

Challenges Regarding Automation of

Requirements-based Testing

R. Gerlich¹, <u>R. Gerlich¹</u>, Maria Hernek², J. Ramachandran²

Allan Pascoe³, Glenn Johnson³

Data Systems in Aerospace DASIA 2017

May 30 – June 1, 2017, Gothenburg, Sweden

¹ Dr. Rainer Gerlich BSSE System and Software Engineering Immenstaad, Germany E-Mail: Rainer.Gerlich@bsse.biz Ralf.Gerlich@bsse.biz

- 3 SCISYS UK Ltd
 Bristol, UK
 E-Mail: Allan.Pascoe@scisys.co.uk
- ² European Space Agency (ESA/ESTEC) Noordwijk, The Netherlands E-Mail: Maria.Hernek@esa.int, Jinesh.Ramachandran@esa.int

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2017 DASIA'2017, Gothenburg, Sweden: Challenges Regarding Automation of RQBT

Glenn.Johnsom@scisys.co.uk

	<u> </u>	<u> </u>	
BSSESys	temand Soft	tware Enginee	ering

Contents

- Introduction
- Current Status
- Considerations on Verification
- The Future ?
- Conclusions

BSSE Systemand Software Engineering			

Introduction

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2017 DASIA'2017, Gothenburg, Sweden: Challenges Regarding Automation of RQBT

The FAST Test Process and RQBT Flow-Optimized Source-code-based Testing

Requirement Verification

- Verify that software is compliant with the requirements!
 - Functional
 - ✤ Non-Functional: Robustness, Resource Usage, Timing, …
- More systematic derivation of test cases from RQs?
 - What does a RQ represent?
 - Functional? Non-functional?
- Requirement Coverage?
 - When is a requirement covered?
 - By one test case? By multiple test cases? (n:m relationship)

Principles of S/W Test Automation

Extract Required Information

Requirement:

Upon receipt of the "XYZ" TC the Nominal Mode SW shall route the TC to GPS in accordance with the format and procedures defined in [REF_ICD].

Process:

- 1. Read natural language requirement
- 2. Parse and understand natural language!
- 3. Build Stimulus Generator and Oracle from formal requirement
- 4. Profit! 🙂

A task not yet solved reliably!

Let's focus on the content!

Use Extracted Information

Requirement:

Upon receipt of the "XYZ" TC the Nominal Mode SW shall route the TC to GPS in accordance with the format and procedures defined in [REF_ICD].

Current Status

Statistical Overview of Analysis

RQ-Class	Description	No. of RQs	No. of RQ-Groups
FUNC	Functions	46	10
НК	Housekeeping	8	8
COMM	Communications	19	7
MON	Monitoring	7	7
ТМ	Telemetry Generation	3	3
ТСН	TC Handling	3	3
	Total	87	39

Example Requirements

Level	Class	Text	Testing Approach	
High	COMM	It shall be possible for the Nominal Mode SW to command both the nominal and redundant GPS units providing they are switched ON (as defined by the current satellite configuration vector).	This requirement is violated if it is impossible for the Nominal SW to command GPS units which are switched on.	
		Upon receipt of the "XYZ" TC of [TC_REF] the Nominal Mode SW shall route the TC to GPS in accordance with the format and procedures defined in [REF_ICD].	Proper conversion can be checked, e.g., by back-conversion and comparison with the original.	
	ΗK	The data contents of the following GPS TM packets shall be stored within the system data pool: GPS Message TM, Primary Message TM	These requirements can be violated by not storing the data from the respective TM packets in the system data pool or not storing them separately.	
Low	FUNC	This function process_GPS_data processes the raw GPS data. Its interface is summarised in Table xxx.	The detailed description of the algorithm can be used to provide a <i>reference</i> <i>implementation</i> which can be used as an oracle.	
		 This function GPSnavigation_function shall generate the position and velocity in the inertial J2000 reference frame for the current time for the following cases: It will be called at n Hz in modes A and B. Its interface is described in Table yyy. 		

Requirements Categories

(Sub-)System Level Requirements

- addresses interfacing, external view
- In many cases sequence-based
- * no correlation with a code function possible on this level
- * no stimuli and expected values are visible

Implementation-Level Requirements

- In part pseudo-code or mix of text and pseudo-code
- * identification of code function may be possible, but manual
- manual establishment of reference oracle possible

Typical OBSW Development Approach

Relevance of ECSS Documents

- Spec / RQs:
 - Describe, *what* is to be done
 - Need to be sufficiently abstract in order not to constrain design
- Design
 - Answer to Spec: Describe, *how* it is to be done
 - Breakdown to code elements (functions, data, types)
 - Should the SDD be a low-level RQ document?
 - Should the SDD make testable statements?

Verification Considerations

This function process_GPS_data processes the raw GPS data. Its interface is summarised in Table xxx.

Further Requirements specify the exact steps of the function in prose or pseudo-code.

Test approach

- Generate input according to parameter spec
- Use specification (pseudo code) as reference implementation run on same input
- Compare output of real and reference implementation

The Future ?

Example: Low-Level RQ

At 8Hz set the validity flags for the GPS Validity monitors to true if the corresponding GPS unit is active and the AOCS mode is Mode1, Mode2 or Mode3.

```
The GPS_monitor_func shall
do
If the GPS_unit_X.status == active and the
AOCS_mode == (Mode1, Mode2 or Mode3)
then
GPS_X_validity_monitor = true
end
enddo
```


Conclusions

	<u>-</u>		
DOOF Questana and Quettering Franking anima			
DODE System and Software Engineering			

The Current Status

Two different classes of RQs

- high-level: SVF-based testing
- Iow-level: unit/integration testing

RQ-structure

- information distributed across a number of documents
- not well structured:
 - > condition, subject, activity, object, qualifier
- ambiguities due to natural language
- traces are not continuously established top-down

Where to go now?

Improved process, more formalization required

- Is this feasible at all?
 - Is there a common schema? Schemas for sub-domains?
 - Tooling? Standardisation?
 - Engineer acceptance?
- But: strong need for automation due to increasing complexity
- Expected Benefits
 - improvement of understanding and quality
 - massive increase of test cases without increase of costs
 - > More test cases \Rightarrow higher confidence in test results
 - > Less effort for test case generation \Rightarrow decrease of cost
 - ✤ Possibly: auto-coding from requirements ⇒ improved code quality

BSSE System and Software Engineering			

Thank you for your attention!

Questions?

The project was funded by ESA GSTP Programme under Contract No. 4000 116 014

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2017 DASIA'2017, Gothenburg, Sweden: Challenges Regarding Automation of RQBT