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Abstract—In a previous study six software verification tools 
have been applied to a representative space software package. 
The findings reported by each tool have been compared in 
order to derive footprints regarding fault identification. In a 
continuation three more tools were applied to the previously 
selected application software and to another application 
together with two tools previously used in order to broaden the 
base of evaluation. More aspects were considered regarding 
the evaluation of results: an additional evaluation criterion was 
added and a comparison of reported defects with the outcome 
of unit tests was performed. Due to a higher degree of 
formalization and automation the manual evaluation effort 
could be decreased while extending the number of considered 
reports and the number of tools. The encountered evaluation 
and verification issues are discussed in detail. All results 
together shall provide a detailed view on the defect 
identification capabilities of the considered tools w.r.t. current 
software base. Altogether, the high quality of reports as 
obtained in the previous study was not obtained again: in 
context of a different set of tools and another (object-oriented) 
language a lot of trivial reports were observed. 
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I. INTRODUCTION 
In [1] results of a first step towards evaluation of 

verification tools were presented and discussed. In this paper 
we provide results of a continuation of the tool evaluation 
activities. 

The conclusions at the end of the previous study 
suggested broadening the base of the evaluation by 
considering more tools and more application software. 
Therefore another representative software package was 
selected and three further tools were added to the set: Frama-
C, PC-lint and a commercial third one, for the disclosure of 
which no permission was given yet. Due to the results of the 
earlier activity regarding tools’ capabilities and applicability 
to the space domain, three tools from that earlier evaluation 
were not considered to be of further interest and were not 
part of the present evaluation. 

The recently obtained results are quite different from the 
previous ones. While the amount of reports and their 
classification as true and false positives was rather 
straightforward in the first study, the number of reports was 
significantly higher and their classification was rather 
challenging. Not only the amount increased as such, but a 
high number of trivial reports was observed not contributing 
any value, but compromising heavily the recognition of true 
positives in the large set of reports. 

However, this observation shall not be considered as a 
counter argument regarding the benefit of analysis tools. It 
should be understood that a careful selection of tools is 
required in order to maximize defect identification and 
minimize the related effort.  

The deeper analysis of the defect identification and 
reporting mechanisms led to the conclusion, that just to buy 
and apply a tool at the end of development is not sufficient. 
In fact, a developer also can contribute a lot to reduce the 
amount of reports on suspicious code, implying fault 
potential, but not causing a risk in the current context. 

A major point is the continuous use of such a tool over 
the development period, which is not a new message, but it 
has been confirmed again. 

For comparison of results of analysis with unit testing the 
tool reports were correlated with the results achieved by unit 
testing to investigate how complementary or overlapping 
both aspects of software verification are. 

This paper is structured in the following manner: 
In Ch. II principal terms are explained required to 

understand the evaluation process and the results. In Ch. III 
the evaluation context is described, as well as the software 
and the tools used. The evaluation process is explained in 
Ch. VI. Verification issues are discussed in Ch. V. The 
evaluation process is described in Ch. VI. The evaluation 
results are presented in Ch. VII. Lessons learned are 
provided in Ch. VIII, and in Ch. IX conclusions are drawn. 

II. DEFINITION OF TERMS 
The terms relevant for understanding the evaluation 

process are defined in this chapter. 
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A. Tool Report 
In the context of this paper a “tool report” is a message 

issued by a tool indicating that one of its verification rules is 
violated. 

B. Defect, Fault, Error, Failure 
A defect commonly refers to troubles with a software 

product, with its external behavior or its internal features 
(e.g., its maintainability). This includes consideration of the 
risk of faults by potential changes of the context, which 
could invalidate previous verification results. For details 
please refer to [1]. 

C. Defect Types 
Defects can be grouped into “defect types”, so that a 

defect is considered as an instance of a defect type. Many 
defects of the same defect type may be reported. 

Defects of the same type may be called differently by 
different tools. In consequence, for matter of comparison, the 
terms used for a defect type in a tool report must be mapped 
onto a standard defect type. This mapping may be automated 
by mapping tables. 

D. Criticality of Defect Types 
Four criticality classes were introduced for the defect 

types: critical, warning, uncritical and ignore. 
“critical” means that the defect always manifests itself as 

an error, “warning” that it may manifest case-by-case, and 
“uncritical” that it is a software engineering issue only, not 
manifesting during execution and impacting runtime 
behaviour. Finally, “ignore” collects all other reports which 
are not considered as useful at all, e.g. providing additional 
explanation to another report, or highlighting a trivial case 
which would not be subject of corrective maintenance at all. 

E. Classification of Tool Reports 
In general, a report is a message issued by a tool on a 

supposed defect found in the software according to its defect 
identification approach, usually based on violation of 
verification rules. 

A tool may fail to report a defect or may report a defect 
where no defect is present. There are 4 distinct cases 
depending on whether a defect exists or not and whether a 
tool reports a defect or not (Fig.II-1). 
 Code 

Defect present Defect NOT present

Result 
Defect Reported true positive,   TP false positive, FP
Defect  NOT reported false negative, FN true negative, TN

Fig.II-1: Classification of Tool Reports 

The characteristics of a tool regarding its capabilities to 
correctly report defects shall be described by two figures: 

Sensitivity:  it is defined as the quotient TP / (TP+FN).  
Precision    it is defined as the quotient TP / (TP+FP) 
Sensitivity represents the portion of confirmed defects 

(TP) in relation to the overall number of defects. As the 
overall number of defects remains unknown, it is 
approximated by the set of confirmed defects found by all 

tools or by analysis in the context of manual assessment of 
the reports. 

Precision represents the portion of reported defects that 
are actual defects compared to the number of issued reports.  

F. Complementarity of Tools and Tool Combinations 
A result of previous evaluation is that no tool can cover 

all defect types: tools may be complementary or overlapping. 
To maximize defect identification in the context of 
verification in a project, especially for identification of the 
tools being made mandatory in the Software Verification 
Plan (SVP), it is essential to know which combination of 
tools increases the sensitivity and how much. 

The more tools are complementary, the higher is the 
portion of unique contributions by tools. 

G. Report Classification 
For classification of tool reports as TP or FP two main 

criteria were applied with two sub-criteria each (Fig.  II-2): 
•  Criterion 1: tool criterion 
•  Criterion 2: state criterion 
•  Sub-Criterion 1: without context 
•  Sub-Criterion2:  with context 

The “tool criterion” was applied in the previous study, 
and there it was the only one. The classification is purely 
performed by answering the question “Is the tool right or 
not”. 

Now, in addition the “state criterion” was introduced to 
consider whether an undesired state could result from the 
reported defect. If so, the report is classified as TP, otherwise 
as FP. 

