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Abstract—Six software verification tools have been applied to 
space flight software and the findings reported by each tool 
have been compared in order to derive footprints of the tools 
regarding capabilities of fault identification. Currently 
available results are provided in this paper: sensitivity and 
precision of individual tools and combinations of pairs of tools 
out of the set. A reader should bear in mind that the results as 
presented here depend on the spectrum of fault types as 
present in the reference software and on the configuration of 
tools towards real defects and fault types which are of interest 
for embedded systems and space flight software. 

Keywords: tool footprints, verification tools, false positives, 
false negatives, software faults, fault identification, fault 
coverage, fault report evaluation, software verification, 
verification efficiency, software verification plan 

I. INTRODUCTION 
In [1] the basics of tool characterization regarding fault 

identification were defined and discussed. 
In this paper we provide early evaluation results having 

applied the 6 tools to the chosen flight software and having 
recorded and assessed the tools’ reports. 

The evaluation was performed in the context of software 
which can be characterized as embedded software with 

• real-time operations, 
• file system operations, 
• use of communication channels such as a bus, and 
• direct hardware interfaces, e.g., to sensors and 

actuators. 

The tools were selected according to the following 
analysis methods and capabilities for automated analysis of 
software: 

• symbolic execution, 
• abstract interpretation, and 
• automated testing. 

The paper is structured in the following manner: 

Sect. II provides a definition of the terms being part of 
the analysis and evaluation process. Sect. III addresses 
lessons learned. In Sect. IV the evaluation approach is 
described and the evaluated tools are characterized. The 
results of evaluation are provided in Sect. V. Final 
conclusions are given in Sect.VI. 

II. DEFINITION OF TERMS 

A. Defect, Fault, Error, Failure 
To get a clear understanding on the terms used later we 

repeat briefly definitions already explained in [1]. 
In the context of this paper a message issued by a tool on 

a defect is called a “report”. 
A defect commonly refers to troubles with a software 

product, with its external behavior or its internal features 
(e.g., its maintainability). This includes consideration of the 
risk of faults by potential changes of the context. 

In this terminology, faults are considered as a subset of 
defects. A fault may cause an undesired, observable behavior 
of a system. A defect, which is not a fault, will not, but it still 
addresses issues to be considered1. 

Note that an error can be encountered either while 
abstractly reasoning about the software, e.g. in the context of 
the virtual semantics of a programming language, or during 
actual execution. 

From these definitions the following chain of causality 
results as shown in Fig.II-1. 

Term Scope 
Fault Mistake in code 

            ⇓                                               ⇓ 
Error Bad state of a system

            ⇓                                               ⇓ 
Failure Unexpected observed behaviour

Fig.II-1: Causality Chain Fault, Error, Failure 

The term fault coverage describes the degree to which 
defects present in the software are or were detected, or are 
detectable in the course of the defined verification process. It 
is usually represented by the ratio of the number of defects 
recognised and the number of defects present.  

Be aware that the number of defects present is an 
unknown figure. Therefore, a percentage cannot be derived, 
in principal, but approximated only. 

                                                           
1 As the term “fault” is widely used, e.g. in context of 

“fault coverage”, this term is kept, although “defect 
coverage” would be the proper term following the 
terminology of this paper. Similarly, „criteria for fault 
identification“ need to be re-considered as “criteria for defect 
identification”, and “fault types” as “defect types”. 
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test. In the simple case, it is represented
number of code instructions executed and
instructions. There are different kinds of
as statement coverage, block coverage,
coverage, or Modified Conditional/D
(MC/DC). 

B. Tool Reports 
A report is a message issued by a 

defect found in the software accor
identification approach. 

A tool may fail to report a defect or 
where no defect is present. There a
depending on whether a defect exists o
tool reports a defect or not (Fig.II-2). 
 

Defect present 

Result 
Defect Reported true positive 
Defect  NOT reported false negative 

Fig.II-2: Classification of Tool Report

The following abbreviations are used

TP true positive, FP false positive 
TN true negative, FN false negative

Sensitivity or recall – as used in i
theory – is defined as the quotient TP
coverage can now be expressed by the se
of true positives and the sum of true 
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defects.  
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constraints on the set of values possible at a given point, 
possibly leading to more reports. 

Values of parameters and global variables may be further 
constrained artificially, e.g. by pre-defining allowed ranges 
which are real subsets of the ranges allowed by their formal 
types. 

Initialization of global variables may be assumed to 
establish fixed initial conditions for their values, or they may 
be considered to be modifiable, including their full or pre-
constraint value set in the set of values examined. 

Even global variables declared to be constant may be 
considered variable, e.g. when analyzing the sensitivity to 
changes in these initial values representing possible 
differences in configuration of the software. 

A variety of possibilities does exist for the assumptions a 
tool makes on the context when assessing the fault potential 
of a piece of code. 

The assessment whether a finding is a TP or FP depends 
on the context considered. Therefore two principal cases 
were applied for assessment: 

a. consideration of the function containing the alleged 
defect as standalone, allowing the full range of values 
for parameters and modifiable global variables 
(“without context”), and 

b. consideration of the function within the context set up 
by its callers (“with context”). 

In the latter case, the whole call tree up to the main entry 
point into the software is considered, if necessary. 

E. Fault Identification Strategies 
Two different views on fault identification exist: 

• the system view, and  
• the library view or view of module testing. 

The system view requires considering the context as it is 
formed during execution of the system. It avoids reports 
about pieces of code with fault potential which cannot be 
activated in context of the current configuration of the source 
code.  

This implies intentionally ignoring faults because they 
cannot compromise system operations in the current version 
of the system. This approach also implies minimization of 
analysis and maintenance effort. 

In contrast, the library view does consider any function 
as standalone. If a function may be put in any context, no 
assumption on the context would be valid. As the term is 
indicating this happens for a function of a library. It is also 
true in case of module testing, when interface functions are 
tested independently, intentionally ignoring the system 
context. This approach leads to a higher rate of detected 
defects, but may imply later a reduced effort for 
maintenance. 

F. Analysis Approaches Applied 
As a consequence of these two views, a tool may benefit 

if a report results in a TP depending on the conditions of the 
chosen assessment type (context or not), or it may be 
depreciated if its reports are classified as FN or FP, while the 

reason for upgrading or downgrading are not really visible 
for the reader of the final defect classification. 

Therefore it has been decided to derive two sets of 
results, based on consideration of the context (again, 
whatever it is for a given tool) or not. 

G. Analysis Approaches by Tools 
The context as described in Sect. II.D is not the only 

aspect which may result in a disadvantage or an advantage 
for a tool. Another aspect is the dynamic modification of the 
context depending on previous faults or defects found.   

This aspect shall be explained by Fig.  II-6. 
No context shall be considered here, i.e. the full spectrum 

of parameter values may be possible. The focus shall be put 
on the length of src and dest (excluding for sake of 
simplicity consideration of possible NULL-pointers). 

