
 Dr. Rainer Gerlich BSSE System and Software Engineering, 2018

-1-

Generating Random Telecommand Test Data Using Genetic Algorithms

Ralf Gerlich, Rainer Gerlich

Dr. Rainer Gerlich BSSE System and Software Engineering

Immenstaad, Germany

e-mail: Ralf.Gerlich@bsse.biz, Rainer.Gerlich@bsse.biz

Abstract—Generating useful test data is one of the big

challenges in automatic software testing. While random test

data generation is the easiest method, the test inputs generated

by it may fail to exercise the software under test properly if the

internal structure of the data is unknown to the generator and

at the same time relevant for the decisions taken in the code.

Handling of telecommands in space onboard software is one

example where this is the case. We investigate a method of

generating test data for these cases using genetic algorithms.

Keywords: automated software test, test data generation,

telecommand interface, software defects, defect identification,

software verification

I. INTRODUCTION

Software testing can be used to assess the software in a
representative execution environment. Even though it is
impossible to prove the absence of defects, it can reveal
existing defects simply by executing the software with pre-
determined inputs and checking for the desired results. Given
a sufficient number of such test cases, not detecting further
faults can lead to a sufficient level of confidence in the
correctness of the software itself.

This sufficient number of test cases, however, is very
difficult to achieve if test cases are selected manually. The
associated effort is typically prohibitive. Thus, automatic
methods for test data generation will help to overcome this
constraint.

Random test data generation lends itself to quick
generation of large, generally unbiased sets of test inputs or
even test cases[1][2] and can be easily used for detecting
basic defects (fuzzing)[3][4].

However, large portions of randomly generated data
typically represent invalid inputs for the software under test,
even more so if structural information about the input data is
not available. This is specifically the case when generating
test data for telecommand handling code received as pure
byte stream.

At this point, telecommands are passed between
hardware and software in the form of sequences of bytes, and
there is no structured type information associated with the
data within the code at the point of reception. Random
testing here would heavily exercise the validation code in
terms of robustness testing, generating mostly invalid
command packets, while leaving the actual functionality
mostly untested.

Constraint-based[5][6] approaches may lend themselves
to generation of appropriate data for these cases, but they
come at the price of computational, but also general
complexity[7][8].

A middle ground between these extremes may be
occupied by heuristic methods such as genetic algorithms[9].
We present our approach to practical evaluation of such
methods in the specific context of generating test data for
telecommand processing code.

The paper is structured as follows: After this
introduction, we will lay out the approach considered so far.
This will be followed by a brief presentation of measurement
data guiding strategic decisions between different variants.
Finally we will provide intermediate conclusions and an
outlook on our future work.

II. APPROACH

Our approach uses classical genetic algorithms, extended
by elitism[11], immigration[12] and directed mutation. The
genome of each individual is represented by a byte-string,
initially filled with random data. The length of each byte-
string is chosen randomly from a configurable range.

We aim at fulfilling structural coverage, either in the
form of statement or of condition/decision coverage. While
structural code coverage by itself is not a sufficient measure
of usefulness for test data selection[10], at minimum
achieving full coverage according to these criteria is a
necessary condition for detecting faults. After all, a fault
contained in code that is never executed during test will not
be detected by the test.

Also, for the application case we are targeting –
telecommand processing – the structure of the validation and
processing code usually represents different forms and
variants of telecommand contents. Decisions taken during
validation will separate the possible set of inputs into those
packets seemed valid by the implementation and those that
are not. This can be seen in the example given by Fig. I-1,
where decisions are taken based on the size of the packet and

Fig. I-1 Control-Flow Graph

 Dr. Rainer Gerlich BSSE System and Software Engineering, 2018

-2-

the contents of specific fields within the packet header (here:
the packet type).

Thus, coverage of the code should also imply close
coverage of the different kinds and structures of
telecommands.

However, genetic algorithms are still heavily based on
random data and thus the set of solution candidates can still
be expected to exhibit sufficient variance wherever the
conditions imposed on the solution allow for that.

The algorithm is thus not bound to provide only the most
straight-forward inputs that happen to fulfil the coverage
criteria. Instead, the bias usually expected from manual,
coverage-driven test data selection can be counteracted by
randomly selecting one or even more than one element from
the provided set of matching inputs.

