake in code 

            ⇓                                               ⇓ 
Error Bad state of a system

            ⇓                                               ⇓ 
Failure Unexpected observed behaviour

Fig.I-1: Causality Chain Fault, Error, Failure 

The term fault coverage describes the degree to which 
defects present in the software are or were detected, or are 
detectable in the course of the defined verification process. It 
is usually represented by the ratio of the number of defects 
recognised and the number of defects present.  

Be aware that the number of defects present is an 
unknown figure. Therefore, a percentage cannot be derived. 

                                                           
1 As the term “fault” is widely used, e.g. in context of 

“fault coverage”, this term is kept, although “defect 
coverage” would be the proper term following the 
terminology of this paper. Similarly, „criteria for fault 
identification“ need to be re-considered as “criteria for defect 
identification”, and “fault types” as “defect types”. 
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Hence, the absolute number of identified defects is of 
relevance. 

The term code coverage describes the degree to which 
the code of the software under test is or was executed during 
test. In the simple case, it is represented by the ratio of the 
number of code instructions executed and the total number of   
instructions. There are different kinds of code coverage such 
as statement coverage, block coverage, decision or branch 
coverage, or Modified Conditional/Decision Coverage 
(MC/DC). 

B. Verification Issues 
Due to the increasing amount of software, its increasing 

complexity and its criticality, verification tools shall help to 
decrease the effort and to increase the fault coverage.  

Standards such as ECSS (space domain), DO178 
(aviation domain) or EN 50128(railway domain) require the 
definition of a verification process, by which a software 
supplier shall demonstrate that the software has the required 
properties and – in addition – does not have undesired 
properties.  

The desired properties are usually expressed by explicit 
requirements, while the undesired ones are a matter of 
generic requirements, valid for every line of code, in 
principle.  This makes it difficult to address all verification 
issues on undesired properties. 

Examples of requirements which mainly focus on the 
undesired properties are the so-called RAMS requirements 
on reliability, availability, maintainability and safety. 

The current approach to demonstrate compliance 
between properties of a software product and requirements is 
to analyze the source code for non-compliances – e.g. 
violation of given rules – and to run tests, aiming to cover 
both, compliance and non-compliances. Such activities are 
supported by verification tools. 

Bearing in mind that also verification tools can have 
faults and may not accurately report defects, a verification 
process based on just applying a tool and believing in its 
reports is not sufficient. Without further quantifying or 
qualifying the expected reduction in risk, the result of this 
application is nothing more than a good feeling. 

E.g. a tool may fail to report a defect or may report a 
defect where no defect is present. There are 4 distinct cases 
depending on whether a defect exists or not and whether a 
tool reports a defect or not (Fig.I-2). 

 Code 
Defect present Defect NOT present

Result 
Defect Reported true positive false positive
Defect  NOT reported false negative true negative

Fig.I-2: Classification of Tool Reports on Defects 

These terms are discussed in detail in Sect. III.A. 
Fault coverage can now be expressed as the ratio of true 

positives and the sum of true positives and false negatives. In 
information theory synonyms for fault coverage are 
sensitivity or recall. Similarly, the precision by which a tool 
does detect true positives in presence of false positives can 

be expressed as the ratio of true positives and the sum of true 
positives and false positives (Fig.  I-3). 

 
 
 
 
 
 

Fig.  I-3: Sensitivity and Precision 

Even if a certain defect was already successfully 
identified by a tool, this does not imply that all similar 
defects have been reported, apart from the fact that other 
defects might not be addressed at all. Consequently, an 
unknown, but possibly non-negligible risk still remains.  

This suggests that more knowledge about identification 
capabilities of verification tools is required. 

Therefore the Space Administration of the German 
Aerospace Center (DLR) has initiated an activity for a 
systematic investigation of fault/defect identification 
capabilities of verification tools, aiming to derive footprints 
of tools. 

The focus is put on tools which do not require manual 
intervention for error identification, apart from configuration 
of the tool. 

A number of criteria for fault/defect identification are 
known, e.g., violation of layout rules, aiming to obtain good 
readability in context of reviews and code inspection, or out-
of-range conditions, addressing actual run-time errors. 

However, when selecting criteria and tools, it is not 
exactly known today which fault/defect coverage can really 
be achieved at the end for the following reasons: 

•  the defects in the software are not known at all, 
•  even if a tool claims to support defect identification for 

certain defects, it is left open whether all such defects 
will be reported and if a user will recognize and be able 
to handle all such reports at the end, 

•  even if reports are provided and recognized it is left 
open whether a user can remove all real defects due to 
limited effort and time and possibly at presence of  
irrelevant reports(false-positives, for details see Sect. 
III.A) 

In the past, a number of tool evaluations 
[1][10][11][12]indicate discrepancies between expectations 
and achieved results: identification support might not be as 
advertised, or practical difficulties may keep reported defects 
from being recognised by a user. These evaluations can be 
considered as a first step towards an analysis of tool 
characteristics.  

However, they neither do cover tools as used in space 
and/or safety critical domains nor do they fully and/or 
systematically characterise a tool. This situation should be 
improved by the following measures: 

Firstly, defects need to be characterised and classified 
into defect types. 

Secondly, it should be known which defect types a tool 
does reliably cover and in which context a defect is reported 
and can well be recognised by a user. 
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Thirdly, an effort figure should be derived, allowing to 
optimise the use of tools and to define a sequence on the 
order they shall be applied, aiming to reduce the overall 
effort while increasing the risk arising from defects not being 
addressed. 

In consequence, a footprint of a verification tool should 
be available if it is considered as a candidate for use in a 
project. Footprints shall enable planning which defects be 
tackled regarding a project’s criticality issues and to ensure 
or at least improve the chance that they will be found. 

In Ch. II we discuss verification issues in context of 
standards from space, aviation and railway domains and 
identify drivers for fault/defect identification.  

In Ch. III we consider classification of defect types, 
criticality issues and their relevance to tools. A major issue 
regarding assessment of fault identification capabilities is the 
classification of defects according to Fig.I-2. As we will see, 
the classification for true and false positives depends on the 
verification issues. Therefore we discuss such issues in detail 
to get a solid base for tool assessment. 

In Ch. IV the contents of the planned activity is described 
aiming to derive tool footprints. 