Cases may exist where the tool is right, but the resulting 
state is still valid. A typical example is “while (1)”. In a task 
body, this construct is frequently used and the non-
termination of the loop is intended.  

 
 
 
 
 
 
 
 
 

Fig.  II-2: Evaluation Criteria 
Similarly, release of a resource may not be intended, 

because the application will never terminate, so that the state 
resulting from the endless loop or the not intended release of 
the resource will either not be of relevance or not matter at 
all. 

These examples show that the state criterion is not an 
objective criterion: the decision may depend on a supposed 
intention or consideration of an extended evaluator-defined 
scope not seen by a tool. Whether an undesired state will 
occur, may also depend on the platform and the algorithm 
implemented in the code. 
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Therefore it does not seem to be a suitable criterion to 
compare the tools. 

The decision on FP or TP may also depend on the 
context as explained in the following section. 

H. Context and Platform Dependency 
The constraints imposed on the input domain of a 

function, as spawned by the type ranges of its parameters 
together with conditions or constraints imposed by its call-
context, is called “the context” of a function call. In case of 
the sub-criterion “without context” the full input domain and 
no other constraints are considered. 

Different results may be derived depending on whether 
considering the context is activated or not. The context may 
constrain the input domain, so that a defect cannot be 
activated or cannot manifest as error or failure. A report may 
be considered as TP in the context of the full input domain, 
but as FP in the context of an application imposing a limited 
input domain. 

The number of considerations can be minimized for 
context-sensitive defect types due to the following 
conclusions: 

•  In case of dead code and invariant conditions a TP for 
the case “without context” implies a TP for  “with 
context”. 

•  Vice versa, for the other context-sensitive defect types 
a TP for “with context” implies a TP for “without 
context”. 

The evaluation result also may be affected by the 
properties of the platform (compiler, linker, processor, other 
hardware), and the contents of the data when the suspicious 
code is executed. So it may happen that an overflow in a 
byte-operation is masked by the processor because it always 
applies 32bit-operations, or a linker silently maps data with 
same, but from different compilation units onto each other. 

III. CHARACTERIZATION OF THE EVALUATION CONTEXT 

A. Overview 
Three out of the six tools used in the previous ESVW 

study [1] were no longer included in the activity (they were 
called “1/xxx”, “4/zzz” and “6/gcc” in that study). Instead, 
three other tools were included in the current FSVW study: 
FramaC, PC-lint and a tool called www for the time being, 
yielding five tools in total to be considered. Tab.  III-1 gives 
an overview on the use of tools in both studies. 
Unfortunately, not all names can be disclosed at this point. 
Currently, we have not received a confirmation from the 
vendor of Tool 5 / www in the current set to disclose its 
name.  

Further, another application software package (written in 
C++) was selected. In order to achieve full coverage for the 
current set of tools regarding the two software packages, all 
current tools were applied to the Package 2, except for 
FramaC, which currently does not support C++, and the new 
ones also were applied to Package 1, yielding the matrix 
shown in Tab.  III-2. 

As already done in [1] a subset of functions had to be 
chosen to limit the manual effort for evaluation of the tool 

reports. 
For Application 1 26 functions were selected by fault 

distribution (the ones with highest number of defects), 34 
randomly. In case of Application 2 a first evaluation of 
defect distribution vs. functions yielded no significant 
accumulation of defects for certain functions like it was 
observed for Application 1. Therefore it was decided to take 
the cyclomatic complexity (CC) for selection. CC varied 
from 1 to 16. Five groups were built according to CC and 60 
functions were selected randomly from these groups. 

 
 
 
 
 
 
 
 
 
 

Tab.  III-1: Overview on Tools and Studies 
 
 
 
 
 
 
 

Tab.  III-2: Overview on Tools and Software Packages 

B. The Application Software 
Tab.  III-3 shows the characteristics of both software 

packages. 
 
 
 
 
 
 
 
 
 
 

Tab.  III-3: Characterization of the Software Packages 

C. The Tools 
The spectrum of analysis approaches as listed in Tab.  

III-4 applied by the tools is quite broad, and defect 
identification by the different tools is based on a number of 
independent methods and implementations (Tab.  III-5). 

 
 
 
 
 
 

Tab.  III-4: Spectrum of Analysis Approaches 
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Only those tools are listed there which are still in the set 
of Study 2 / FSVW. 

Tools 1, 2, 4 and 5 are static analysers, Tool 3 applies 
dynamic analysis (automated built of the test and stimulation 
environment). 

Abstract Interpretation is used to approximate the 
semantics of a computer program in order to soundly prove 
certain characteristics of the program, e.g. the absence of 
certain defect types.  

 
 
 
 
 
 
 
 
 
 
 

 
Tab.  III-5: Characteristics of Tools 

For Automated Testing / auto-stimulation the software is 
automatically stimulated with inputs and its behaviour is 
monitored, e.g. by instrumentation. As not all possible 
combinations of inputs can be provided, the method may 
miss present defects, leading to FNs. However, any input 
that leads to an error is a witness for the presence of the 
respective fault in the code. FPsare only possible if 
representativeness of the test platform is not ensured. 

Symbolic Execution is a method used for analysis where 
the software to be analysed is executed symbolically: Instead 
of concrete values, symbolic variables are used. Similar to 
actual execution, only a specific path through the software is 
executed. In order to prove absence of a defect at a given 
point in the code, all paths by which this point is reachable 
have to be enumerated, similar to testing. As a consequence, 
if complete enumeration is not possible, the method may 
miss present defects, leading to FNs. 

D. Tool Configuration 
Every tool provides its own and specific set of 

configuration options. Of course, the chosen set of such 
options impacts the issued reports. 

The applied configuration options are briefly described in 
the following sub-sections. 

1) Tool 1: FramaC 
The value-analysis-plugin of FramaC (version Silicon) 

was subject of evaluation. 
In case of FramaC several attempts were required to find 

a suitable configuration. 
There seems to be no knowledge on trade-offs between 

execution time and accuracy of results. Therefore the 
configuration parameters slevel, plevel and ulevel were 
reduced in three steps from the highest value down to a value 
where the tool terminated its run within three days. 

2) Tool 2: yyy 
The same optimized configuration as in the previous 

study (especially regarding a 32-bit application) was applied 
to the C++ application with the following additional 
decisions. 

Reports on non-initialized class members were turned off 
as they lead to errors which block further code analysis. 

The tool failed initially and the software was provided to 
the tool supplier. According to the feedback one function 
was stubbed as work-around. 

3) Tool 3: DCRTT 
The same optimized configuration as in the previous 

study was applied to the C++ application. However, three 
runs were executed: the first one under consideration of 
constraints on function parameters and global variables 
regarding data ranges and size of arrays, collected 
automatically, and with call of suitable initialization 
functions, while for the second and third run such constraints 
were removed stepwise. 