A. General Principles of Genetic Algorithms

Genetic algorithms apply the principles of evolution to
optimize a set of candidate solutions – the individuals
forming a population – towards a specific optimisation goal.
In each iteration of the algorithm, a new generation of
individuals is produced from the current generation using
several genetic operators, most specifically cross-over and
mutation.

For cross-over, two individuals from the current
generation are selected and recombined into a new
individual, similar to how in nature two individuals create
offspring that carries genetic information combining parts of
the genetic information of its parents.

Individuals better adapted to their environment have a
higher chance of participating in pro-creation than their less-
adapted peers. The idea is that the combination of genetic
traits of well-adapted parents will lead to well-, and possibly
even better-adapted children.

In case of optimisation, the level of adaptation to the
environment – or fitness – of an individual is defined by how
well the individual solves the optimisation problem.

Mutation operators randomly modify the individuals after
recombination, aiming to keep the variance in the population
sufficiently high so that new solutions can be found on
recombination.

B. Elitism

In classical genetic algorithms, each generation is
completely replaced by its succeeding generation. However,
in nature, well-adapted individuals also tend to survive
longer than their less-adapted counterparts. This may also
allow them to produce more offspring, and thus benefit the
population as a whole by passing their good genetic traits on
to more children.

Elitism[11] is a modification to classical genetic
algorithms which aims to model this survival by copying a
certain portion of the population of pre-defined size to the
next generation, namely the best-adapted individuals in the
population – the elite.

C. Cross-Over and Mutation Operations

We employ single-point cross-over: The individuals are
cut at a common, randomly selected cross-over point and

two new individuals are generated by swapping the ends of
the byte-strings.

Three different types of mutation are possible:

 Cutting off the last byte,

 add a random byte at the end, or

 flipping a random bit within the byte-stream.

Reduction and extension of size can happen at most once
per mutation step, while multiple bit flips are possible. The
number of bit flips performed during a single mutation step
is chosen randomly, with (=) = (1 −) giving the
probability of bit flips occurring in a row. Note that
theoretically the same bit may be flipped multiple times
during a mutation step.

D. Measuring Fitness

Different from usual genetic algorithms, we apply a cost
function instead of a fitness function: Low cost corresponds
to high fitness and vice versa.

The cost of an individual shall express how far the
individual is away from reaching the selected coverage
target. It is determined by executing the telecommand
handling procedure on it and monitoring the control flow
decisions taken.

For illustration, consider the control-flow graph shown in
Fig. 1. To reach Node 4 from the entry point, execution must
traverse the edge from the entry point to Node 2, and then
the edge from Node 2 to Node 4.

Let us assume that – different from what is desired –
execution proceeds from the entry node to Node 1, from
where we cannot reach Node 4 anymore.

The branch taken implies that size<sizeof(header)
is fulfilled. To change that decision, we would have to
change the value of size by at least
 . Thus, this value can be
considered to be the distance between the current input and
one that would fulfil one more of our requirements.

We can define cost functions for other relations between
expressions E and F evaluated at a node as shown in Tab.
II-1[13][14].

In summary, the value of the cost function is determined
by executing the function under test on the respective
individual. The code is instrumented such that whenever a
branch is taken, the cost function is updated. If the target
point can still be reached, the cost function remains
unchanged. If the target point cannot be reached anymore,
the value of the cost function is set to the value of the
respective expression given inTab. II-1.

Condition Cost Function

E==F
E!=F

E<F, E>F

E<=F, E>=F

Tab. II-1 Cost Function Definition

 Dr. Rainer Gerlich BSSE System and Software Engineering, 2018

-3-

E. Mutation Reversal

All three forms of mutations are directed in that the cost
function is re-evaluated after an individual mutation, and if
the cost after mutation is higher than before the mutation, the
mutation is reversed at random with a fixed probability.

This is similar to a probabilistic variant of gradient
descent optimisation. However, while gradient descent tries
to determine the direction of the local gradient and optimises
deterministically, e.g. using Newton’s method for finding
zeroes, here a random change is applied and taken back
probabilistically if the change does not enhance the solution.

Thus, with a given, finite probability, a solution may also
be modified in a direction that – at least from a local point of
view – diminishes the value of the solution. Thereby the
deterministic descent into local, non-global optima can be
avoided.