Finally, conclusions are drawn in Ch. V together with an 
outlook on the next steps planned. 

II. CURRENT PRACTICES OF SOFTWARE VERIFICATION 
Common to standards in several domains is the definition 

of a software verification plan. The verification plan shall 
describe how compliance can be demonstrated and how 
defects will be identified. However, there is no requirement 
to state which defects will be covered and to which degree. It 
is sufficient to define a process as such. This is unsatisfying 
from a principal point of view.  

In this chapter we will discuss a number of issues related 
to improvement of the current verification process and 
consider the position expressed in the standards regarding 
such issues. 

Issues arising from insufficient knowledge on tool 
footprints are addressed in Section A. In Section B issues on 
verification in context of current practices are discussed. 

In SectionC.1)the verification approaches of the 
standards ECSS, DO178 and EN 50128 are considered 
regarding issues on capabilities of fault identification of 
tools. 

A. Issues on the Software Verification Plan 
The Software Verification Plan (SVP) defines the 

verification procedures to satisfy the software verification 
process objectives. Such objectives depend on the 
application domain and the standards applicable for a certain 
domain. Therefore we consider standards from three 
domains. 

In general, the standards demand that a contractor 
describes in the SVP how the objectives of the project can be 
reached and the risks can be minimised. The content of a 
SVP may be subject to negotiation between customer and 
contractor like it is for ECSS or not as in case of EN 50128. 

In an SVP, procedures are defined and tools are selected 
which shall allow to achieve a sufficient level of confidence 

in the software product. The selection of tools is driven by 
what is available on the market, in use in projects and what is 
considered as adequate to manage the expected risks. 

Instead of fault coverage, code coverage is put in the 
focus, hoping that sufficient code coverage will result in 
sufficient fault coverage. 

But still a number of questions are left open. The use of a 
static analyser and execution of tests – with appropriate code 
coverage – are considered as sufficient, while it remains 
unclear whether they actually are sufficient due to 
insufficient knowledge 

1. regarding defect identification 
a. To which degree is identification of the defects, for 

which identification is expected, supported, and can 
such defects really be found? 

b. For which defect types are tools complementary? 
In this case the fault coverage could be improved by 
benefitting from different tool capabilities resulting 
in better fault coverage. 

c.  For which defect types are tools equivalent? 
If equivalent, false negatives related to a certain tool 
in the chosen set of verification tools, could be 
compensated by true positives by another, 
equivalent tool in the set. 

d. Do the remaining risks, which result from 
incomplete fault coverage, comply with the 
expectations? 

2. regarding effort 
a. Which tool is the most efficient for identification of 

certain defect types? 
b. In case of several complementary or overlapping 

tools, which is the best order of sequence to achieve 
minimum overall effort? 

While the verification process is clearly defined, the 
resulting quality of the software product itself in terms of 
still hidden defects remains unclear, because it is left open 
which of the – known – defect types are actually covered. 

More detailed information on the fault identification 
capabilities of tools shall allow closing this gap and tailoring 
the verification process regarding minimization of risks and 
effort. 

B. Verification and Risk Issues 
Manifestation of a fault as an error is subject to fault 

activation conditions (see Section III.A).In the course of a 
development and verification process, such activation 
conditions may differ at different stages of integration. 

Subject to discussion is, for example, whether a is of 
relevance when its activation condition is raised during 
module/unit testing, but cannot be raised during integration 
or system-level testing. 

Then we may ask: Is such an identified fault a true 
positive or a false positive? And the project manager may 
ask: Does module testing impose an overhead on the project? 

We are addressing this issue because it is of relevance for 
tool evaluation regarding fault identification capabilities. 

A simple, abstract example for such a case is given in 
Sect. III.C.  In general, what is addressed here is: 
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•  a function receives a valid input vector during module 
testing, 

•  in turn it provides a wrong output vector or shows 
other unintended behavior like an abort, 

•  it is confirmed that this input vector cannot occur in the 
system context. 

In this case the activation condition for the fault does 
never occur in the system context. 

It may even happen that a function provides the expected 
output vector and no unintended behaviour for all (valid) 
input vectors occurring in system context. However, there 
may be further input vectors in the context of module testing, 
for which it provides a wrong output vector or shows 
unintended behaviour, so that an error occurs. 

In both of the above cases, the system is not affected at 
all, although in the context of module testing, a defect is 
identified. Shall such defects be fixed? Or should they even 
not be reported? 

It is important to be aware of that the missing activation 
of a fault in system context just represents a snapshot. In case 
of reuse or maintenance the conditions may change – 
possibly silently – and the fault may be activated. 

In case of such a latent fault, verification of the system 
must be repeated after every change, which may be costly. 
The safest and probably cheapest approach is to identify such 
latent faults and to fix them. 

Whether a fault should be removed or not is a matter of 
risk assessment. 

Risk assessment has to estimate the probability that a 
software product may not perform as intended when being 
operated under conditions defined as valid, and the costs of 
such an occurrence. Classification of such a risk regarding its 
criticality requires knowledge about the conditions under 
which the risk may be realized. Consequently, a hidden fault 
implies an unknown risk. 

It may happen that the risk is considered as low or 
negligible once the fault has been identified. Therefore, from 
the view of risk reduction, it is highly desirable to identify as 
many faults as possible to allow for their assessment. 

The lack of information about the actual valid input 
domain may lead to tools flagging possible faults in the code 
at unit level, although in an integrated setting, the users of 
the unit properly take care that no invalid values are passed. 

Unfortunately, this scenario is often unavoidable, as most 
relevant programming languages allow the definition of the 
input domain only as an orthogonal set, i.e. as a set of tuples 
where each parameter may take any value from its type 
independently of the other parameters. However, the set 
describing the valid input domain often is non-orthogonal, 
imposing interdependencies on the parameters and thereby 
limiting the combinations. 

Given enough information, a tool may theoretically avoid 
flagging such possible faults and instead focus on the faults 
affecting the handling of valid inputs. In practice, 
consideration of extensive context information may be 
beyond the capacities of the computing hardware of the 
verification tool, therefore making verification at integration 
or system level impractical. 