 
 
 

 

 
 
 

Fig.  II-6: Dynamic Modification of Assumptions on Context 

Due to the missing context the lengths of src and dest are 
suspicious. Presumably, a tool should issue a report for any 
index>0 (if NULL is excluded, assuming a minimum length 
of 1 could be acceptable, although even a non-NULL-pointer 
may point to non-allocated memory). 

During the evaluation one tool did issue a report for the 
first access dest[3], but not for dest[2] and dest[1], while the 
other tools did. 

According to the process description in Sect. B, the lack 
of reports for the latter two would be counted as false 
negatives towards the first tool, thereby depreciating it in 
terms of sensitivity in relation to the other tools. 

The other tools are not necessarily wrong: Although the 
result of the operation writing to dest[3] is undefined 
according to the C-Standard [2], there is no guarantee that 
the access will lead to abortion of execution. 

The first tool is not necessarily wrong either: When it 
detects that index 3 may be invalid, it produces a report and 
discards the erroneous case for further analysis. In 
consequence, when it reaches the line with dest[2] it has 
made the assumption that the previous code is correct, i.e. 
that dest has 4 elements at least. Therefore no fault is 
flagged in the following lines as the indices 0 – 2 cannot be 
invalid under this assumption. 

Another example of a defect where its status as FP or FN 
is debatable is shown in Fig.  II-7. 

 
 
 
 

Fig.  II-7: Views on Pointer Dereferencing 
Although the expression used as parameter to myFunc in 

the first line includes an array subscript expression, the array 

void myFunc(char *dest, const char *src) { 
  dest[3]=src[0]; 
  dest[2]=src[1]; 
  dest[1]=src[2]; 
  dest[0]=src[3]; 
  return; 
}

myFunc(&myPtr[ind]) original source code 
 

myFunc(myPtr+ind) expression expanded by compiler 



is not actually accessed. The address operator (‘&’) indicates 
that only an address calculation operation is executed [2]. 
The functionally equivalent expression is shown in the 
second line. 

Such an address calculation cannot directly lead to a 
memory access violation. That violation would only occur 
when the resulting address is actually accessed. Thus, it may 
be considered valid for a tool not to report a fault at this 
location but rather at the code location where the actual 
access occurs (here: inside myFunc). A report at this 
location could therefore be considered a false positive, as no 
memory access occurs. 

However, the semantics of the additive operators (‘+’,    
‘-‘) in context of pointer arithmetic state that unless the 
resulting address falls within the object pointed to by the 
base pointer (here: myPtr) or one past its end, the result of 
the address calculation itself is undefined. 

Thus, from the perspective of the language standard, both 
expressions shown in the example would be faulty if the 
index would be allowed to be out of range. 

As a consequence, it could be argued that failure to report 
this at the location of the address calculation implies a false 
negative. 

Such aspects have to be considered when comparing tool 
reports in order to get a fair evaluation. 

Of course, reporting the issue only at the location where 
the pointer is dereferenced may make it more difficult to 
detect the root cause of the error, which is ultimately the 
invalid address calculation at the point of call.  

H. Analysis Methods 
The analysis methods as applied by the selected tools are 

briefly discussed here. 
Symbolic Execution is a method used for analysis where 

the software to be analysed is executed symbolically: Instead 
of concrete values, symbolic variables are used. Similar to 
actual execution, only a specific path through the software is 
executed. 

The immediate result of symbolic execution is a set of 
assignments and conditions in terms of the original input 
which represents the conditions under which the analysed 
path will be executed in the real system. 

An analysis tool can use this information to determine 
whether a given condition can be fulfilled at the end of the 
given path. Such a condition could be, e.g., the presence of a 
NULL-pointer dereference or a division by zero. 

In order to prove absence of a defect at a given point in 
the code, all paths by which this point is reachable have to be 
enumerated, similar to testing. As a consequence, if complete 
enumeration is not possible, the method may miss present 
defects, leading to false negatives. 

Abstract Interpretation[4] is used to approximate the 
semantics of a computer program in order to soundly prove 
certain characteristics of the program, e.g. the absence of 
certain defect types. The set of possible program behaviours 
is conservatively approximated, i.e. all possible behaviours 
are included in the approximation, but not all behaviours 
included in the approximation are possible. 

Thus, if a given (faulty) behaviour is not included in the 
approximation, the program does not have information on 
the behaviour. Thus it is possible to prove the absence of 
faults. The converse is, however, not possible. As a 
consequence, the method may produce false positives. 

By introducing an additional optimistic approximation, 
some of the reports may be automatically pre-determined to 
be true positives. The optimistic approximation represents a 
subset of the possible behaviours of the program. Thus, if a 
faulty behaviour is present in the optimistic approximation, 
the presence of the fault in the program can be proven. 

For Automated Testing the software is actually executed, 
either on the target, on a simulated target or in a version 
ported to a host platform. The software is automatically 
stimulated with inputs and its behaviour is monitored, e.g. by 
instrumentation. As not all possible combinations of inputs 
can be provided to the software – either because that set is 
infinite or too large for practical consideration – the method 
may miss present defects, leading to false negatives. 

However, any input that leads to an error occurring in the 
software is a witness for the presence of the respective fault 
in the code. False positives are only possible if the 
representativity of the test platform is not ensured. Some 
reports may be considered irrelevant in context (see Sect. D). 

I. Tool Configuration 
Every tool provides an own and specific set of 

configuration options. Of course, the chosen set of such 
options impacts the issued reports. 

The selection of a proper set is driven by the following 
goals: 

1. the reports shall be related to the defect types of 
interest, none such report shall be suppressed, 

2. reports not of interest shall be suppressed, to reduce 
the evaluation effort and to avoid that reports of 
interest are not visible within a large set of issued 
reports. 

As a remark to (2): 
One of the tools is very strong in detecting non-

conformances regarding lexical guidelines and standards. It 
supports a large variety of such checks. With all options 
activated about 95.000 reports were issued for 42 KLOC, 
while only a very small part of this set was related to non-
lexical, dynamic issues. Therefore all options related to 
lexical non-conformances were deactivated. 

J. Use of a Fault Database 
In the course of the project a fault database was used to 

investigate the behaviour of tools on concrete examples, if a 
tool report was not sufficiently understood. When required, 
existing examples were varied to get different responses 
from the tool. 

The fault database provides source code for about 100 
defect types which were identified in the course of defect 
analysis in space flight software in the past years. It also 
contains counter-examples, i.e. the respective corrected 
source code, for a number of defect types, to assess whether 
no defect is reported in the correct case. The decision for 
providing a counter-example depends on some (felt) 



uncertainty whether a tool does really only report in case of a 
defect. The example described in Sect. III.A is part of this 
database. More examples follow in Sect. III to explain some 
observations by anonymized code. 

III. LESSONS LEARNED 
A number of lessons had to be learned on the defect 

identification mechanisms and the reporting approaches of 
the tools. 