The reason for execution of  the additional runs was that 
the constraints were also present for the “without context”-
case, and may hide reports, while intentionally the 
constraints were inherently considered to reduce the number 
of FP-reports for the “with context”-case. 

4) Tool 4: PC-lint 
The standard configuration of PC-lint was applied. Only 

the options for the maximum width for integer and float were 
set to 32-bit (-si4 -sp4), as the application was written for a 
32-bit processor. 

Although PC-lint offers the opportunity to switch off 
report types on a case-by-case basis, this capability was not 
applied. Instead in the course of the mapping of tool report 
types onto standard defect types, report types which were 
considered as irrelevant were mapped onto an additional type 
“DefectTypeIgnored” in order to get rid of such reports in 
the course of manual evaluation.. 

5) Tool 5: www 
The standard configuration for this tool was used, except 

for raising the dataflow analysis level to the maximum. 

IV. TOOLS VS. UNIT TESTING 
The intention of a comparison between results of tool 

analysis and unit testing should clarify what the benefit of 
each of the approaches is, and whether they are 
complementary or overlapping, and if so to which degree. 

A. Overview on the Approach 
For each (executable) line of the source code a marker 

was added indicating 
•  whether the line was covered by a unit test at all, and 

in detail,  
•  by which unit test out of the whole set, 
•  whether the line includes a “normal” statement / 

expression or a condition, and  
•  if available, information was added whether an 

exception or a defect was detected during a unit test. 
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Cross-module coverage was considered, i.e. if a unit test 
did not only generate coverage in the function-under-test, but 
in the call tree as well. 

The stream of lines of an application, either for the whole 
set of functions, or the selected subset, formed the basis for 
correlating the tool reports with coverage results from unit 
tests. This way, contributions from unit tests and analysis 
tools were compared.  

If a tool reports a defect for a covered line, obviously the 
defect was not detected during the test. Vice versa, if a defect 
was detected during unit testing, but not by analysis, then a 
tool is not sensitive for this defect. 

In consequence, the more either a tool reports or a test 
highlights a defect, but both do not for the same defect and 
the same line, the higher the complementarity of analyses 
and unit testing. 

As (additional) contribution by tools the following 2 
cases are considered: 

•  If a line was covered and a TP was reported for this 
line, then the defect can be assumed not to be 
detectable by a unit test. 

•  If a line was not covered and a TP was reported for this 
line, then the analysis brings an added value by 
reporting a defect for a location, not addressed during 
unit testing. 

Vice versa, as additional contribution from a unit test with 
respect to tools the following case is considered: 

•  If a line was covered and a defect or an exception was 
detected during a unit test, but no tool issued a report 
for this line, then this is a valuable contribution by unit 
testing. 

Further, coverage as such can be compared:  
•  Is missing coverage confirmed by a “dead code” 

report or not? 
•  Does a tool report “dead code”, while coverage was 

achieved? 
Different scenarios may be applied for these 

considerations taking TP from tool analyses, then possibly 
leading to different results: was the TP a matter of “with 
context” analysis, from “without context” analysis, or both, 
and which context was considered during unit testing. 

B. Application 1 
The unit tests were already performed for 362 of 610 

functions, and detected defects were removed successively. 
For 248 functions no unit tests were executed as these 
functions were auto-coded, and test of a few of such 
functions was considered as sufficient. However, by the tool 
reports principal issues in the code generator were detected, 
mainly related to fault handling, suggesting that more or 
even all auto-coded functions should have been subject of 
unit testing. 

As the idea of correlating unit tests and analysis reports 
came up after completion of unit testing, the information 
about detected defects was not recorded. 

Therefore in case of a covered line, either a defect 
already detected during a unit test was not fixed, not detected 
or not detectable. 

The tool used for the unit tests was VectorCAST [2]. It 
was also used for retrieval of the unit test information in a 
format suitable for the merge with report information 

C. Application 2 
The unit tests were established as part of the study, but 

due to budget limitations only for the subset of (60) selected 
functions. The information on defects and exceptions was 
recorded, but only a few defects were detected, actually. In 
all cases at least one of the tools reported the issue, too. 

The tools used for unit testing are cppunit [3] and gcov 
[4]. 

V. VERIFICATION ISSUES 
The results of the previous activities were discussed with 

tool suppliers and software developers. The contents of such 
discussions are briefly listed below, followed by conclusions 
on the evaluation criteria. The discussion highlights principal 
issues of report classification, also driven by the high 
number of trivial reports observed in the recent study. 

The issues related to tool vendors are mainly a matter of 
FNs, while the discussion with developers focus on FPs. 

In addition, pro’s and con’s regarding unit testing, 
verified-by-use and analyses are discussed in order to get a 
clearer picture about which verification approach may be 
appropriate regarding required dependability and implied 
costs. 

A. About False Negatives 
The general point of discussion is under which 

condition(s) a missing report may lead to an FN for a tool. 
In the previous study, the criterion 1 / tool criterion was 

applied to investigate which defects can be reliably found by 
a tool, focusing on whether a report is justified or not. 

If a tool is right, the lack of a report from another tool 
must be considered a FN. 

Tool suppliers argued that the FN originated in 
conditions imposed by the tool that would preclude the 
respective fault to be activated. While these conditions were 
not present in the original code, the vendors pointed to the 
documentation of such assumptions justifying the lack of a 
report. If such documentation was missing, this was an issue 
of the documentation, but not of the tool, the vendor argued, 
and as such should not be considered an actual FN. 

Our position is that if a tool does not report a fault 
because, although the error can be activated under the 
circumstances imposed by the code itself the tool imposes 
additional constraints, then an actual fault is not being 
reported due to aspects solely to be blamed on the tool. As 
such, the lack of a report is to be considered a FN. Whether 
the reason for that FN can be explained or even is 
documented or not is irrelevant. 

This discrepancy in opinions led to the vendor blocking 
publication of the tool name. 

However, if the tool can be configured not to impose the 
restriction, then care is to be taken before marking down the 
lack of a report as a FN, because a user can modify the 
configuration so that the fault could be detected. 
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Still, if the additional assumption normally blocking 
detection of the fault is enabled by default and must be 
explicitly disabled by the user, this needs to be considered in 
a critical manner. The question arises whether a user would 
be sufficiently aware of such a default assumption. The 
documentation for such tools is often already very extensive 
so that realistically it is not useful to assume that a user will 
understand and keep in mind all the consequences such 
assumptions would have. 

It may be essential for a tool supplier to distinguish 
whether the source of the FN is related to the environment 
built by the tool, constraining detection, or the algorithm 
applied for detection, especially when the tool supplier 
claims that the algorithm can ensure absence of FN. For the 
user, the reason is irrelevant. 