However, assessment of robustness is also a valid goal. If 
only valid inputs are provided, aspects of robustness are not 
addressed. Although invalid values might not be expected, 
they may occur due to fault propagation, also in the system 
under operation. From this point of robustness, reports on 
faults which are expected to be dormant should be of 
relevance, too. 

C. Position of Standards 
1) ECSS 

Software verification is intended to confirm that the 
product is built right. The verification process therefore aims 
at the correctness and consistency of outputs of software-
related activities with respect to their inputs. It occurs in 
parallel to the actual development, and consists of (i) a 
process implementation that creates and deploys a 
verification plan, and (ii) the actual verification activities 
according to this plan (ECSS-E-ST-40C[1], ECSS-E-HB-
40A[3], ECSS-Q-ST-80C[4], ESA ISVV Guide[5]). 

ECSS-E-ST-40C does not make universally valid 
prescriptions about software verification efforts, the 
identification of risks and the degree of independence of 
coders and testers. It recognizes, however, that efforts can 
differ and that there are varying degrees of separation 
between developing and verifying organizations, ranging 
from no separation (same person) to Independent Software 
Verification and Validation (a person in a different 
organization, ISVV)[5]. The standard therefore demands that 
a determination shall be made regarding verification effort, 
the identification of risks and the degree of independence to 
be applied in different verification activities (ECSS-E-ST-
40C).  Another example is test coverage: While 100% code 
coverage is required for higher criticality levels, lower 
coverage values can be negotiated for less critical software. 

The verification activities are therefore a point of 
negotiations between software suppliers and customer. The 
verification approach must be defined in the Software 
Verification Plan. 

For example, independent verification has considerably 
higher costs but increases confidence in development results. 
A better understanding of the characteristics of different 
software verification tools – regarding overlapping/ 
equivalent and complementary features – with respect to 
flight software is therefore important for customers and 
suppliers alike: the more is known about fault identification 
capabilities of tools, the more efficient verification is, and 
the higher is the confidence. 

Verification activities typically address the areas of the 
requirements baseline, technical specification, architectural 
design, detailed design, unit testing plan and test results, 
coding and the verification of the software validation, and 
related documentation  

In particular, the verification of code may cover, for 
example, correctness of data and control flow, error 
handling, controlling of the effects of run-time errors, 
memory leaks, numerical protection mechanisms, code 
coverage of tests, and the verification of source code 
robustness (e.g. resource sharing, division by zero, pointers). 
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The use of static analysis tools is explicitly recommended by 
the standard ECSS-E-ST-40C. 

The objectives of software verification depend on 
criticality levels (A-D, with A highest) based on the severity 
of the consequences of system failures as defined in ECSS-
Q-ST-80. Knowing tool characteristics can help to choose 
the right tools or combinations of tools for the respective 
criticality levels. 

Tailoring of the standard is possible. As with all ECSS 
standards, tailoring is explicitly recommended on a case-to-
case base or as a matter of negotiations. The standard even 
comprises an appendix with a table that contains a proposed 
tailoring according to software criticality. 

2) DO178C 
DO-178C (and its nearly identical European counterpart 

ED-12C) distinguishes between validation and verification in 
much the same way as the ECSS does.  

The purpose of the verification process is to detect and 
report faults (called “unintended functionality” there, which 
indicates that faults and not defects are in the focus) that 
might have slipped into the software during development. 
While testing takes a major role in the verification chapter, 
verification is seen as more than simply testing. The reason 
is that testing, in general, cannot show the absence of errors. 
Consequently, combinations of reviews, analyses and tests 
are applied to verify the software. The standards note that 
removal of errors is part of the activities in the software 
development processes.  

Interesting about the verification approach in DO-178C is 
its discrimination between high- and low-level requirements, 
and furthermore that diverse kinds of coverage values are the 
drivers of the process: Test Coverage Analysis, 
Requirements-Based Test Coverage Analysis, Structural 
Coverage Analysis, and Structural Coverage Analysis 
Resolution.  

DO178 recommends addressing certain fault types, of 
which examples like invalid data are provided, in a non-
exhaustive list. 

A verification tool is subject to qualification by which 
correct behavior must be demonstrated. The procedures of 
qualification are defined in a separate supplement 
(DO330)[7]. 

The verification approach shall be document in the Plan 
for Software Aspects of Certification (PSAC). 

The objectives of software verification depend on 
criticality levels (A-E, with A highest) based on potential 
failure conditions. 

3) EN 50128  
To get a broader view on the position of standards we 

also consider a standard outside the aerospace domain: EN 
50128 which is applicable in the railway domain.  

There are clear rules regarding the verification activities. 
Tailoring common objectives of this standard is not possible 
while it is for ECSS. Verification characteristics and the 
respective objectives of processes and documentation depend 
on the Safety Integrity Levels (SIL, 0-4 with 4 as highest), 
based on (numerical) probability-to-failure figures) 
Similarly, to ECSS and DO178 the verification approach 

must be documented in a plan (Software Verification Plan, 
SVP) early in the requirements engineering process. The 
SVP needs to provide all information regarding criteria, 
methods, techniques and also tools planned to be used within 
the different phases of safety critical railway software 
verification. 

EN50128 is applicable for software engineering tools 
(integrated development tools, verification and validation 
tools, simulation tools, etc.). An “adequate” set of tools shall 
be used for software engineering and a high degree of 
automated testing and verification shall be reached. 
Compared to other standards, EN 50128 states in a relatively 
soft manner that software tools need to be available and 
known “as soon as possible” within the project and that these 
tools shall be suitable for the specific usage within the 
software engineering project. Their suitability could be 
proven by independent tool validation, appraisal and 
permission for usage (comparable to DO-330). Currently, 
tools with qualification and tools without qualification are 
often used in parallel. EN50128 does not explicitly focus on 
failure identification methods and techniques of verification 
tools during tool qualification processes. 

EN50128 focuses explicitly on the important step of 
software-software integration test activities. Here special 
emphasis shall be put on software module integration having 
used different implementation and verification tools during 
modules implementation, e.g. at different supplier premises 
(refer to 11.4.5 in EN50128). 