To one part such lessons are related to unexpected 
behaviour of tools, regarding stability of results, validity of 
reported code coverage, and expressiveness of reported 
defect location. 

To the other part it is a matter of the principal difference 
between getting a report and checking whether it is of 
relevance or not, and comparison of reports from different 
tools and classification of received reports as TP or FP and 
missing reports as FN. 

Some of these issues are discussed below. 

A. Conflicting Tool Conclusions 
When possible, the depth of the analysis was varied. This 

led to an unexpected result in case of an example from the 
fault database, which represents a typical defect related to a 
mix of signed and unsigned expressions. msgLen is of type 
signed char and the signed bit is set., which is expanded in 
the call to 32bit. The resulting value is interpreted by 
memcpy as 4GB-128. One report on the validity of a memory 
range out of three reports (2 on memory range, 1 on 
initialization) is wrong in one case, It is in conflict with the 
other (correct) report on memory range, although the context 
is identical. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.  III-1: Unexpected Result Dependency on Analysis Depth 

A systematic investigation over the verification levels 
yielded the results shown in Fig.  III-2. Surprisingly, the 
report is correct for lower verification levels, but wrong for 
higher levels. 

 
 

 

 

 

 

 

Fig.  III-2: Occurrence of Correct and Wrong Reports vs. Verification 
Levels 

B. Classification of Criticality 
A tool may classify reports already as highly or less 

critical. But the classification details usually differ from tool 
to tool. Then good knowledge on the analysis and 
classification approach of the tool is required to fairly 
compare the reports. 

Reports of higher criticality can be prioritized if a tool 
already does classification of criticality inherently. However, 
it happenned twice that defect types of medium criticality 
were put in a set of uncritical defect types by a tool.  

Excluding such sets which are considered as obviously 
uncritical, will result in FNs for this tool regarding defects 
which are expected in another set. 

Also, the classification for either highest criticality 
(critical, error) or medium criticality (warning) may depend 
on the programming style and/or the chosen configuration 
options. 

 In case of the code shown in Fig.  III-1 the defect related 
to the third argument may be reported as critical / error or 
warning. 

If the contents of global data may be varied over the full 
range, the classification is “warning”, as the critical value 
128 (or -128) of msgLen in TyESVWMsg23 is only one out 
of 256 possible values. 

If not, then the defect is classified as “error” / “critical”as 
it will always occur because no other value than the one of 
the initializer will be considered. 

If the contents may be varied, but const is added to the 
declaration of msgLen in TyESVWmsg23, then the 
classification is “error” / “critical” again, because global data 
are still varied, but not if being declared const. 

In consequence, the programming style and configuration 
options must be considered for the classification of a defect 
inherently performed by a tool. 

C. Percentage Figures Based on an Unknown Reference 
A tool may provide summary figures, also in terms of 

percentage. Then the essential question is, what is the 
reference figure? 

We compared two cases with and without defects for the 
same function while preserving the code structure. 

For the correct version 62 items are reported as reference 
figure (whatever an item is, possibly an applied check), but 
the reported reference figure for the faulty is only 38. 

In case of the faulty version 36 items were considered as 
proven, 62 for the correct version. Therefore the report for 
the wrong case suggests that 94.7% of the checks were 

#define ESVW_MAXLEN 128 
typedef struct TyESVWMsg23 { 
  char msgLen; 
  char msgData[ESVW_MAXLEN]; 
} TyESVWMsg23; 
TyESVWMsg23 ESVWtheMsg23={128,{0}}; 
char ESVW_23_buf  [ESVW_MAXLEN]; 
memcpy(ESVW_23_buf, 
       &ESVWtheMsg23.msgData[0], 
       ESVWtheMsg23.msgLen); 

Low: 
Destination may be  out-of-range of the area given by size 
Source may be   out-of-range of the area given by size 
Size is correctly initialized 

Medium to high: 
Destination may be  out-of-range of the area given by size 
Source is in the area given by size 
Size is correctly initialized 



proven, referring to 38 checks. The report for the correct case 
referred to 62 proven checks. 

For the wrong case the true percentage of checks with 
positive result is 58.1% only instead of 94.7% as reported. 

In consequence, as far as defects are present reported 
figures may be misleading. 

D. Deferred Reports 
A report may not be issued at a location where it could be 

expected as already explained in Fig.  II-7 of Sect. II.G. A 
more detailed example is shown in Fig.  III-3. A report 
would be expected for &buffer[start] in the call of read32. 

A number of such cases were observed and considered 
for comparison of tool reports. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  III-3: Deferred Dereferencing of a Pointer 

This example will also be used for further discussions. 

E. TP or FP or None – Impact of Context 
The context impacts a decision on the classification as TP 

or FP which will be explained by Fig.  III-3. 
If it is a library function which can be called in any 

context, then no assumption can be made on its parameters, 
in contrast to a function which is called from another 
function, possibly being a member of a call tree, defining a 
context, e.g. constraints on parameter ranges or pointer 
values. 

If called on top-level – without context – then the values 
of its pointer parameters may become NULL. Therefore the 
error branch at the entry point of the function may be 
reached. 

However, if the function is called within a context of 
which the source code can be analyzed and in all cases valid 
pointers are passed, e.g. pointers to an array, then the error 
handling part will never be reached, and a tool should report 
an invariant condition for the checks on buffer and tc. 

The following, quite different conclusions for this case 
can be drawn regarding a potential report on an unreachable 
error handling branch:  

If a tool issues 
• a report “unreachable” while not considering context, it 

is a FP.  
• a report “unreachable” while considering context, it is a 

TP. 

• no report – meaning it is reachable – without 
considering context, it is a TN. 

• no report – meaning it is reachable – while considering 
context it is a FN. 

Considering the context usually requires significant effort 
for manual analysis of the constraints occurring along a call 
graph. 

F. Grouping of Reports 
Grouping may be applied by a tool to reduce the number 

of reports. Reports may be grouped when by a fix of one of 
the reported defects all (potential) defects (of that group) will 
disappear. An example for this case is given in Fig.  III-4: 

 
 
 
 
 
 
 
 
 
 
 

Fig.  III-4: Grouping of Reports Possible 
In this case an index check at the beginning – as shown 

as comment – will suppress all reports for the following 
index expressions: such reports may be grouped. 