Also, a case was observed in the recent study in which a 
report was not issued although it ought to be according to 
documentation. Obviously, there is discrepancy between 
documentation and implementation. 

To summarize: any fault not being reported must be 
considered a FN, independent of the reason for the lack of a 
report. 

B. About False Positives 
The main concerns about FPs are coming from 

developers, claiming that the reported defects would not 
cause a failure of the software – even if the tool is formally 
correct. 

Cases were observed – not in the reference studies, but 
for other applications, where the implemented logic was 
completely wrong, but incidentally for the few parameter 
sets given the results was correct. 

The big challenge is that the number of reports related to 
suspicious code is – as a matter of experience – much higher 
than the ones related to clear TP. This implies a high 
overhead for the analysis, which would not occur if 
suspicious code were not present or was even avoided, e.g., 
by using the tools right from the beginning and considering 
their feedback. 

However, it has to be admitted that also a tool may be 
originator of a significant number of trivial reports (see the 
discussion in Sect. C below and in Ch. VIII.B), which result 
in TP according to the tool criterion, but could be considered 
unjustified. Then proper measures have to be undertaken to 
avoid an overhead. 

In part, such reports may be put in a separate category 
“ignore”. But this is not possible in every case. “Loss of 
precision” turns out as uncritical in most cases. However, 
amongst such a set one report may evaluate to a critical TP 
(the reader is reminded of the incident during Ariane Flight 
501, the maiden flight of Ariane V – coincidentally the 
trigger for the creation of some notorious static verification 
tools). If the whole set would be ignored, then the critical 
report would be lost. This is not acceptable. Therefore other 
measures need to be considered. 

The comments of developers to TP according to the tool 
criterion were mixed, ranging from immediate acceptance 
(considering it as a violation of best practices) to rejection 
because the probability of the system state being 

compromised was assumed to be sufficiently low or even 
zero, although not being compliant with best practices. 

However, the essential point is: usually it is not known in 
advance whether the result does not lead to unwanted states, 
while a negative impact is possible in general. A valid 
conclusion can only be drawn after – manual – analysis. 

Therefore the principal options are: 
•  to ignore/drop a report and take the potential risk,  
•  to do the analysis and decide after whether to fix or 

not, or  
•  to do the analysis and to fix the issue, and/or to try to 

avoid similar issues in future. 

C. System/ Context-immannent False Positives 
In some cases it is reasonable that a tool frequently 

produces a FP if it does not have – sufficient – information 
on the context. In many cases it is even impossible to 
provide this information on language level. Amongst such 
cases are: resource leaks and loss of precision. 

However, a tool may support provision of meta-
information to suppress such FP-reports. 

D. Verified-By-Use vs. Verification by Analysis 
In the discussion with developers frequently the issue of 

a high number of FPs – in the sense of the state criterion – is 
addressed, doubting the added value coming from analysis 
tools like the ones under consideration, and claiming that 
most of the reports issued by such tools would actually result 
in FPs. 

In the discussion it is important to understand that the 
state criterion does not deal with probabilities: If it is 
possible to enter an undesired state as per the state criterion, 
the report has to be considered a TP, independently of the 
probability of occurrence of such an event. For the study, the 
reasons for this are pragmatic: Neither is the probability 
distribution of the inputs known nor was a limit probability 
specified below which events can be considered seldom 
enough not to be considered. 

However, the same problems occur in practice as well: 
Typically, at least one of these items of information is not 
formally available. 

Still, low probability of occurrence can only be a valid 
defence against a fault report if proof can be provided that 
the probability is small enough. 

According to the experience obtained so far – not only in 
the  course of the ESVW and FSVW studies, but also in 
context of analysis activities in other projects – the essential 
point raising such discussion is that the verification goals are 
not precisely defined, if at all. 

Then – as a consequence – the use of analysis tools is not 
harmonized with the development process, leading to 
overhead and missing acceptance of the tool reports.  

When a decision is made towards use of analysis tools, 
an integrated approach needs to be defined prior to any tool 
usage, addressing 

1. definition of criteria for TPs, 
2. definition of the fault removal process, 
3. selection of suited tools considering required 

criticality criteria,  
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4. continuous tool usage in the development process, 
5. definition of report processing to reduce the manual 

effort, possibly including pre-processing and filtering 
of raw reports. 

All these steps are a pre-condition for successful tool 
usage. Dropping any of them suggests that either  

•  use of tool analysis implies an overkill regarding the 
real needs,  

•  (possibly) unacceptable risks are tolerated, or  
•  efficiency of verification suffers. 
The more of above process steps are dropped, the closer 

the envisaged verification process comes to verified-by-use, 
while the costs of verification remain much higher as for 
verified-by-use. 

To support the clarification process regarding what is the 
proper approach, the approaches are briefly characterized. 
The provided arguments may be used as a checklist. 

As unit testing is later compared to analysis it is also put 
into the list. 

•  unit testing 
o demonstration of compliance with requirements 

focusing on functional aspects 
o limited subset of input domain, coverage-driven 
o verification goal is to pass the (possibly 

requirements-based) tests 
o currently requires major effort at limited 

predictability on future defect rates 
•  verified-by-use 
o demonstration that software does properly work for 

a given, but probably unclear scenariofocusing on 
functional aspects 

o implies that software was sufficiently exposed to 
such a scenario 

o possibly enhanced compared to UT due to extended 
set of conditions 

o lean approach at limited predictability on future 
defect rates 

•  static and dynamic analysis 
o aiming to demonstrate presence or absence of faults 
o considers large set of conditions 
o applies increased capability to detect defects, but 

still not perfect 
o provides capability to look beyond scenarios as used 

for UT and verified-by-use 
o may imply overhead if improperly applied. 

To summarize:  
If you want to know that the implementation is correct, 

i.e. that you can expect always correct results under 
arbitrary conditions, then do apply a rigorous verification 
approach like static and dynamic analyses do support. 

If you just want to know that you will get correct results 
under current conditions, although only partially or fully 
unknown, then unit testing or verified-by-use should be 
sufficient. 

VI. THE EVALUATION PROCESS 

A. The Overall Process 
Due to the experience obtained in the previous study a 

simplified and slightly modified process flow (Fig.  VI-1) 
was applied. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  VI-1: Logic Flow of the Evaluation Process 
Now, in a first step every tool is applied to the software 

and the reports are extracted and immediately classified as 
either true or false positive, not trying to correlate them with 
reports from other tools, thereby allowing parallel evaluation 
of tool reports. Then in a second step all reports are merged 
into a single stream, correlating reports from different tools 
about the same alleged defect, automatically, while this step 
was previously done manually. 