Taking all this information into account, verification tool 
diversification as proposed within this paper could therefore 
be an objective of the EN 50128 based software qualification 
plan (see intro to appendix A of En 50128, in combination 
with EN 50126). According to EN 50128 a third party 
certification authority is able to choose additional approaches 
for adequate verification. Especially during system 
integration with multiple customer-supplier-relations in the 
value chain this shall be mandatory to cover different failure 
detection approaches of verification tools in order to detect  
most of the common failure types and potential failure 
conditions. 

EN 50128 also focuses on the phase of software 
maintenance (chapter 16). Tools used in maintenance and 
evolution phases shall fit to the ones used for 
implementation. In practice, special attention shall be given 
to substitution actions (changes in tool chains) during 
operational software usage. 

D. Summary on Standards 
All standards require definition of a verification process 

which shall be proposed by the software supplier and shall 
be agreed by the customer. This process shall sufficiently 
identify the measures to demonstrate that the software will 
behave as expected, including measures for fault 
identification. 

A major driver for detailed testing on module level is the 
so-called RAMS requirements (Reliability, Availability, 
Maintainability, Safety). The knowledge on imperfectness of 
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verification, especially in a complex system context, 
suggests a bottom-up approach applying the outmost degree 
of verification on every level, starting with units or modules 
–  the functions. 

If tools for fault identification are applied in this context, 
qualification of such a tool is required demonstrating that 
expected properties, e.g. fault or code coverage, will be 
achieved based on a representative scenario. So far, every 
project performs tool qualification on its own, tailored to the 
project’s specific conditions. 

Use of tools with overlapping and complementary 
features to increase confidence in the verification process is 
not addressed, probably because there is lack of information 
on tool characteristics, so far. 

This situation should improve when footprints are 
available. 

III. ISSUES ON FAULT/DEFECT IDENTIFICATION 
Recently, a paper on the software verification approach 

of the Mars rover Curiositystated: “Before we can do so [to 
reduce the likelihood of faults], though, we have to know 
what types of mistakes occur”[13]. 

A first step towards such a strategy is to identify sets of 
similar defects, called defect types. 

In this sense, defects are instances of defect types. An 
out-of-range-condition may occur at a number of locations 
in a software system, but typically all of these can be found 
by a small set of common detection mechanisms. For 
example, out-of-range-conditions can be found by index 
checking or detection of corrupted memory. While index 
checking targets the source of an error, memory corruption 
targets its further consequences. 

In general, it is possible to detect faults by generic and 
non-specific detection mechanisms, such as watching for 
run-time-exceptions or memory corruption. 

Sometimes finding such defects may depend on chance. 
For example, using an invalid index to access an array may 
lead to memory corruption by accessing a memory area that 
is otherwise unused and thus trigger an exception or memory 
corruption detection mechanisms. 

A wrong index, however, may also lead to an access to 
an unintended, although valid address, e.g. if the accessed 
address is part of another object in memory. In these cases 
neither an exception nor the memory-corruption detection 
mechanism would be triggered directly. The corruption of 
the other object may lead to another error elsewhere in the 
software, however, neither is occurrence nor visibility of this 
follow-on error guaranteed. 

These generic detection mechanisms may sometimes 
miss specific errors. Once such an error has been found, it 
may be possible to find a more specific mechanism that may 
have a higher chance of detecting these kinds of errors. In the 
example, the introduction of explicit index checking would 
be a more specific mechanism. 

In this way, the capabilities of a verification tool can be 
improved iteratively. 

Having defined defect types, the verification tools can be 
characterized accordingly. 

A further consequence of such a classification is that it 
shall be possible to identify for which defect types tools are 
complementary and/or equivalent. This will allow to define 
a set of tools covering a well-defined / well-known and 
possibly broader set of defect types. 

A. Considerations on Fault/Defect Identification 
An approach for fault identification needs to consider the 

imperfection of verification. This imperfection increases the 
risks remaining after the verification process. The question 
is: Can such risks be reduced at affordable effort and costs? 

Improving the knowledge about such imperfection is a 
necessary pre-condition to achieve this goal. 

Therefore in this section we further consider the 
mechanisms of fault activation and fault identification by 
tools. 

Regarding the software or the source code respectively, 
identification of faults may happen in two different ways by 

1. analysis of the source code 
called  “Static Analysis”, and/or 

2. execution of the source code, 
called  “Dynamic Analysis” or testing. 

It is well-known that testing cannot prove absence of 
defects, only the presence of defects. Regarding static 
analysis it is broadly believed that tools would identify 
defects which they ought to detect. However, this is not true 
in general. Static analysers may also miss violation of rules. 

In general, to detect a defect, certain conditions must be 
fulfilled. 

In case of static analysis the principal conditions are: 
A1. The location of the defect in the source code must be 

subject of analysis by the tool. 
A2. Identification of the defect type must be supported by 

the tool. 
A3. The defect must be identified in its actual context and 

reported by the tool. 
A4. The defect report must be recognized by the user. 
A1considers that the faulty statement may not be 

analysed at all due to limited resources like time or memory. 
Regarding A1 and A2 a validated footprint of the chosen tool 
is a pre-condition to success. If unknown, one should not 
expect to get a message on such a defect. A3 states that 
identification may depend on the context in the source code. 
E.g. a fault in the tool itself or a missing consideration of that 
context may prevent identification and reporting. A4 
addresses visibility / usability issues: a relevant message may 
not be recognised amongst thousands of messages. 

In case of dynamic analysis / testing the following 
conditions must be fulfilled: 

T1. The statement must be executed. 
T2. The fault’s activation condition must occur. 
T3. The fault must manifest as an (observable) error 

e.g., by observation of an exception or an out-of-
range condition,  or comparing expected with 
observed output. 

T4. The defect report must be recognized by the user. 
T1addresses coverage issues and is a trivial, but 

necessary condition. T2 reminds us that covering a statement 
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once only may not be sufficient to detect a defect. This 
explains why code and fault coverage are not identical. T3 
requires that a tool must be sensitive for that defect type 
(must communicate an observed defect). Finally, T4 is 
equivalent toA4. 

 
 
 
 
 
 
 
 
 

 

Fig.  III-1: Conditions for Fault Identification 

These considerations demonstrate that fault identification depends on 4 
depends on 4 principal conditions ( 

Fig.  III-1). In consequence, just to know that a tool aims 
to support identification of a certain defect type is not 
sufficient. 