However, grouping is not possible for the example 
shown in Fig.  III-5 

All the reports on a potentially invalid index do not have 
a common origin. For every index expression an independent 
check is required to suppress a report. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  III-5: Grouping of Reports Not Possible 

errorCode_t enableMonitoring( const byte_t * buffer,  
        const uint32_t buffer_size, enableMonitoring_t * tc ) { 
    uint32_t start = 0; 
    if ((buffer == NULL_POINTER) || (tc == NULL_POINTER)) 
       <error> 
    else { 
        if ( buffer_size < 1 )  // wrong check!! 
           <error> 
        else { 
           tc->elemNo = buffer[start]; 
          start += 1;   // invariant expression !! 
          upLim = tc->elemNo; 
          if (upLim>PARA_MAX) 
             upLim=PARA_MAX; 
          ii=0; 
          while (upLim > ii){                     // PARA_MAX elements 
            read32(&buffer[start], &tc->para[ii].elem);  // buffer+start 
            start += 4; 
            ii++;  
        } 
    } 
    return ret; 
} 

Performed Checks: Pointer is initialized , Local variable is initialized   

int myFunc(unsigned int ind, int arr [4] ) { 
  int ret; 
// if (ind<0 || ind>3) <error>  possible check 
  if (arr[ind] == 0)  ret=0; 
  else  if (arr[ind] == 1)  ret = 1; 
  else  if (arr[ind] == 2)  ret = 2; 
  else  if (arr[ind] == 3)  ret = 3; 
  else ret = -1; 
  return ret; 
} 

int myFunc(int *arr) {
  int ret=-1, ind = 0, ii, jj, upLim; 
  upLim = arr[0]; 
  jj = 0; 
 for (ii==0;ii<upLim;ii++) { 
    jj+=arr[jj]; 
    if (arr[jj] == 0) ret=0; 
    jj+=arr[jj]; 
    if (arr[jj] == 1) ret=1; 
    jj+=arr[jj]; 
    if (arr[jj] == 2) ret=2; 
    jj+=arr[jj]; 
    if (arr[jj] == 3) ret=3; 
  } 
  return ret; 
} 



The exclusion of multiple reports as described in context 
of Fig.  II-6 may also be considered as some kind of 
grouping, because a report is issued once only for a set of 
issues having the same root cause. 

If one tool supports grouping and another one does not, 
the figures on TP, FN and  FP may be not comparable. A 
tool issuing less reports may have a disadvantage when the 
suppressed reports may result in TPs. Vice versa, if they 
would result in FPs, it would get an advantage. 

We tried to compensate such side effects by manual 
modification of the raw data, but decided at the end that the 
unmodified raw data should be more representative, because 
manual modification may introduce unfair conditions for one 
or the other tool, when trying to be fairer to a certain tool. 

For completeness and to show the potential impact of 
grouping – affected by (partial) manual modification of raw 
data – we provide figures on the grouped and not grouped 
cases for some tables in Sect. V. 

G. File Contents 
As the application included file operations (open, 

close), examples in the fault database were established to 
explore the impact of file contents on defect identification 
directly. 

None of the static analysers, but the test tool did consider 
the file contents. The missing context may lead to false 
positives or negatives. 

H. Defects Not Yet or Hardly Detectable by a Tool 
Two examples are provided referring to defects which 

cannot be detected by static analysis, because the wrong 
logic is not subject to their checks. In case of dynamic 
analysis invalid values may be detected. But it depends on 
the actual context. 

Both cases refer to Fig.  III-3. Therefore only code 
snippets are shown here. 

1) Wrong Check on Buffer Size 
The check on buffer_size 

if ( buffer_size < 1 ) 

is not what is intended. This check shall ensure that the 
size of the total data stream in buffer is compliant with the 
number of elements extracted from buffer[0]. Therefore 
the correct check should be: 

if ( buffer_size < (1+buffer[0]*4)) 

The correlation between buffer_size and the 
contents of buffer[0] is not visible to a tool. What is only 
of relevance for the static analyzers is whether 
buffer_size may be less than 1, and 0 does fulfil this 
condition (as it is of type unsigned this is the only possible 
value). 

In contrast, the test tool does have the information on the 
real size of buffer, and can issue a defect report if 
buffer[start] points to an invalid address. 

However, in any case no tool can detect that the check 
does not do what is intended. The static analyzers can only 

highlight a potential risk, and the test tool can report an 
invalid index. 

2) Wrong Error Handling 
Fig.  III-6, upper part, is an extension of the example shown 
in Fig.  III-3. Instead of one loop for decoding of the data 
stream, two nested loops are executed. In this case the error 
handling mechanism of checking whether the upper limit 
PARA_MAX is exceeded and resetting upLim to the 
maximum value does not imply proper error handling for the 
inner loop.  

Limiting the inner loop to PARA_MAX elements, while 
more elements will follow, implies that the outer loop will 
start its next cycle at the wrong offset. The best case is that 
decoding will fail in read4byte_87 and an error is 
detected. But it is most likely – as in both cases the same 
structure is expected – that data are moved to the wrong 
location. 

 

 

 
 
 
 

 

 

 
 

 

 

 

 
 
 

 

 

 

 

 

 

 
Fig.  III-6: Tail of Data Stream Not Skipped 

None of the tools detected this (logical) defect. It was 
detected by review due to another report of the test tool on an 
invalid index for buffer. 

I. Possible False Negatives 
In many cases where initially an FN was presumed it 

could be proven at the end of the analysis that it is not an FN, 
at least according to the internal logic of the tool not 
reporting it. 

However, so far we were unable to find a similar 
justification for the lack of a report in two cases. 

     tc->elemNo_2 = buf[ind];
      ind += 1; 
      upLim2= tc->elemNo_2; 
      if (upLim2>LENGTH_87) 
        upLim2=LENGTH_87; 
      idx2=0; 
      while (upLim2 > idx2){ 
        read4Byte_86(&buf[ind], &tc->elem[idx2].elem0); 
        ind += 4; 
        tc->elem[idx2].elemNo_1 = buf[ind]; 
        ind += 1; 
        upLim1= tc->elem[idx2].elemNo_1; 
        if (upLim1>LENGTH_87) 
          upLim1=LENGTH_87; 
        idx1=0; 
        while (upLim1 > idx1){ 
         read4Byte_87(&buf[ind], &tc->elem[idx2].elem_1[idx1].elem_1); 
          ind += 4; 
          indx1++; 
        } 
      } 
      indx2++; 
    } 

     upLim1= tc->elem[idx2].elemNo_1; 
      idx1=0; 
      while (upLim1 > idx1){ 
         if (idx1 < LENGTH_87) 
         read4Byte_86(&buf[ind], &tc->elem[idx2].elem_1[idx1].elem_1); 
          ind += 4; 
          indx1++; 
       } 
     } 
     indx2++; 
   }



In both of the following 2 examples the functions are 
called on top level, i.e. there are no constraints from context. 

The relevant code is a variation of the code already 
shown in Fig.  III-3 and Fig.  III-6. Therefore a snippet is 
shown only in Fig.  III-7. 

 
 

 

 
 

 
Fig.  III-7: Possible False Negative / Case 1 

At the beginning of this sequence, start is 0, so the 
value of start is 3 after start+=2 in the fifth line. The 
array subscript expression in line 6 thus refers to index 3 of 
the array buffer. 

A check not shown in the example code of Fig.  III-7 
(but in Fig.  III-6) ensures that buffer cannot be NULL. The 
code also includes a check for whether a parameter called 
buffer_size – apparently intended to be set to the size of 
the area pointed to by buffer – has a large enough value, 
similar to the one seen in Fig.  III-3. 