F. Algorithm Variants

Consider once again the example in Fig. I-1. If we
wanted to reach Node 4, a cost value of 1 would not indicate
whether execution deviated at the entry node or in Node 2.
We would favour the second case, as it is closer to our goal,
but we would not be able to determine that from the cost
value. Adding that information to the cost function would
require us to introduce a relative weighting factor for the
distance from the target, but we have no basis for choosing a
useful value for that weighting factor.

Instead, we select a sequence of intermediate goals
before the final goal, and apply the algorithm to all goals in
sequence. Before considering the next goal in the sequence, a
sufficiently large portion of the population must fulfil our
current goal. We call this modification the Sequential
Approach, while the original approach shall be referred to as
the Single-Step Approach.

In order to reach Node 4, we first have to reach Node 2.
Node 2 is a decision node for Node 4 in that the decision
taken in Node 2 influences whether we can reach Node 4:
Taking any of the edges to Node 3 or Node 5 means that
Node 4 cannot be reached any more. Node 2 also dominates
Node 4 in that every path from the entry point to Node 4
must traverse Node 2[15].

Thus we select our intermediate nodes from the nodes
dominating our target node while at the same time containing
decisions that influence whether we can actually reach our
final target node.

G. Immigration

In the Sequential Approach, the switch from one
intermediate goal to the next can be compared to an abrupt
change in environment in terms of evolution. This change
may require additional variance within the population, which
can be introduced by filling a portion of the next generation
of pre-defined size with new random individuals[12]. This
process is similar to the influx of new individuals from
outside the current domain of the population, i.e.
immigration.

III. MEASUREMENTS

The algorithm described in Section II has seven
important parameters which can be modified and which can
impact performance:

 Population size,

 Proportion of population kept as elite,

 Proportion of population filled by immigration,

 Probability for byte extension mutation,

 Probability for byte reduction mutation,

 Probability for bit flip, and

 Probability for mutaton reversal.

In addition, we have the option of using one of two
variants, the single-step or the sequential method.

tc_error_t proc_tc(void* data,

 size_t sz)

{

 if (sz<sizeof(tc_header_t))

 return tc_error_invalid_size;

 else {

 const tc_header_t* header =

 (const tc_header_t*)data;

 switch (header->type) {

 case tc_set_logging_params:

 return proc_set_log_para(data,sz);

 case tc_download_log:

 return proc_dl_log_tc(data,sz);

 default:

 return tc_error_invalid_type;

 }

}

tc_error_t proc_set_log_para (void * data,

 size_t sz)

{

 if (sz!= sizeof(tc_set_logging_params_t))

 return tc_error_invalid_size;

 else {

 const tc_set_logging_params_t* tc =

 (const tc_set_logging_params_t*)data;

 if (tc->reserved!=0)

 return tc_error_invalid_param;

 else if (tc->frequency>100)

 return tc_error_invalid_param;

 else if (tc->frequency<1)

 return tc_error_invalid_param;

 else

 return tc_ok;

 }

}

tc_error_t proc_dl_log_tc (char* data,

 size_t size)

{

 if (size!= sizeof(tc_download_log_t))

 return tc_error_invalid_size;

 else

 return tc_ok;

}

Lst. III-1 Example Code

 Dr. Rainer Gerlich BSSE System and Software Engineering, 2018

-4-

Although it is possible to derive predictions for the
impact of these parameters from theory for corner cases,
their impact in intermediate ranges is not that straight
forward. For example, we can determine that using 100% of
the population as elite will lead to stagnation, but a
prediction for a elite proportion of, e.g., 50% is more
difficult to make.

Thus we need to measure the impact of these parameters
on observables such as total runtime or the number of
generations needed until a solution is found.

We performed measurements on an Laptop PC with an
Intel®Core™i7-2630M CPU at 2.0GHz with 6GB RAM.
The operating system was Debian GNU/Linux 7.11.

As reference for the first experiments the code in Lst.
III-1 was used, which contains basic handling code for
simple telecommands.

For comparing single-step vs. the sequential approach,
we executed each form 400 times for a single example each,
capturing the runtime of each execution. Otherwise the
parameters for both variants were the same.

Minimum, mean and maximum execution times for each
of the variants are given in Tab. 2. The measurements show
that the single-step variant has an approximately 6-fold mean
execution time compared to the sequential variant, with the
maximum execution times differing by about a factor of 9.
Therefore the sequential approach seems to be at a clear
advantage.