Moreover, we have to face the possibility that a tool 
wrongly reports a defect. The following two cases may 
occur: 

•  a report is provided,  
called the positive case because something is provided, 
or 

•  no report is provided, 
called the negative case, because nothing is provided. 

Each such case may be correct or wrong, i.e.,true or 
false. 

According to Fig.I-2 there are 4 combinations to be 
considered: 

•  true positive 
a tool flags a defect and it is an actual defect 

•  true negative 
a tool flags no defect, and there is no defect 

•  false positive 
a tool flags a defect, but it is not a defect 

•  false negative 
a tool misses an actual defect 

The cases with true are desired, the others are undesired. 
False positives increase the effort required for analysis of the 
reports without providing payback in the form of detection 
and possibly eradication of a defect. False negatives mean 
that a possibly critical fault remains undetected. 

A final decision on true positive or false positive eis 
usually only possible by manual inspection of the source 
code (which is also required to fix the defect). To decide 
whether true negative and false negative did occur, reports 
from at least two tools are required (or another additional 
information sources).  

True negatives are trivial in principle, but become a 
positive property of the tool when another tool reports a 
defect. Conclusions on false negatives can only be drawn 
when information on a confirmed defect is available. 

B. Relevance to Tool Assessment and Selection 
Classification of defect types, understanding of fault 

identification conditions (A1-A4 and T1-T4) and 
classification of defect reports as shown above and in Fig.I-2 
are pre-conditions to deriving footprints on verification tools, 
i.e., to characterize a tool regarding its fault identification 
properties. 

Knowing a tool’s footprint, including the effort required 
to identify the source of a defect, will help to improve the 
verification strategy: weaknesses of one tool may be 
compensated by another one, and overall effort can be 
minimized by choosing the most efficient tool or set of tools 
being applied in an optimized sequence. 

Such an optimization strategy shall consider: 
1. Start with tools which allow efficient identification of 

defects for the/a major part of defect types, though they 
may not cover all defect types. 

2. Then continue with tools covering the remaining defect 
type. Theymay require a higher (manual) evaluation 
effort per defect, but it is likely that only a few defects 
occur for such defect types. 

C. Conflicting Verification Issues 
A major issue of verification arises regarding the benefits 

of identifying a defect and the related effort and costs. 
Different steps of verification – as driven by the standards – 
address different verification issues. This may imply that 
verification objectives e.g., on the level of module testing 
must be fulfilled, which do not contribute to the reliability of 
the system at all. 

From the system’s point of view – and from the project’s 
costs – full tests seem to imply an overhead. However, as far 
as the environment does not accurately specify what is 
required, the goals of module testing – as understood today – 
must be kept. 

The following exaggerated example shall illustrate this 
conflict: 

// Module Level:
float sin(float x){ return 0.0; } 

// System Level:
y=sin(float(n)*π); // n an integer value 

Fig.III-2: Wrong Implementation, No System Failure 

As the module sin is called for multiples of π in system 
context, only, it returns the expected values: although the 
code is faulty, no error manifests and no failure will be 
observed on higher levels. 

This example is more relevant than it may seem at first 
look: in practice (see Sect. III.F), we have observed such 
cases in all analysed software packages, at higher 
complexity, of course. The implemented algorithm was 
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wrong, but for the parameters passed during operation, the 
output was correct. 

Do such defects matter at all, when they do not cause any 
failure? Does the implementation violate the module’s 
specification? If yes, does it matter? Does the (successful) 
identification of a defect imply a cost overhead, which 
should be avoided from the perspective of a project 
manager? Is such a defect a false positive? 

The essential point is that the conditions (usually) are not 
known for which a module is used in context of the system. 
Consequently, this requires the test of the full functionality in 
context of module testing. If the conditions would be known, 
the module tests could be limited, even the implementation 
could be simpler. 

In practice, such information is not available, today. But 
is it desirable at all to provide it? 

Firstly, the effort and costs would increase due to the 
required documentation. Secondly, risks would increase 
regarding reuse and maintenance because a module with 
limited functionality – less than expected – may wrongly be 
used by ignoring the limitations and the documentation and 
passing the full spectrum of inputs. 

D. Fault Identification vs. Fault Activation 
Above discussion leads to the following principal 
classification on fault activation conditions: 

F1. inherently risky 
F2. temporarily disabled 
F3. permanently disabled. 

Inherently risky means that an activation condition may 
occur any time when the system is being operated, even if 
the probability may be low. 

Temporarily disabled means that an activation condition 
may not occur currently when the system is being operated, 
but it may occur when the operational context is changed. 

Permanently disabled means that actually no fault is 
present and even a change of context will not introduce one. 

When the context of fault activation changes, e.g. due to 
maintenance, the type of activation may change from 
inherently risky to temporarily disabled and vice versa. In 
the latter case, knowledge about such a (potential) fault is 
important. The only way to avoid a silent conversion from 
disabled to risky is to fix the fault early enough. 

The critical point is that the risk is not known as long as 
the fault is not identified. In consequence, for matters of risk 
reduction, as many faults as possible should be identified, 
even when after analysis they turn out to be temporarily 
disabled. 

From this point of view, it is desirable to identify 
temporarily disabled faults, because these are candidates for 
silent activation. 

A project may need to make a trade-off between risk 
reduction and effort imposed by evaluation of such faults. 
But as long as the fault report is not evaluated or is not 
available at all, no conclusion about the relevance of such a 
fault is possible. 

In consequence, two types of false positives exist: 
•  those which may become true positives, and 

•  those which cannot become true positives, at all. 
Only latter ones shall be considered as a fault of a tool. 

E. Issues on Defect Reporting and Report Evaluation 
Efficiency of fault identification depends to a major part 

on the correct tool reports as discussed above and shown in 
Fig.I-2. In previous projects major discussions were raised on 
false positives. 

The number of false positives significantly impacts the 
efficiency of a tool and its application. Therefore, a detailed 
risk assessment is required when deciding whether a defect is 
considered a false positive or not. 

Minimization of risks requires minimization of false 
negatives. While (real) false positives cause an overhead, 
false negatives increase the risks. Mastering of risks requires 
good knowledge on false negatives. 