However, besides the apparent intention, there is no 
direct semantic correlation between buffer and 
buffer_size, so that even with this check present, the 
minimum length of the area pointed to by buffer is not 
conclusively established. 

For none of the array subscript expressions in line 2 and 
line 6 a report is issued. The lack of a report for the first 
could be due to a possible implicit assumption that 
dereferencing a non-NULL-pointer (i.e. at index 0) is always 
allowed. That assumption is not valid in general, but may be 
considered reasonable. 

However, the same assumption does not explain the 
absence of a report for the access in line 6. There is no 
information available to the tool that would imply that the 
memory area pointed to by buffer contains at least 4 
elements. 

A similar issue arises for the accesses to bin shown in 
Fig.  III-8. 

It seems that the tool implicitly assumes any non-NULL 
pointer to have sufficient length even if there is no context to 
justify such an assumption. Whatever the reason for the lack 
of reports may be, in practice the respective array accesses 
may lead to an error under the respective circumstances. 
Consequently, the missing reports were classified as false 
negatives. 

It should be noted, however, that the C-language does not 
provide any mechanism of checking the actual size of 
memory available at a location given by an arbitrary pointer. 
There also is no standard mechanism to establish whether a 
non-NULL pointer actually points to allocated memory. 

As a consequence, it is not possible for a developer to 
provide the context required, e.g. in the form of appropriate 
checks in conditional statements. 

It may be subject to debate whether that actually justifies 
implicit and possibly surprising assumptions on the side of 
the analysis tools. The alternative would be explicit 
annotations – in the source code or elsewhere – establishing 
the relationship between the pointer and its associated length 
parameter. 

In contrast, the test tool has information on the size of 
every item explicitly allocated on heap and stack or by 
malloc and can conclude whether an address is valid or not – 
except for objects implicitly allocated in the context of 
initializers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  III-8: Possible False Negative / Case 2 

J. Modification of the Planned Process 
A major finding of this exercise is the difference between 

understanding of a tool report aiming to fix the defect and 
comparing it to reports from other tools, as was explained 
above by many examples. The increase in effort was 
considerable.  

Also, more effort had to be spent on exercises with the 
fault database in order to better understand a number of 
reports sufficiently. The database had to be expanded 
continuously by specific examples to have clean conditions 
for a certain defect type to ease understanding of tool reports. 
Also, variations of the code in the database were required to 
get reports from different points of view. 

For this reason the process described in [1] could not be 
executed as originally planned due to schedule and budget 
constraints.  

start=0; 
tc->elemNo = buffer[start]; 
start += 1; 
read16(&buffer[start],&tc->elem); 
start += 2; 
tc->paraNo = buffer[start]; 
start += 1; 

void getSize(const byte_t *buffer,  
             const uint buffer_size, int *size) 
{ 
  if (buffer_size > MAX_SIZE) 
    <error> 
  else { 
    len= buffer[4] << 8 | buffer[5]; 
    *size=len + 1 + HEADER_SIZE; 
    if (*size > MAX_SIZE) 
      <error> 
  } 
} 
 
The value returned for size remains unknown in binToAsc. 
No conclusion on bin is possible that is not NULL and has sufficient 
size.

void binToAsc(byte_t *bin, uint bin_size,
        const byte_t *asc, const uint asc_size) 
{ 
  getSize(bin,bin_size_&size); 
  if (size > bin_size) 
     <error> 
  else { 
    asc[0]=’0’ 
    asc[1]=’x’; 
    for (ii=0;ii<size;ii++) { 
      low =bin[ii] & 0x0F; 
      high=(bin[ii] & 0xF0) >> 4; 
      merge(&asc[ii*2+2],low,high); 
    } 
  } 
} 



IV. THE EVALUATION APPROACH 
Tool evaluation requires configuration of the tools 

towards the identification of desired defect types and 
harmonisation of reports from the tools towards a common 
set of defect types. 

A. Tool Configuration 
We put the focus of our tool characterization in the 

context of embedded software, especially on space flight 
software, regarding defect types which will or may 
compromise mission goals. Therefore defect types were 
excluded – as far as possible – which are – “only” – related 
to violation of lexical rules or layout of source code files. 
Instead, priority was given to aspects of Reliability, 
Availability, Maintainability and Safety (RAMS) issues. 
Also, configuration options which are not relevant for C 
code were turned off as the application software analysed 
was written in pure C. 

This limitation of configuration options may imply an 
essential cut-off of capabilities of a tool, possibly in areas 
where it is strong. This aspect has to be considered when 
interpreting the evaluation results. Such results are only valid 
for the chosen application area and the subset of functions 
considered during evaluation. They may not be extended to 
the full set of configuration options and software from other 
application areas. 

At the start of the project two evaluation phases were 
planned: 

• an initial phase for which the configuration options 
were chosen according to existing knowledge on 
tools, and 

• an optimization phase for which the progress on 
knowledge about the tools and feedback from report 
evaluation and comparison of reports from different 
tools should be considered. 

However, the second phase was dropped for three 
reasons: 

Firstly, the unexpected higher effort for comparison of 
reports did not allow a second phase within budget and 
schedule constraints. 

Secondly, the degree of variation for the configuration 
options was not as high as assumed initially, and thus the 
expected impact on the reports was considered as negligible. 

Thirdly and finally, the driver for the second phase was 
the intention of a fair evaluation: no tool should have a 
disadvantage due to initially insufficient knowledge about it. 
However, as already explained in Sect. II.C – II.G, the 
increasing knowledge on the defect identification 
mechanisms of the tools was already achieved in the first 
step, also resulting in reruns for more specific analysis of the 
issued reports and the related background. 

However, after composing of the results, a comparison of 
figures yielded unexpected low values for sensitivity of tool 
4. A detailed check showed that reports on “unused results” 
(see Tab.  IV-1) which may result in true positives were 
excluded as the related defect type was classified by the tool 

as a type which was excluded in general initially (see 
remarks in Sect. III.B), because most of these reports were 
considered as not relevant regarding the safety issues 
discussed above. Unfortunately, it was detected lately at the 
end of evaluation by a review of the results, that two FPs 
should have been considered for this tool.  

Similarly, this also happened for Tool 2 regarding 
“recursion”. Due to a high number of reports on MISRA-C 
rules such reports were not considered as (potentially) safety 
critical. However, rule 17 addressing recursion was also 
excluded, unintentionally. 

Further analyses yielded however, that the impact of the 
missed TPs does not significantly impact the evaluation 
results. 

B. Spectrum of Principal Defect Types 
Harmonisation of all reports ended up in a set of common 

defect types onto which all reports can be mapped. In 
addition, a criticality level was assigned to each such defect 
type. Tab.  IV-1 shows the common set of defect types and 
Tab.  IV-2 the chosen criticality levels. Probabilities of 
defect activation or potential recovery were not considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Tab.  IV-1: Common Set of  Defect Types 

 
 
 
 
 
 
 
 
 
 

Tab.  IV-2: Criticality Levels 

Criticality Level Comment 
Critical The defect type does impact the correctness of system 

operations if being activated, i.e. it manifests to an 
error or a failure. 