Variant Min (s) Mean (s) Max (s)

Sequential 0.161 2.595 15.931

Single-Step 0.268 15.553 146.180

Tab. III-1 Execution Time Statistics

IV. CONCLUSIONS AND FUTURE WORK

Our work so far has shown that genetic algorithms are a
feasible approach to the generation of test data for code
processing untyped byte-streams, specifically telecommand
handling code, and has provided us with some insights into
suitable variations of the pure approach. The experiments
also indicate that the calculation of the fitness function can
be done by basic instrumentation of the code under test.

In the meantime we have proceeded to integrate the
approach with our random testing framework DCRTT[4],
with the goal of performing experiments on industry-grade
from actual space software. The integration is not yet
completed, although we were able to perform some first
simple tests.

Further investigations will also consider multi-factorial
analysis of the impact of parameter values on the
performance.

One important aspect of research will be the dependency
of optimum parameter values on the respective software to
be tested. In theory, it is possible that different variants of
implementations of telecommand handling may require
different parameter sets for optimal runtime of the genetic
algorithm. The question to be answered is whether these
optimum parameter sets differ significantly from each other,
or whether there is a basic parameter set that is good enough
for practical use.

ACKNOWLEDGMENT

The research presented here is supported by grant DLR-
50PS1601 of the Space Administration of the German
Aerospace Center (DLR) on behalf of the German Ministry
of Economics and Energy (BMWi).

REFERENCES

[1] Richard Hamlet. Random testing. In Encyclopedia of Software
Engineering, J. Marciniak (Ed.). Wiley, 970–978, 1994.

[2] T. Y. Chen, De Hao Huang, and F.-C. Kuo. Adaptive random testing
by balancing. In RT ’07: Proceedings of the 2nd international
workshop on Random testing. ACM, 2–9, 2007.

[3] Miller, B. P.; Fredriksen, L. & So, B. An Empirical Study of the
Reliability of UNIX Utilities, Communications of the ACM, Vol. 33,
No. 12, pp. 32-44, 1990.

[4] Ralf Gerlich, Rainer Gerlich, Marek Prochazka, Kenneth
Kvinnesland, Bengt Solheimdal Johansen. A Case Study on
Automated Source-Code-Based Testing Methods. In Proceedings of
the DAta Systems In Aerospace Conference 2013 (DASIA 2013),
2013.

[5] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed
automated random testing. In PLDI ’05: Proceedings of the 2005
ACM SIGPLAN conference on Programming language design and
implementation, ACM, 213–223, 2005.

[6] Ralf Gerlich. Verallgemeinertes Rahmenwerk zur constraintbasierten
Testdatenerzeugung aus Programmflussgraphen. Dissertation,
University of Ulm, 2009.

[7] Clark Barret, Leonardo de Moura, and Aaron Stump. Design and
Results of the First Satisfiability Modulo Theories Competition
(SMT-COMP 2005). Journal of Automated Reasoning 35, 4
(November 2005), 373–390, 2005.

[8] David R. Cok, David D´eharbe, and Tjark Weber. The 2014 SMT
Competition. Journal on Satisfiability, Boolean Modeling and
Computation 9 (2014), 207–242, 2014.

[9] James Miller, Marek Reformat, and Howard Zhang. Automatic test
data generation using genetic algorithm and program dependence
graphs. Information and Software Technology 48 (2006), 586–605,
2006.

[10] Richard Hamlet and Ross Taylor. Partition Testing does not inspire
confidence. IEEE Transactions on Software Engineering 16, 12
(Dezember 1990), 206–215, 1990.

[11] Shumett Baluja and Rich Caruana. Removing the genetic from the
standard genetic algorithm. In Proceedings of the 12th International
Conference on Machine Learning. Morgan Kaufmann, 38–46, 1995.

[12] John J. Grefenstette. Genetic algorithms for changing environments.
In Proceedings of the 2nd International Conference on Parallel
Problem Solving from Nature. 137–144, 1992.

[13] B. Korel. 1990. Automated Software Test Data Generation. IEEE
Trans. Softw. Eng. 16, 8 (1990), 870–879, 1990.

[14] Roger Ferguson and Bogdan Korel. The chaining approach for
software test data generation. ACM Trans. Softw. Eng. Methodol. 5, 1
(1996), 63–86, 1996.

[15] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators
in a flowgraph” ACM Trans. Program. Lang. Syst., vol. 1, no. 1, pp.
121–141, 1979.