1) Fault Potential of False Positives 
A defect report may be considered as false positive either 

because  
•  the tool reports a defect and cannot preclude that the 

report is inherently risky (true positive) or temporarily 
disabled due to missing information, or 

•  a tool erroneously reports a defect. 
Temporarily disabled fault activation is mostly a matter 

of consistency. Experience shows that there may be hidden 
dependencies in the software, which may cause an 
inconsistent context, e.g., due to incomplete maintenance as 
a matter of unknown dependencies. 

Such an inconsistency can already occur by use of a 
constant number at different locations in the source code: 
being used in the declaration of an array’s size and in a 
corresponding for-loop for initialisation of array elements, an 
inconsistency occurs when the number is changed only at 
one location, either the upper limit of the loop or the size of 
the array. 

This example may seem manageable, but in previous 
activities we found many cases where the dependency was 
more complex and could have caused major impacts on 
system operations after incomplete maintenance. An 
example is provided in Sect. III.F. 

In case the for-loop causes an out-of-range condition 
(upper limit of the loop exceeds the number of elements), a 
tool may detect this defect. In case the for-loop does not 
cover initialisation of all array elements (upper limit of the 
loop is less than the number of elements), it is more 
complex. Detection of partial initialisation is currently not 
sufficiently covered by available tools. 

The challenging question is whether detection of such 
fault potential is considered as a true positive or as a false 
positive in case of a temporarily disabled activation 
condition. Clearly, in a consistent context, the fault cannot be 
activated at all and it may be argued that it was useless to 
spend effort on the analysis of the defect report indicating an 
inconsistency. 

Indeed, it is wasted effort in the consistent context, but it 
is not, if the context cannot be controlled such that change 
into a critical state cannot be prevented.  
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Another aspect is that too many of such false positives 
decrease the visibility of more critical faults, e.g., when it is 
not possible to separate inherently risky faults from 
temporarily disabled ones – automatically 

However, in case of false positives of type temporarily 
disabled a software supplier can reduce the number of such 
reports by inherently preventing fault activation when 
creating the source code. In consequence, the supplier and 
probably the project management, too, must decide at stage 
of development: more checks in the code and less risks, or 
less checks and more risks and more evaluation effort. 

Real false positives are clearly an issue of the tool or 
method. 

2) Mastering Risks of False Negatives 
A risk is to believe faults are covered while they are not. 

This risk results from misleading or misunderstood 
descriptions of tool support. This is different from the case 
when it is known in advance that certain defect types are not 
supported by a tool. 

If known in advance, another tool may be used instead or 
in addition to achieve the required coverage of defect types 
(Fig.  III-3). Then risks can be mastered sufficiently. 

 
 
 
 
 
 
 
 
 
 
 

Fig.  III-3: Identifying False Negatives by A Set of Tools 

Hidden risks remain in case a defect report is expected, 
but when the tool does not issue a report. The detection of 
this case is only possible by comparing the results of two or 
more tools. 

In consequence, availability of tool footprints implying 
the possibility to compare tool characteristics supports 
reduction of false negatives and reduces remaining risks. 

3) The Risk of too many False Positives 
The incapability of a tool to detect specific faults is one 

reason for the occurrence of false negatives. Another may be 
found in too many false positives. 

As already discussed, false positives imply analysis 
overhead without providing value. Of course, this only 
applies to actual false positives, i.e. such positives that do not 
merely refer to temporarily disabled faults. 

If the number of reports gained from the set of tools 
applied is larger than what can be handled within the planned 
time frame of a project, there are two options available. 

The first option is to extend the time frame of the project, 
taking into account additional cost and time, thereby possibly 
missing deadlines and postponing finalisation. This may be 
necessary in some cases, most specifically in case of highly 
safety critical software. 

The second option is to prioritize the reports for analysis, 
effectively analysing only a subset of reports. It is not known 
in advance which of the reports to be analysed are true and 
which of them are false positives. Therefore, there is a non-
negligible chance that some of the reports not analysed are 
actually true positives. These effectively become false 
negatives, because, although they are reported, they are not 
considered. 

In both cases, false positives are more than a mere 
nuisance to the user, and in both cases, they have 
considerable impact on the project. In the second case they 
may even have critical impact on the software quality. 

4) Fault Coverage vs. Code Coverage 
All standards refer to code coverage as driver for fault 

identification, but not to fault coverage. It is believed that 
sufficient confidence can be achieved when sufficient code 
coverage is reached, possibly complemented by additional 
robustness tests. 

ECSS-E-ST-40C [2] defines concrete figures for code 
coverage only for the highest safety categories while in the 
other cases the figures are subject to negotiation between 
supplier and customer. 

DO178 defines figures on code coverage depending on 
safety categories. 100% coverage is required for 
requirements. It suggests to add requirements when the 
demanded code coverage cannot be achieved with the given 
set of requirements (the specification). Robustness testing is 
demanded. Similarly, EN 50128 also requires achievement 
of given code coverage figures. 

A percentage on fault coverage cannot be derived at all, 
because the number of defects in a software package is 
unknown. However, it is possible to measure fault coverage 
in terms of defect types. This is an issue of the planned 
activities. 

5) Standards vs. Tools 
DO178 and EN 50128 require tool qualification (e.g., 

following DO330), i.e., the proof that the tool does provide 
the expected output regarding a certain issue for a 
representative scenario agreed on by all parties. 
Identification of false negatives is not a direct issue. Proving 
of the output correctness for the given scenario should imply 
that false negatives should not occur. 

ECSS-Q-ST-80C [4] requires that the customer must 
agree in the use of a tool selected by the supplier. Tool 
qualification is not an explicit issue of the standard. 

Nothing can be found in these standards on increasing hit 
rate of defects and reducing risks by tool diversification. 
Most probably, this is a matter that today characterization of 
tools is not available, which is a pre-condition for tool 
diversification. 

However, tool diversity also is not disallowed because 
the verification strategy can be defined within a certain scope 
and is agreed between supplier and customer at the end. 

So the work being done within the study shall also give 
additional information to tool qualification approaches in 
safety critical domains. It is useful knowing that a specific 
tool works properly in the planned project scenario, but it is 



  Dr. Rainer Gerlich BSSE System and Software Engineering, 2015 
-10- 

also worth knowing which kind of defects can, will or may 
not be found. 