Warning The defect type highlights a possibly unintended 
operation in the source code which may, but not 
necessarily does manifest as  a critical defect. 

Uncritical The defect type is neither critical nor can it be 
considered a warning. 

Defect Type Criticality Level
Array Index Out-of-Bounds Critical
Dereference of Invalid Pointer Critical
Dereference of NULL-Pointer Critical
File Access Error Critical
Invalid function pointer Critical
Non-terminating Loop Critical
Passing invalid argument to standard library routine Critical
(Possible) Recursion Critical
Resource Leak Critical
Undefined Result of Arithmetic Operation Critical
Uninitialized Variable Critical
Arithmetic Operation on NULL Pointer Warning 
Invariant Condition Warning
Invariant Expression Warning
Parameter Type Mismatch in Function Call Warning
Timeout during execution Warning
Unnecessary loop construct Warning
Unreachable Code Warning
Unused Result Warning
Multiple return paths Uncritical 



Defect Type 
TP Selected for 

Evaluation with w/o
Array Index Out-of-Bounds 120 126 x
Dereference of Invalid Pointer 31 47 x
Dereference of NULL-Pointer 3 8 x
File Access Error 1 1 x
Invalid function pointer 2 2 x
Non-terminating Loop 1 1 x
Passing invalid argument to standard library 
routine 1 1 x 

(Possible) Recursion 1 1 x
Resource Leak 2 2 x
Undefined Result of Arithmetic Operation 2 2 x
Uninitialized Variable 14 15 x
Arithmetic Operation on NULL Pointer 0 3
Invariant Condition 16 12 x
Invariant Expression 44 44
Parameter Type Mismatch in Function Call 2 2 x
Timeout during execution 1 2 x
Unnecessary loop construct 1 1
Unreachable Code 61 45 x
Unused Result 58 58 x
Multiple return paths 12 12
Total 373 385

C. Characterization of the Software 
The software package chosen for this exercise is 

middleware for use on-board of a spacecraft. It consists of a 
common kernel and several dedicated additional application 
sets for data management including TM/TC handling, input-
output handling, event handling, file operations, etc. 

The middleware can be configured for 3 operating 
systems: Linux[5], Pike OS[6], VxWorks[7]. 

The largest application set (data management) together 
with the kernel was selected and configured for Linux.  

Infinite loops – like “while (1)” typical for waiting on 
events in task bodies – were replaced by a finite number of 
iterations to enforce termination during test.  

 
 
 
 
 
 
 
 
 
 
 
 

Tab.  IV-3: Characterization of the Chosen Software Package 

Tab.  IV-3 shows its properties and Tab.  IV-4 the 
spectrum of the fault types in terms of numbers as observed 
in the evaluated subset of functions. The software was 
provided in 49 files, but only 39 files provided function 
bodies. 

The evaluated functions were selected in two ways: 
• Subset 1 was chosen according to the number of 

reports per function, giving priority to the highest 
number, resulting in 26 functions. 

• Subset 2 was chosen by random selection from the full 
set. By chance it contains 5 functions also contained in 
Subset 1. The size of this set was constrained by an 
upper limit on the evaluation effort, resulting in 39 
functions. 

The results from both sets were merged for final 
evaluation. In total, reports from 60 functions out of 610 
were considered. Tab.  IV-5 shows the number of reports for 
the different combinations which were subject of evaluation 
and Tab.  IV-6 the number of reports issued for all functions. 

The set of defect types marked by an “x” in Tab.  IV-4 is 
called “weighted” and is later referred to when the results are 
presented in Sect.V. For this set four defect types were 
dropped because they are not considered as such critical as 
the other ones. 

The Application Interface (API) of the middleware 
consists of 376 functions out of the full set of 610 functions. 
For evaluation no assumption on the context shall be made 
for the API functions, while for the low level functions the 
context as provided by the API functions may be considered. 
No contract constraining the input of the API functions is 
visible. 

Tab.  IV-4: Spectrum of Observed TP in the Application Software  (not 
grouped 

 
 
 
 
 
 
 
 
 
 

Tab.  IV-5: Number of Reports Considered 
 
 
 
 

Tab.  IV-6: Number of Reports Issued by the Tools 

In part, the API functions are checking the validity of the 
inputs, e.g. NULL-pointers and insufficient size of buffers. 
But to some part such checks do not fully reject invalid data. 

About 96 functions (as far as could be identified by 
manual inspection), i.e. about 15%, were auto-coded, at 
least. During analysis of reports it was soon recognised that 
the code generator did not produce code as intended in some 
cases, i.e. the auto-code was faulty in part and the same fault 
patterns repeated in a subset of the auto-coded functions. 

This had to be considered when defining the subsets for 
evaluation in order not to get too many faulty auto-coded 
functions disturbing the statistics. 

Property Quantity %
Size / KLOC 42 -

Functions, total 610 -
API Functions 376 61,64
c-Files 39 / 49 -

h-files 96 -
Functions, evaluated 60 9,84
Files of evaluated functions 22 56,41

Size of evaluated functions / KLOC 3 7,15

Report Grouping 

Number of Reports (Set 1)

TP+FP 
TP FP

with 
ctxt 

w/o 
ctxt 

with 
ctxt

w/o 
ctxt

Non-
Grouped 

all defect types 500 369 381 131 119

weighted 439 311 320 128 119

Grouped 
all defect types 270 195 201 75 69
weighted 231 159 162 72 69

Tool 1 2 3 4 5 6
Reports 146 742 1481 4995 2106 9



D. Characterization of the Tools 

The spectrum of analysis approaches represented by the 
tools is quite broad, and defect identification by the different 
tools is based on a number of independent methods and 
implementations (Tab.  IV-7). 

Tools 1, 2, 4 and 5 are static analyzers, Tool 3 applies 
dynamic analysis (automated built of the test and stimulation 
environment), tool 6 is the gcc – added for comparison. 

 

 

 

 

 

 

 
Tab.  IV-7: Characteristics of Tools 

The tools were configured with focus on options 
regarding reporting of safety aspects. The gcc was run with “ 
–Wall”, but not with “-On”. 

V. EVALUATION RESULTS 

A. Complementarity of Tools 
Tab.  V-1 gives summary information on the 

complementarity of the tools, i.e.,the unique contribution by 
the tool in terms of the number of TP as compared to the 

overall number of TP. For column ‘all’ contributions to all 
defect types were considered, for column ‘weighted’ 4 defect 
types were removed. 

Tab.  V-1: Unique TP Contribution to a Defect Type per Tool 

It is surprising, that the sum of all unique contributions is in 
the range of 58% to 68%, i.e. only about 1/3 of the TP are 
reported by more than one tool. 