After the merge – automatically – FNs are identified for 
tools not reporting a TP in contrast to other tools. 

Then evaluation scripts are applied on the consolidated 
list to derive statistical figures regarding similarities or 
differences. 

The tool and state criteria were applied for all new 
analyses, i.e. to all analyses related to Application 2, and all 
analyses performed with FramaC and PC-lint on Application 
1. 
B. Standard Defect Types 

Due to use of another programming language – C++ for Application 2 
instead of C for Application 1, a different programming style, and two 
additional tools, more standard defect types (onto which all the specific 

messages from all the tools are mapped) were identified: 40 (plus an ignore 
category) instead of 20 before.  

 

 

Tab.  VI-1 and Tab.  VI-2 show the previous and current 
distribution of defect types vs. criticality and the number 
tool-specific defect types. Tab.  VI-3 provides the list of 
current standard defect types together with the criticality. 
Yellow rows indicate new defect types. The total number of 
considered tool messages is 371, i.e. about 74 messages per 
tool on the average and nearly 2 specific defect types per tool 
and standard defect type. 
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Tab.  VI-1: Identified Defect Types vs. Criticality, Summary 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tab.  VI-2: Identified Defect Types vs. Criticality, Detailed 

Tab.  VI-2 gives detailed figures on the distribution of 
tool defect types and standard defect types vs. criticality for 
each tool. 

C. Automation 
The results of the previous study suggested that a higher 

degree of automation is urgently needed for processing of the 
large amount of tool reports, either to complement missing 
information, to harmonize reports from different evaluators 
or to merge and compare contents of reports. 

For example, in part, function names are provided by 
tools, to the other part file names and line numbers. The 
missing information can be added automatically, and all 
reports can be put on the same contents of information. 

In case of C++, the full signature of a function may be 
provided. Other tools may provide mangled names for 
unique identification of C++ functions. Such differences can 
be harmonized automatically, complementing the missing 
part. 

For some defect types the result is identical for with and 
without context cases, for the tool and state criterion alike, so 
that the justification can be shared between both cases, 
automatically, either filling in the fields or – if already filled 
in – checking manually inserted decisions for consistency. 
More such rules have been identified and applied. 

Further, the determination whether a function is called in 
context of the application or not was previously done 
manually. Knowledge is required about whether context has  

Tab.  VI-3: List of Standard Defect Types 
to be considered or not. Due to available parsing information 
the provision of this information also could be automated. 

And there are still more steps which were automated. 
The implemented functionality on automation should not 

only be useful for tool evaluation, but should also be 
beneficial for (real) projects needing support for analysis of 
tool reports. 

The challenges are the same for tool evaluation and tool 
usage: identification of the critical issues from a probably 
large stream of reports. 

The formalization of a number of steps of the evaluation 
process – a pre-condition for automation – also allows to get 
a clearer view on the tool reports while limiting and reducing 
the amount of manual effort. This work still can and shall be 
extended in future. It is a pre-condition for detailed 
evaluation of larger quantities of code and tools. 

VII. THE EVALUATION RESULTS 
Remark: The results presented here strongly depend on 

the application. Defects which do not occur in the chosen 
applications will not be considered. Therefore the results 
may not generalize to any other context. 

In contrast to the previous paper no figures on sensitivity 
and precision are provided here, for reasons already 

Defect Type Criticality 
Array Index Out-of-Bounds critical
Dangling Pointer critical
Dereference of Invalid Pointer critical
Dereference of NULL-Pointer critical
File Access Error critical
Invalid function pointer critical
Invalid Return Statement critical
Loss of Precision critical
Macro Use with Unintended Consequences critical
Non-terminating Loop critical
Passing Invalid Argument to Standard Library Routine critical
(Possible) Recursion critical
Resource Leak critical
Undefined Result critical
Uninitialized Variable critical
Unintended Use of Implicit Member Function critical
Arithmetic Operation on NULL Pointer warning
Arithmetic Overflow warning
Cast to pointer of incompatible types warning
Comparison of floating-point values warning
Conflicting Declarations warning
Incomplete List of Cases for enum-Type w/o default warning
Intended Change of Invariant Data warning
Invariant Condition warning
Invariant Expression warning
Loss of Update warning
Name overloading warning
Parameter Type Mismatch in Function Call warning
Timeout during Execution warning
Unnecessary Loop Construct warning
Unnecessary Operation warning
Unreachable Code warning
Unused Result warning
Change of Data expected, but missing uncritical
Incomplete List of Cases for enum-Type with default uncritical
Inconsistent Overloading uncritical
Multiple return paths uncritical
Security Issue uncritical
Unintended Change of Data uncritical
Ignore ignore, 

don’t care
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mentioned. Instead, information is provided which 
sufficiently characterize the tools. 

The tables and graphics provide a lot of information, so 
that a reader can get an idea on a tool’s capabilities. A 
detailed discussion of all aspects related to this information 
would go far beyond of the scope of this paper. Therefore the 
most interesting and important aspects are discussed, only. 

A. Overview on Reported Defects 
Tab.  VII-1 provides an overview on the number of 

reports per tool.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tab.  VII-1: Overview on Tool Reports for both Applications 

The rows of the tables show 
•  all, raw:  

the initial number as issued by a tool, without having 
applied any steps for reduction 

•  all: 
the number after having applied tool-specific measures 
for reduction 

•  selected: 
the number relevant for the selected 60 functions 
derived from the all-figures, 

•  ignored: 
the number of ignored reports 

In case of Application 2 and DCRTT three runs were 
executed to see the impact on different configurations: 

1. without injection of NULL-pointers, but with call of 
suitable initialization functions, 

2. with injection of NULL-pointers, but with call of 
suitable initialization functions, 

3. with injection of NULL-pointers and without call of 
suitable initialization functions. 

The impact on the number of reports as such is not so 
high. However, there are differences in the reports. E.g. 
when an index-out-of-bounds was reported  in run 1, in run 2 
a NULL-pointer dereference was reported, excluding the 
report on index-out-of-bounds, yielding still one report, only. 

In case of Application 1 the raw figure of FramaC was 
reduced by mapping equivalent messages from different call-
paths onto one entry, using file, line and report text for 

compressing. However, different independent reports related 
to the same triple will be mapped on the same entry, too, e.g. 
in case the same message was issued for the left and right 
part of an expression. 

For the selected case this impact can be compared and 
yields about 6 missed entries (~6% of the total number). 

In case of Application 2 the raw number of PC-lint was 
reduced by dropping all reports which are classified as 
negligible by the mapping tables established for every tool. 

B. Profiles 
Tab.  VII-2 shows the distribution of the reports (not of 

the TPs) over the criticality classes for both applications and 
the full set and the subset of 60 functions. 