Knowing the characteristics and footprints of certain 
tools means a concerted planning of different tools’ usage 
within the verification processes in close harmonization with 
certification authorities. 

F. Practical Examples on False / True Positives 
The following examples provide code which is inherently 

risky at the level of module testing, but the fault may be 

temporarily disabled at system level. However, these proofs 
had to be derived manually by inspection of all the relevant 
code. 

These examples are derived from real code. The intention 
is to show the problem and the fault potential. They are 
representative for the original code, but not identical and not 
complete in the sense that they are compilable. 

Code Comment 

#define NUM_ELEMS 5 

typedefenum {FALSE ,TRUE   } TyBool ; 

typedefenum {NOSUCC,SUCCESS} TyStatus ; 

TyBoolelemList[NUM_ELEMS]={FALSE, FALSE, FALSE, FALSE, FALSE}; 

void myFunc(){ 

intelemId=0, freeElem = -1; 

TyBoolfree_elem_found = FALSE; 

TyStatus status; 

  while ((free_elem_found == FALSE) && (elemId< NUM_ELEMS)){ 

    if (FALSE == elemList[elemId]){ 

freeElem         = elemId; 

elemList[elemId] = TRUE; 

free_elem_found  = TRUE; 

    } 

elemId++; 

  } 

  if (TRUE == free_elem_found){ 

    status = OSfunc(paraList); 

    if (status!= SUCCESS){      /* fault handling */ 

elemList[elemId] = FALSE; 

    } 

  } 

  return; 

} 

Here the fault manifests as an error when 
OSfunc returns an error code !=SUCCESS. 
The intention of myFunc is to search for a 
free entry in table elemList which records 
e.g. running tasks (the assignment of a 
tasked to elemList is not shown / 
considered here). 
When the task was not started by OSfunc 
then the entry found has to be released. 
However, when this happens elemId was 
already incremented in the loop above. 
Therefore either a wrong entry is released or 
an out-of-range condition occurs resulting in 
memory corruption. 
It is unclear whether static analysers can 
detect this fault potential. 
During testing this fault can be detected 
automatically when the test environment 
ensures that the last element is free only, an 
error code  !=SUCCESSis enforced and an out-
of-range check is performed. 

Fig.III-4: Fault in Error Handling Part 

Code Comment 

intgetSize(intidx){ 

  if (idx>=0 &&idx<MAX_IDX) 

    return (10+idx); 

  else 

    return -1; 

} 

The function indicates an error by returning -1 
when idx is out-of-range 

unsigned intmyMax=100; 

unsigned intexpr,len; 

#define MIN_MACRO(x,y) \ 

    ((x) < (y) ? (x) : (y) ) 

void myFunc(intidx, char *src, char *dest){ 

len=MIN_MACRO((int)myMax,getSize(idx)); 

memcpy(dest,src,len);  
} 

Mix of signed and unsigned. 
If getSize returns -1, 
lengets the value 232-1 and memcpy writes to 4 GB. 
Do static analysers flag the fault potential of the assignment? 
During testing a crash will occur when enforcing an out-of-
range condition. 

Fig.III-5: Potential for Memory Corruption by Mix of Signed / Unsigned 
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Code Comment

void myFunc(int limit, intincr) { 

  for (int ii=0;ii<limit;ii+=incr)  
;  
} 

Endless-loop when incr == 0 
Here the challenge is to prove in system context that never 0 is 
passed for incr. 
Do static analysers flag this potential fault? 
During testing an endless-loop will occur, when enforcing 0. 

Fig.III-6: Potential for Endless-Loop 
 

Code Comment

intgetErrMsg(char *errMsg){ 

interrCode; 

errCode=getErrCode(); 

if (errCode!=0){ 

if (errMsg ==NULL) 

errMsg =malloc(1024); 

sprint(errMsg,”ERROR %d \n”,errCode); 

    } 

  } 

return errCode; 
} 

getErrMsgexpects that malloc always returns a valid pointer.  
Therefore no check on NULL is performed. 
If malloc returns NULL, then an error already occurs here. 
Do static analysers flag the potential change of the parameter 
errMsg as pointer? 

void myFunc() { 

char *str=NULL; 

interrCode; 

errCode= getErrMsg (str); 

if (errCode!=0) 

printf(“%s \n”,str); 

  ... 

This function expects that getErrMsgensures valid memory for the 
error message. 
 However, the mistake is:  
stris passed by value, and the new ptrallocated in 
getErrMsgis not returned. 
The fault is activated when getErrMsgreturns !=0, i.e. when an 
error occurred. This may happen very sporadically. 
When enforcing getErrCode to return !=0 for sure during 
module testing, the fault potential will be detected. 

Fig.III-7: Sporadic Inherent Risk due to Temporarily Disabled Fault 
 

Code Comment 

intmyFunc(short *buffer, intval, 

unsigned short ind, unsigned short bitWidth) { 

intindW=ind / 16; 

intindM=ind % 16; 

int shifts=16-indM-bitWidth; 

int mask=((1 <<bitWidth) -1) << shifts; 

val=val<< shifts; 

  ... 

} 

Even if bitWidth is limited to 8 or 16 shifts 
may take a negative value. 
Shift operations with arguments <0 or >31 are 
undefined.  
The gcc masks the operand with 0x1f and performs 
the operation. So the result is not what is expected if 
the operand is out-of –range. 
However, in this case no exception is raised and 
silent fault propagation may occur. 
mask and valwill both be 0 after the shift. A data 
stream of 0 may be recognized during testing. 
Do static analysers flag this fault potential? 
 

Fig.III-8: Potential Risk for Wrong Result 
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Code Comment 

file.c: 

char buffer[1024]; 

int  offset=0; 

task1.c: 
extern char buffer[]; 
extern int offset; 
intmyWrite(char *buf, char *msg, intlen) { 
memcpy(buf+offset,msg,len); 
  offset+=len; 
  return offset; 
} 
int taskBody1(char *msg, intlen) { 
myWrite(buffer,msg,len); 
  return 0; 
} 

task2.c: 
extern char buffer[]: 
extern int  offset; 
intmyRead(char *buf, char *msg) { 
intlen; 
len=msg[0]; 
memcpy(msg,buffer+offset,len); 
  offset-=len; 
  return len; 
} 
inttaskBody2(char *msg, intlen) { 
myRead(buffer,msg,len); 
  return 0; 
} 

Apart from some other issues not discussed here, the addressed fault 
potential is related to an overflow of the buffer. 
Obviously, the assumption is that an overflow cannot occur in 
task1.c because a sufficient number of data is removed from 
buffer by taskBody2. 
Verification of this code requires knowledge on the synchronization 
scheme, at least. 