B. Sensitivity and Precision of Tools and Tool 
Combinations 

Figures on a single tool and combinations of two tools are 
provided in Tab.  V-2 and Tab.  V-3. 

The rational for providing combined figures is: No tool does 
cover all considered defect types. Therefore a user may want 
to know: When I am already using tool A, what do I gain by 
adding tool B? 

Tool

Criticality Level (with context, not grouped) 

critical warning All (weighted) 

TP+
FP S P TP+

FP S P TP+
FP S P 

1 9 0,04 0,78 21 0,16 1,00 30 0,09 0,93
2 138 0,40 0,51 27 0,20 1,00 165 0,32 0,59
3 101 0,44 0,78 85 0,31 0,48 186 0,39 0,65
4 55 0,30 0,98 43 0,29 0,91 98 0,30 0,95
5 100 0,44 0,78 71 0,53 1,00 171 0,48 0,78
6 0 0 n/a 2 0,02 1,00 2 0,01 1,00

Tab.  V-2: Sensitivity and Precision vs. Criticality Levels 

In Tab.  V-3 the figures of a single tool can be found on the 
diagonal of the matrix. In both tables, cells are highlighted 
for the best values regarding sensitivity. 

Tool A 
in Use 

Sensitivity if Tool B added 
 (weighted, with context, not-grouped) 

1 2 3 4 5 6 
1 0,09 0,34 0,44 0,33 0,54 0,10 
2 0,34 0,32 0,57 0,52 0,68 0,32
3 0,44 0,57 0,39 0,61 0,77 0,39
4 0,33 0,52 0,61 0,30 0,65 0,31
5 0,54 0,68 0,77 0,65 0,48 0,49 
6 0,10 0,32 0,39 0,31 0,49 0,01 

Tab.  V-3: Sensitivity for Combinations of 2 Tools and Set “Weighted” 
(context, not-grouped) 

 

Tool A 
in Use 

Sensitivity if Tool B added  
(critical, with context, not-grouped) 

1 2 3 4 5 6 
1 0,04 0,41 0,46 0,33 0,46 0,04
2 0,41 0,40 0,69 0,67 0,65 0,40 
3 0,46 0,69 0,44 0,71 0,74 0,44 
4 0,33 0,67 0,71 0,30 0,54 0,30
5 0,46 0,65 0,74 0,54 0,44 0,44
6 0,04 0,40 0,44 0,30 0,44 0,00

Tab.  V-4: Sensitivity for Combinations of 2 Tools and Criticality Level 
“critical” (context, not-grouped) 

Sensitivity is increased for  Tools 2 and 3 when 
considering the “critical” subset only, compared to 
“weighted”, while sensitivity for Tools 1 and 5 decreases 
slightly, but increases for “warning”. The sensitivity of Tool 
4 does not (much) vary. 

The figures vary slightly for other combinations of 
(context, grouping).  Tab.  V-5 and Tab.  V-6 show the 
results for the grouped case. 

Tool 

Unique TP Contributions 
All (non-weighted) weighted 
ctxt w/o ctxt ctxt w/o ctxt

TP % TP % TP % TP %
1 1 0,27 1 0,26 1 0,32 1 0,31
2 29 7,86 29 7,61 29 9,32 29 9,06
3 65 17,62 56 14,70 65 20,90 56 17,50
4 27 7,32 27 7,09 27 8,68 27 8,44
5 126 34,15 131 34,38 69 22,19 71 22,19
6 2 0,54 2 0,52 2 0,64 2 0,63

Uniq 250 67,75 246 64,57 193 62,06 186 58,13
Total 369 381 311 320

Tool Type Analysis Approach
1 static symbolic execution, data flow
2 static abstract interpretation  
3 dynamic auto-stimulation  
4 static symbolic execution, dataflow
5 static dataflow  
6 compiler syntax, type checking  



Tool A 
in Use 

Sensitivity if Tool B added 
 (weighted, with context, not-grouped) 

1 2 3 4 5 6 
1 0,11 0,44 0,43 0,19 0,61 0,12
2 0,44 0,40 0,60 0,43 0,79 0,40 
3 0,43 0,60 0,38 0,40 0,81 0,38 
4 0,19 0,43 0,40 0,14 0,64 0,14
5 0,61 0,79 0,81 0,64 0,56 0,57
6 0,12 0,40 0,38 0,14 0,57 0,01 

Tab.  V-5: Sensitivity for Combinations of 2 Tools and Set “Weighted” 
(context, grouped) 

 

Tool A 
in Use 

Sensitivity if Tool B added  
(critical, with context, not-grouped) 

1 2 3 4 5 6 
1 0,07 0,72 0,46 0,15 0,47 0,07
2 0,72 0,69 0,88 0,72 0,81 0,69
3 0,46 0,88 0,42 0,47 0,63 0,42 
4 0,15 0,72 0,47 0,11 0,49 0,11 
5 0,47 0,81 0,63 0,49 0,46 0,46
6 0,07 0,69 0,42 0,11 0,46 0,00

Tab.  V-6: Sensitivity for Combinations of 2 Tools and Criticality Level 
“critical” (context, grouped) 

In the grouped case Tool 2 gets an advantage for the 
“critical” subset. However, as was already mentioned that 
grouping had to be done manually for all tools except Tool 5, 
to make the data comparable. But the modified data may not  
not exactly represent the basic properties of the tools (except 
Tool 5) due to manual intervention, thereby possibly 
overcompensating the figures for Tool 2. Therefore we 
consider the non-grouped case as more representative, as it 
refers to the raw data as delivered by a tool, and provide the 
figures on the grouped case for information only, indicating 
potential deviations and impact by manual modifications. 

Tool 4 is rather strong regarding precision, but weaker 
for sensitivity. The gcc gets also good precision figures, but 
achieves very poor sensitivity, or because of the low 
sensitivity. This may be higher if higher optimization options 
will be activated, which may be done in another future 
exercise. 

VI. CONCLUSIONS 

A. Sensitivity and Precision of a Tool 
Sensitivity of a single tool reaches nearly 50%, and 70% 

for the grouped case which however is considered as an 
artificial case due to manual modification of the raw data. 

The precision of tools, i.e. the figure indicating an 
analysis overhead due to false positives, is in the range of 
60% to 100% regarding all defect types. 

The sensitivity figures vary slightly for different sets of 
defect types, indicating that a tool is stronger or weaker 
regarding certain defect types. 

B. Unique Contributions 
The unique contribution of a tool to the overall set of true 

positives may be considerably high. Surprisingly, the unique 

contributions from all tools amount to about 65%, i.e. only 
about 1/3 of the found true positives are reported by more 
than one tool, but about 2/3 are reported by one tool only.  

C. Tool Combinations 
When combining two tools the maximum sensitivity 

increases to about 80%, while precision is slightly depending 
on context and grouping. 

But even for the best combination of two tools yielding a 
sensitivity of about 80% (not grouped), about 20% of defects 
will remain undetected. 