A reader should bear in mind that the figures show the 
percentage regarding the set of standard defect types a tool is 
supporting (as shown in Tab.  VI-2). E.g. all supported 
standard defect types of FramaC are either critical (8) or to 
be ignored (1). Therefore the percentage shown for FramaC 
amounts to ~89% for critical defect types.  

These figures just give an impression on the distribution 
of supported defect types per tool over criticality w.r.t. the 
overall number they are supporting. They should not be used 
for direct comparison of tools. 

Tab.  VII-3 and Tab.  VII-4 show the profiles regarding 
the standard defect types for both applications and the full set 
and the subset. For Application 1 more critical defect types 
are covered than for Application 2. Vice versa, it is for 
criticality “warning”. 

The figures also show that the spectrum of the subset is 
not representative for the full set. This result led to a 
reconsideration of the selection process based on functions 
performed prior to report analysis. Due to automation of the 
process it shall be possible in future to select samples by 
defect types according to the overall profile. 

Tab.  VII-5 and Tab.  VII-6 compare the distribution of 
TPs between the tool and the state criterion. It is obvious that 
some defect types remain at nearly the same amount, while 
others disappear for the state criterion. 

Please note that the decisions derived for the state 
criterion were based on different interpretations of the state 
criterion by the evaluators  as discussed below. 

Tab.  VII-7 gives average figures on the four different 
transitions for both applications. As an FP for the tool 
criterion implies an FP for the state criterion, a transition 
FP/tool⇒TP/state is not possible. 

The most interesting transition from a developer’s point 
of view – worrying about unjustified tool reports – is 
TP/tool⇒FP/state, which is highlighted in yellow colour. 
While the percentage for TP/tool⇒FP/state is nearly the 
same for both applications, it is quite different for the two 
remaining transitions. 

The reason for the big differences needs further 
investigation. As already mentioned, this may be a matter of 
individual interpretation, but it may also depend on the 
application. Tab.  VII-8 gives an impression on the broad 
range of individual decisions, ranging from about 13% to 
80% for TP/tool⇒FP/state. 
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Tab.  VII-2: Criticality Profiles of Tools 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tab.  VII-3: Comparison of Tool Profiles for Both Applications, All Reports 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tab.  VII-4: Comparison of Tool Profiles for Both Applications, Report Subset 
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Tab.  VII-5: Comparison of True Positives and Tool/State Criterion (with ctxt), Report Subset of Application 1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Tab.  VII-6: Comparison of True Positives and Tool/State Criterion (with ctxt), Report Subset of Application 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tab.  VII-7: TransitionsTool⇒State, Average, Both Applications 

Tab.  VII-8: TransitionsTool⇒State, tool-specific, Application 2
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In order to understand what the reasons, the evaluators 
were asked on details of their decision. While in case of 
FramaC only the “while(1)”-case was considered to turn a 
TP/tool to an FP/state, in case of www an extended context 
was considered, based on the knowledge that in the 
application pointers or data are initialized in a context, not 
visible to a tool. 

This feedback indicates a need to refine the definition of 
the state criterion. However, a deeper analysis of the data – 
not presented and discussed here – suggests that both criteria 
still do not cover extreme cases of reports, which do 
invalidate the overall evaluation if they occur at a high rate 
compared to other reasonable reports. 
C. Uniqueness and Complementarity of Tools 

In the previous study the possibility to increase 
sensitivity due to combination of two tools was 
demonstrated. Due to questionable reports which for the time 
being cannot be removed from the criticality categories 
“critical” and “warning” because this would have to be done 
manually case-by-case, the results for sensitivity would be 
questionable, too. 

The current conclusion on this dilemma is that possibly 
an earlier separation on the level of tool defect types may 
help, i.e. to map questionable defect types immediately into 
the ignored-group. Later, having mapped them already on 
standard defect types, it is not possible, because also 
reasonable reports would be moved, too. As removing 
reports is a very sensitive decision regarding evaluation and 
comparison of tools, a deeper and more careful consideration 
is required. 

 
 
 
 
 
 
 
 
 
 
 

Tab.  VII-9: Coincidence Profile for Both Applications 
The content of Tab.  VII-9 may help to understand the 

issue. While in case of Application 1 about 25% of the 
reports are shared with 2 or more tools, for Application 2 the 
equivalent figure is less than 2%, i.e. the difference amounts 
to about one order of magnitude. 

In consequence, in case of Application 1 about 75% of 
reports are unique contributions of a tool, while the 
equivalent figure for Application 2 is about 98%. 

This latter figure suggests (and this is confirmed by other 
data not shown here), that most of the many unique 
contributions may not be considered as useful, supposing 
that a higher percentage of reasonable reports should be 
shared. 

Tab.  VII-10 provides the list of observed combinations for 
which tools share the same report, i.e. they report the same 
standard defect type for the same file and line. 

While in case of Application 1 up to 4 tools shared a 
report, the equivalent figures amounts to 2 tools only, in a 
very few cases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tab.  VII-10: List of Tool Coincidences 

D. Unit Tests vs. Tool Reports 
In order to compare the impact of unit tests to the results 

of analyses regarding defect detection, both data streams 
have been synchronized using filename and line number.  

Coverage information per line together with additional information on 
observed exceptions or defects found is shown for unit testing. In the unit 

test block at the bottom of  
Fig.  VII-1 three are three rows: 
•  The lowest row represents the line type: gray/normal 

or black/conditional expression. 
•  The middle row indicates the coverage: red/no 

coverage, green/full coverage, blue/false covered, 
yellow/true covered. 

•  The upper row indicates whether an exception 
occurred or a fault was detected: red/exception, 
magenta/fault. 

Then the 5 tools follow bottom up with 4 traces each 
related to the 4 combinations of criteria and context. 

From the analyses the false and true positives related to a 
line are shown for each of the 4 combinations resulting from 
with/without context and tool and state criterion using 3 
colours: 

•  yellow/false positive 
•  red      / true positive 
•  blue    /true and false positive are reported for a line 

This allows to seeing where tools reported FP or TP for a 
covered or non-covered line. 

As in case of Application 1 all defects found during the unit tests were 
already fixed, neither defects nor exceptions occurred, and 4 exceptions in 

case of Application 2 (3 of them shown at the bottom trace of  
Fig.  VII-1).  
Tab.  VII-11 provides information on the unit tests for both 

applications. In addition, figures were added for robustness 
testing as done by DCRTT. While unit testing primarily 
addresses coverage and compliance with requirements, 
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robustness testing aims to provoke activation of defects by a 
large number of test stimuli. 

