

Generating Random Telecommand Test Data Using Genetic Algorithms

Ralf Gerlich, Rainer Gerlich Data Systems in Aerospace DASIA 2018 May 29th-31st, 2018, Oxford, UK

Dr. Rainer Gerlich System and Software Engineering BSSE Immenstaad, Germany E-Mail: Rainer.Gerlich@bsse.biz Ralf.Gerlich@bsse.biz

This work is supported by a grant from the German Federal Ministry for Economic Affairs and Energy, based on a decision of the German Bundestag, grant No. 50PS1601.

- Introduction to Genetic Algorithms
- Chosen Approach
- Evaluation
- Conclusions and Outlook

Motivation

- Spacecraft processes Telecommands from Ground Station, rejects invalid commands
- Commands arrive as untyped bytestreams

How to generate test inputs?

© Dr. Rainer Gerlich BSSE System and Software Engineering, DASIA'2018, May 29 - 31, 2018, Oxford, UK

Introduction to Genetic Algorithms

Evolution

Progression of Generations

Probabilistic Mutation Reversal

Chosen Approach

Cost-Function

Crossover and Mutation

Sequential Approach: Intermediate Target

BSSE System and Software Engineering			

- Single Step Approach: Use final target only
- Sequential Approach: Use intermediate targets

BSSE System and Software Engineering			

Evaluation

Preliminary Evaluation

- Analyse Feasibility
- Compare runtime of algorithm variants
- Determine impact of parameters on runtime
 - ➢Population Size
 - ➢Elite Proportion
 - Immigrant Proportion
 - Mutation Probabilities
 - Mutation Reversal Probability
- So far only on simple example

Runtime Measurements: Algorithm Variants

Variant	Min (s)	Mean (s)	Max (s)
Sequential	0.161	2.595	15.931
Single-Step	0.268	15.553	146.180

- Sequential is way faster than Single-Step
 - Mean runtime: Factor 6
 - Maximum runtime: Factor 9

Runtime Measurements: Parameters (1/2)

- Mutation Reversal has positive effect on runtime
- Does not seem to extend past p≥0.4

- Immigrant Proportion has no noticeable effect for p≲0.2
- Negative effect for p≥0.2

Runtime Measurements: Parameters (2/2)

Byte Extension Prob.	0.00	0.25	0.50	0.75	1.00
Mean Execution Time (s)	0.46	0.13	0.12	0.12	0.13

- Optimum Value in the range $0.5 \le p \le 0.75$
- Decrease of Factor 3 from p=0 to p=0.25
- No further noticeable change for $p \rightarrow 1$

Conclusions and Outlook

Is Cross-Over Necessary?

- How could A improve B by cross-over?
- Cost-Function does not consider branches not taken!

- Utility of Cross-Over is based on compositionality
- Test Candidates might not be compositional regarding reaching the target
- Multi-candidate gradient descent better?

Conclusions

- Sequential Approach is superior
- Significant positive impact of mutation reversal
- No positive effect from immigration, negative effect for more than 20% of population
- This genetic algorithm seems promising for generating telecommand test data
- Possibility for simplification: drop crossover

Future Work

- Integration with random test tool (DCRTT) is underway...
- Application to industry-grade code
- Comparison to random testing performance
- More detailed analysis of parameter impacts

≻Multivariate

Measurements on more realistic code

Is there a general "good enough" set of parameters for all applications?

Or do we need to "babysit" the search?

Thank you for your attention!

Questions?

This work is supported by a grant from the German Federal Ministry for Economic Affairs and Energy, based on a decision of the German Bundestag, grant No. 50PS1601.

<u> </u>			
BSSE System and Software Engineering			

Backup