D. Dependencies 
Considering the sensitivity for a single tool, the impact 

by context – with and without – is marginal. In contrast, the 
impact by grouping – grouped or not grouped – is slightly 
higher (5% up to 20%) because the number of reports varies 
significantly.  

In most projects one tool only is applied – for cost 
matters – together with functional testing. The open question 
is – to answer it was out-of-scope of the project – whether 
the remaining 50% defects could be found by functional 
testing.  

In general, it seems, the lower the number of true 
positives, the better the precision. This is not surprising: the 
lower is the number of issued reports, the lower is the chance 
for a false positive. 

The derivation of summary figures for all defect types 
depends on the defect profile of the application. Defect types 
with a high number of true positives get a higher weight 
compared to others with a low number. 

We have chosen this approach because it seemed to be 
the most fair one, but any weights may be applied if desired.  

As an example, resource leaks may be higher weighted 
due to criticality considerations compared to their occurrence 
in the application, which is rather low. 

E. Convergence and Completeness of Defect Identification 
A higher analysis depth does not necessarily imply a 

higher quality of the reports, and a monotonically increasing 
analysis depth does not imply that the true positives also 
converge to the final set. 

Support of a certain defect type does not imply that a tool 
will find all defects of that type. 

F. Impact on Software Verification Plan 
Knowledge about profiles of tools regarding sensitivity, 

precision, complementarity of tools and the benefit of tool 
combinations should be useful when writing the verification 
plan. 

By recent discussions with tool vendors we learned, that 
not all tool vendors put the focus on the sensitivity only, but 
on the response time, too. Therefore a user should be aware 
of different strategies. 

A tool vendor may prefer a compromise between 
sensitivity and response time: being not complete in 
reporting, but allowing by a fast response fixing of a number 
of issues immediately (see Fig.  VI-1). 

In contrast, high sensitivity may imply a longer response 
time, and address more complex, but fewer defect types. 



Such aspects should be considered in advance by a user 
when selecting a verification tool or a set. 

Believing that every tool will aim to achieve the highest 
sensitivity figure at low response times or not knowing 
which defect types are supported by a tool may result in a 
degradation of the verification approach. 

In addition, the applied method or its implementation 
may already limit the number of defect types which can be 
detected by a tool. Therefore higher sensitivity should be 
achieved by diversification of tools. 

Fig.  VI-1 shows indicatively the areas covered by the 
tools in a sensitivity-response representation. There is no real 
scale, the axes just should give an idea on how the tools do 
cover sensitivity and response time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  VI-1: Tool Classification by Sensitivity and Response Time 

As Fig.  VI-1 indicates, the performance of a tool 
depends on the spectrum of supported defect types and 
intended completeness of reports in combination with the 
response time. 

G. Final Assessment 
A user has to think about what is the best tool or tool 

combination for the intended application and the quality goal 
/ gate. 

A considerable part of defects was found in defect 
handling parts – as already observed during previous 
activities. In some cases even defects were induced for 
correct system states by the error handling part. Obviously, 
such parts are not subject of extensive verification. This 
raises the question whether defect handling is meaningful at 
all if not sufficiently verified at the end. 

Two cases for consideration of context were analysed – 
with and without – to evaluate the impact on the sensitivity. 
The differences are not as high as expected.  

The gcc was added to investigate how well a compiler 
already does verification. It seems that the focus of a 
compiler – code generation – covers only a small part of the 
scope of verification. However, its contribution may increase 
if optimization is switched on. 

Activation of lexical checks is meaningful only if the 
corresponding rules were / should have been applied right 
from beginning of development. Applying the checks to 
software which was not developed under such constraints 

may result in a huge number of useless reports 
compromising the detection of critical reports – “useless” 
because at this time in a project it is usually impossible to 
apply modifications of this extent to the source code due to 
schedule constraints. 

After analysing about 500 reports our conclusion is: 
The percentage of false positives is not such high as 

expected and communicated. On the average it amounts to 
about 25%.  

Amongst the true positives we saw many reports which 
would not have been issued if best practices would have 
been applied. The development effort related to an increase 
of quality by applying best practices is close to zero – in our 
mind. But not doing so multiples of the effort saved at 
development time need to be spent later for analysis of – 
valid – tool reports. 

The best report is a report not being issued at all i.e. not 
giving any reason to issue a report. The programming style 
may heavily affect the number of true positives. If 
complaining about too many reports, the reason for the high 
number should be investigated. 

Once the acceptance criteria have been defined – 
preferably before coding starts – checks on compliance with 
these criteria should be performed periodically and as soon 
as possible to obtain a feedback and being able to adapt 
coding to the given and accepted rules. 

A high number of reports may not be a matter of the 
tools, but in many cases also a matter of coding and 
compliance (or non-compliance) with given rules. 

The obtained results presented in this paper may not be 
valid in general. The focus was put on embedded systems, 
critical defects (as defined by the authors) and middleware 
foreseen for use in a space flight application. Therefore some 
valuable features of a tool, e.g., regarding security, lexical 
checks, might not have been considered during evaluation, 
which may be of high interest in the scope of another 
application domain. 

H. Outlook 
The evolution of results due to modification of the 

following parameters may be subject of future work: 
• the amount of evaluated reports,  
• the type and size of an application package,  
• the defect profile of an application package,  
• the tools considered, 
• stability and convergence of results regarding analysis 

depth and configuration options. 

Further, an extended evaluation of the database regarding 
more aspects and correlations, e.g. require effort, and 
derivation of graphics may be performed. 

Figures on evaluation effort for true and false positives 
for single tools and tool combinations have been recorded or 
derived, but could not be considered due to schedule and 
budget limitations. 

Another field of evaluation may be whether 
combinations of three or more tools provide any significant 
additional benefit in comparison to the effort added for 
analysis of the reports of these additional tools. Of course, 



one possibility for reducing the effort in general is 
standardization of reporting among tools so that automated 
consolidation of reports becomes possible. 

In future the support software for evaluation and 
comparison of reports needs to be extended in order to 
reduce the amount of manual effort and to allow evaluation 
of more reports. 

The obtained results shall also be discussed with tool 
vendors / distributors. 

Future work may address an extension of the database 
and higher independency of the software applied for 
evaluation by   

• same software, but other tools, 
• other software, but same tools (in part) and other 

tools. 

I. About the Tools 
Tab.  VI-1 gives the names of the tools as far as the 

disclosure was approved by the tool supplier at the time of 
finalizing this paper. 

Id Status Name of
Tool Supplier

1 disclosure not decided yet  
2 disclosure not decided yet  
3 approved DCRTT BSSE

4 no explixcit approval 
received 

 

5 approval received QA C PRQA
6 open source gcc 

Tab.  VI-1: Evaluated Tools 

REMARK 
Details on the analysis approaches of the tools and the 

classification criteria as well as a detailed discussion of the 
results are out of scope of this paper. 
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