Tab.  VII-12 provides figures on the distribution of TP as 
reported by the tools over covered and non-covered lines, for 
the 4 combinations of criteria and context cases and for both 
applications.  Surprisingly, the probability to find a TP in a 
covered line is about two times higher than to find a TP in a 

non-covered line. This needs further investigation. It may be 
a matter of complexity of the code. 

Also, more detailed figures on the defect profile 
regarding covered and non-covered lines should be derived 
to get a better understanding why the TP were not detected 
by a unit test. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tab.  VII-11: Overview on Figures of Unit and Robustness Testing 

 
 
 
 
 
 
 
 
 
 
 
 
 

Tab.  VII-12: TP Reports vs. Coverage 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.  VII-1:Merge of Tool Reports with Coverage Information from Unit Testing 
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The presence of TP in covered lines leads to the 
conclusion that to a major degree unit tests and analyses are 
complementary. This applies to static and dynamic analysis.  

As usually the goal of unit testing is to prove fulfilment 
of requirements (in a positive manner) – apart from 
requirements requesting fault injection – and the goal of 
analysis is to positively determine whether defects are 
present or not – valid for static and dynamic analysis, this 
result is not surprising. 

Whether the absence of defects for lines for which the 
tools issued reports while no defect was detected or left as a 
result of unit testing, indicates an overhead induced by tools 
needs to be subject of further investigations. 

A user of Application 1 reported that the application 
behaves quite stable. As some of the critical defects detected 
by analyses are related to the error handling parts, this seems 
to be reasonable. Also, it indicates the added value of 
analyses, pointing to critical locations not yet detected, 
compared to unit testing and verified-by-use as discussed in 
Ch. V.D. 
VIII. LESSONS LEARNED 

Due to the additional application software with different 
programming styles and another programming language and 
due to the additional tools more issues had to be tackled to 
get a common view on the evaluated tools. Compared to the 
ESVW study the evaluation was highly challenging and 
several issues of evaluation could not be closed. In case of 
Application 2 a fair view on the tools could not be achieved 
due to the heterogeneity and – in part – poor quality of the 
reports due to a high number of trivial reports. 

A. Defect Types 
New defect types were found by the new tools, the new 

language and the new applications, because the list of defect 
types as outcome of the previous study did only reflect the 
status of Application 1 and the applied tools. 

In fact, the number of defect types was doubled from 20 
to 40 and it can be expected that it will grow further if the set 
of tools and the set of software applications will be extended, 
again. 

The mapping between tool-specific messages and 
standard defect types had to be automated to be more 
flexible in the mapping process and to save effort. 
Automation of this step also supports a consistent 
redefinition of the mapping regarding already existing tool 
reports.  

At the beginning – in ESVW – there was nearly a 1:1 
mapping between tool-specific defect types and the standard 
defect type. Although the naming of defect types differed 
from tool to tool, only one tool-specific type was mapped on 
a standard defect type per tool in most cases. However, by 
the new tools this changed a lot. 

B. Evaluation Criteria 
An analysis of the obtained results yields that still the 

two applied criteria are not sufficient to get a clear and fair 
picture regarding the position of the tool supplier and the 
developers:  

The tool criterion is an exact criterion regarding whether 
the tool report complies with the content of the source code. 

However, it may also cover trivial cases, yielding TPs 
which may be considered as unjustified. Especially when 
many such reports are issued by one tool but not by others, a 
fair comparison is not possible. Counting only the TPs would 
give such a tool a significant advantage compared to a tool 
not reporting such a trivial case, or even intentionally 
reducing the amount of reports for such a case. 

The state criterion attempts to exclude trivial cases of 
getting an unjustified TP, but it turned out that there is a 
wide range of interpretations by individuals possible. 

This disqualifies the criterion for comparison of tools, 
unless it is guaranteed that all involved persons have the 
same understanding. In part, misinterpretations can be 
detected by conflicts during the consolidation phase. But if 
all persons came to the same wrong conclusion, only 
additional manual and thus costly checks can exclude such 
wrong decisions. 

The principal issue is to accurately flag TPs which are 
critical regarding the system state. However, the current rules 
are not such conclusive that only reports are issued which are 
really critical in the given context.  

Further, there are messages like “Loss of precision”, 
which in part cannot be avoided by a developer because they 
are related to the limitations of the representation of numbers 
in context of a computer, implying that  

a. arithmetic operations cannot be interpreted in the 
classical mathematical sense, i.e. a result may exceed 
the range of the data type, 

b. not all real numbers in mathematical sense can be 
represented as float or double, 

c. not all float or double numbers can be represented as 
integers. 

This weakness leads to a large number of reports which 
have to be classified as FPs at the end regarding the system 
state, while still a few ones may be TPs for both criteria. But 
the final conclusion can only be done manually.  

In fact, high numbers of reports resulting in false 
positives effectively lead to FNs, because not all reports can 
be manually analysed, implying to miss reported TPs. This is 
a fact which has already been identified in the course of the 
ESVW study, so it is not really new, but this issue occurred 
again in this study. 

Currently, three approaches (most probably non-
exhaustive) have been identified which support reduction of 
the manual effort for such cases: 

1. A tool reduces the number of reports related to the 
same origin of a defect. 

2. A combination of tools support to reduce 
automatically the number of reports related to the 
same origin of a defect by comparison. 

3. A developer does apply a programming style by 
which the number of reports resulting in FPs is 
reduced or even 0. 
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C. Tools 
1) FramaC 

The analysis with Frama-C required additional effort due 
to  

•  missing support for verification of top-level functions, 
(currently only one entry point can be specified), 

•  missing configuration support, and 
•  poor reporting capabilities at generation of a large 

unstructured data stream. 
In order to make the Frama-C results comparable to the 

other tools already applied to Application 1, an artificial 
entry point was established manually, calling all top-level 
functions. To build such an entry point is non-trivial and 
required a lot of additional, unplanned effort, as the full 
environment for the call must be provided for each of the 
functions, implying declarations for every parameter of any 
such function. This task had to be performed manually. 

There was no hint on what is the best set of configuration 
parameters regarding a certain size of an application. Starting 
with the highest precision and then cutting down in half the 
configuration parameters until a run terminated normally 
within a reasonable time, resulted in a number of non-
terminating runs, starting with a duration of about a week, 
and then approaching step-by-step a configuration which 
terminated after some days. No indication on the achieved 
progress was provided during or the end of an aborted run.  

The huge amount of unstructured reports required special 
handling. A list of reported defect types does not seem to 
exist in the documentation, especially regarding critical ones, 
and there is no conclusive description how the relevant 
reports can be filtered. 

2) yyy 
For Application 2 an increased number of reports 

classified as critical was generated. This was much more 
than expected according to the experience with this tool in 
context of Application 1, and compared to the other tools.  