Fig.III-9: Potential for Buffer Overflow 
 

Code Comment 
file.c: 

char buffer[1024]; 

task1.c: 
extern char buffer[]; 
intmyTCminLength[]={x,y,z,2}; 
int taskBody1(char *tc, intlen) { 
intret,len,id; 
  id =tc[0]; 
len=tc[1]; 
  if (len<=myTCminLength[id]) 
    ret=-1; 
  else { 
    ret=0; 
memcpy(buffer,tc,len); 
  } 
  return ret; 
} 

task2.c: 
extern char buffer[]; 
int taskBody2(char *data) { 
intlen; 
len=tc[1]; 
memcpy(data,buffer+2,len-2); 
  return 0; 
} 

A telecommand is received in taskBody1. Its length is checked 
by its id and the contents of  myTCminLength. 
In taskBody2 it is expected that the telecommand  is checked for 
correctness in taskBody1. The data of the telecommand are 
expected after the header (of length 2). 
An inconsistency can occur if the length of the header is extended 
e.g. to 3. 
Now, if 2 is changed to 3 in taskBody2, but not in 
myTCminLength, then the check may be passed, but 
len-3< 0. 
The result is documented in Fig.III-5. 
A literal instead of the number 3 will fix this issue. 
 

Fig.III-10: Potential Inconsistency 
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IV. THE PLANNED ACTIVITY 
The goals of the activity are: 

•  identification and classification of defect types 
starting with previously identified defects and 
continuously extending this set with new findings, 

•  derivation of footprints of verification tools, 
to better know what a tool can identify and does report 
as a defect / error, 

•  investigation of context-dependent defect / error 
identification, 
and to provide a feedback to tool vendors, 

•  getting a clearer understanding of false positives which 
may change to true positives when the context changes, 

•  identification of hidden false negatives and real  false 
positives. 

The set of tools for evaluation shall cover the following 
domains and fulfill the criterion defined in Sect. I.B (no 
manual intervention required for fault identification apart 
from tool configuration): 

•  symbolic execution 
•  static analysis 
•  compilation as a specific case of static analysis 
•  dynamic analysis. 
The reports of all tools shall be merged into a 

consolidated report at the end (Fig.  IV-1). 

 
 
 
 
 
 
 
 
 
 
 

 
Fig.  IV-1: The Evaluation Process 

The tools shall be applied to a representative space 
software package (C and/or C++). The analysis will be 
carried out without pre-existing knowledge of the defects 
present. But it will be known which verification activities 
were previously executed on the software package. This 
package shall be extended by code examples including 
known defects serving as a known defect base. 

To consider context-dependencies of fault identification 
(see A3-A4, T3-T4 above) the defects shall be inserted in a 
complex context. In addition, evaluation shall also consider 
the case when the defects are present in a simple context. 

When applicable, configuration parameters shall be 
modified to evaluate their impact on fault identification and 
evaluation effort. 

The effort required to identify the source of a defect in 
the source code shall be recorded. 

In a first step the results from every tool are recorded 
separately. Information is not exchanged in this initial phase 
(Fig.  IV-2).  

 
 
 
 
 
 
 
 
 
 
 
 

Fig.  IV-2: Logic Flow of Defect Reporting 

Then the results will be compared, and reports will be 
analyzed for true or false positive status. False negatives 
shall be approximately identified by cross-comparison of 
reports. Further, the review of reports may lead to additional 
findings of previously unreported defects, which will be 
registered as well. 

In a second – optimizing – step all defect reports will be 
considered. In case of false negatives, the reason shall be 
identified and, if possible, evaluated for whether a true 
positive can be obtained by varying configuration 
parameters. 

To let each project decide which criteria for fault 
identification are of relevance regarding true or false 
positives, all false positives of type temporarily disabled are 
considered as true positives because there is a non-zero 
probability for fault activation in the sense that the software 
may enter an invalid state. 

Final results shall be available before end of 2015. 

V. CONCLUSIONS 
We expect a major step forward to achieve higher fault 

coverage by knowing in advance which defects can be 
identified by the chosen set of verification tools, resulting in 
a more deterministic strategy for software verification and in 
minimization of risks. 

Minimization of risks requires minimization of false 
negatives. False positives cause an overhead, which in turn 
may convert true positives to false negatives because not all 
positives may be considered within the project timeframe. 
Mastering of risks therefore requires both minimization of 
false positives and good knowledge on false negatives which 
shall be achieved by diversification of verification methods 
and tools. 

The derived footprints also shall provide a feedback to 
the tool vendors where they can improve fault identification 
capabilities of tools and efficiency of report evaluation. 

A systematic analysis of fault identification capabilities is 
a pre-condition to improve tools and verification strategies in 
the sense of DeMarco: “what you don’t measure, you can’t 
control [and improve]”. 
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Due to classification of tools regarding identification of 
defect types and the required effort, a strategy can be derived 
how a high number of defects can be identified at a 
minimum of effort. 

In consequence, this should lead to a higher efficiency of 
the software verification and quality assurance processes as 
well as increased risk reduction, higher fault coverage and 
higher quality at reduced costs. 

The consideration of context dependency of fault 
identification suggests that deeper knowledge on fault 
activation conditions can be achieved by unit testing. 
Although more defects may be identified than in the system 
context, it may be worthwhile to know about such 
conditions, especially regarding maintenance and reuse. 
However, it is the decision of the project whether this is 
considered as an overhead or useful information. 

The effort for tool qualification should be reduced when 
tool characteristics are provided in terms of footprints. 

REMARK 
The community is invited to contribute to the collection 

of defect types and to suggest verification tools as candidates 
for future evaluation which fulfil the criterion of Sect. I.B 
(no manual intervention required for fault identification apart 
from tool configuration). 
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