To reduce the manual effort the use of heuristic rules was 
considered to decide on TP or FP automatically. But the 
results are not considered as sufficiently reliable, currently. 
More experience is required to consider such results for a 
comparison with other tools. 

The major origin of the occurrence of such a high 
number of reports is as follows: as it is C++ code the tool 
expects that all object member variables are initialized in the 
constructor. But in nearly all cases of Application 2 this is 
not true: initialization is done in separate functions, of which 
the call is not directly visible. 

The tool vendor was contacted for clarification. The 
given recommendation is to apply the tool as early as 
possible during development, and to modify the code by the 
feedback from tool. Then the tool would report more 
conclusively. 

After all, the results for Application 2 / Tool 2 cannot be 
considered to be representative. 

3) DCRTT 
DCRTT was already applied to a platform-independent 

subset of Application 2, and critical defects were fixed. This 
may have introduced bias regarding the found defects, but 

not only for DCRTT but also for tools addressing similar 
defect types. 

DCRTT generated in case of Application 2 a significant 
number of reports on “unreachable code” and “invariant 
condition” which mainly result in an FP regarding the state 
criterion or in case of “w/o context”. This is a consequence 
of insufficient coverage due to either defects preventing to 
reach certain locations, or specific conditions difficult to 
fulfill with the stimulation methods employed by DCRTT, 
such as filling queues related to global pointers. 

4) PC-lint 
The following defect types were issued frequently for the 

full set of reports at criticality “critical” and “warning”. If 
not explicitly mentioned, all reports were classified as TP 
according to the tool criterion. But most of these reports can 
be considered to be trivial. 

•  Dereference of NULL 
Only a few ones, some shared with other tools. 

•  Loss of precision 
Most of the reports result in an FP regarding the state 
criterion. 

•  Cast to pointer of incompatible types 
Really useful and nearly only reported by PC-lint (1 
report by Tool www) 

•  Name overloading 
Most of the reports result in an FP regarding the tool 
and state criterion. 

•  Parameter type mismatch 
All reports were classified as FP regarding the state 
criterion. 

•  Unused result 
Most of the reports result in an FP regarding the state 
criterion. 

•  Unused enum-literal in switch with default 
For 6 switches about 1300 reports were issued, 
formally TP according to the tool criterion, but in 
principal unjustified and therefore FP according to the 
state criterion as the default was present and no impact 
on system state or logic. 

The reporting approach of PC-lint could be improved 
regarding minimization of the number of reports, e.g. in case 
of unused enum-literals. There are 4 levels for activation / 
deactivation of reports, but the levels do not match with the 
criticality levels defined in Tab.  VI-3. 

PC-lint allows deactivating some message types, but then 
TPs could also be deactivated, e.g. regarding loss of 
precision, depending on whether the operation is intended or 
not, because potential TP and FP cannot be clearly separated 
without taking the risk of dropping real TP. 

5) www 
This tool was applied to Application 2, only. Very few 

reports on invalid pointers were issued. Several FP in case of 
“Name overloading” were detected because it reported 
overloading between a parameter or local variable with a 
member of struct or class. 

6) QA/C 
In case of Application 1 this tool achieved the best values 

for sensitivity. Please refer to [1] for details. 
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IX. CONCLUSIONS 
As suggested at the end of the previous study, the 

additional tools and software brought in new aspects which 
enriched the knowledge on verification tools and 
applications and led to a number of conclusions and 
suggestions on improvements for the verification process.  

The experience from both studies confirms that the 
success of tool usage heavily depends on the chosen 
verification tools and their integration in the development 
cycle. Selection of suitable tools implies sufficient 
knowledge on their efficiency w.r.t. the software to be 
verified. 

The diverging results from both studies regarding the 
efficiency of the tools indicate that more is needed than just 
to buy and apply a tool to succeed at the end. 

A number of new standard defect types had to be added 
to the database, the criterion for tool evaluation had to be 
reconsidered and complemented. A higher degree of 
automation allowed considering all the reports issued by the 
tools and to derive profiles on defect types reported by the 
tools, for the whole application. 

A disappointing result is that the quality of the data 
obtained by the new tools for the previous and the new 
application is rather poor compared to that one of the ESVW 
study. However, the principal issues making evaluation 
difficult were identified and give guidance towards 
improvement. 

The spectrum of issued reports is rather broad: the 
number of reports varies from 800 to 12.000 for full 
Application 2, and from 40 to 500 for the chosen subset. The 
value of the reports varies from trivial to of high value. 

A major result is that the current evaluation criteria need 
to be improved and also the verifiability of the application 
has to be considered. Optimization of the whole verification 
process requires consideration of the defect identification 
and reporting capabilities of a tool and the degree to which 
an application supports the analyses. In addition to the 
evaluation criteria for a tool, also a metric should be defined 
characterizing the verifiability of an application. 

If many reports result in FP this may not necessarily 
imply a weakness of a tool. It may also be an indicator for 
potential improvements in the application. A lot of FP could 
be avoided when considering the tool reports in a 
constructive manner to improve the quality of the code and 
not in a destructive manner only causing overhead. The more 
FP are issued the higher is the probability of missing critical 
reports. This should motivate to tune the code of an 
application. 

A tool may be sensitive to certain defects. Their 
occurrence may block the tool to report more critical defects, 
or may cause an explosion regarding the number of reports. 
This observation confirms previous conclusions on this 
issue, demanding to apply a tool as early as possible in the 
coding phase to prevent by the given feedback that defects 
are multiplied in the course of development. 

Many reports should not necessarily be the ultimate goal 
of a tool, but a minimized set of reports highlighting the 
essential issues for the given context, also implying 

minimized manual analysis effort. Duplication of reports and 
multiple reports with different defect types on the same 
origin of a defect should not be considered as of advantage 
for a tool. 

The comparison of results from analyses and from unit 
testing confirmed the expectation that both verification types 
are complementary to a high degree. This is mainly a matter 
of the verification goals. While the main goal of unit testing 
is to demonstrate compliance between implementation and 
requirements in order to get acceptance, the main goal of 
verification tools is to demonstrate that defects still are 
present. Also, the results show that a high coverage figure as 
a result of unit testing does not necessarily imply that tools 
will not find defects any more in such lines, even if all 
defects found during unit testing have been fixed. 

The experience achieved in the course of this study, but 
also parts of the automated process chain could be reused in 
real projects, regarding 

•  definition of the issues of verification and the contents 
of the verification plan, 

•  classification and priorization of reports, 
•  harmonization of report streams coming from different 

tools, thereby reducing the amount of reports to be 
manually analysed, and easing the use of more than 
one tool, 

•  derivation of figures on distribution of defects across 
the application. 
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