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Manual requirements-based testing is time-consuming: Input data must cover the 
requirements and observed output data must be checked for their compatibility with the 
requirements. Testcases can also be automatically generated from test models. However, 
these models first have to be established manually. In contrast, the approach to be 
presented here uses simpler ways of formalizing requirements to automatically map test 
data generated for automatic robustness testing using massive stimulation to requirements 
and to check the results for correctness. 

The State of Requirements Verification using Function Tests 

Figure 1 shows the classical approach to requirements verification using function or unit 
tests and manually designed test cases. The source code is written based on the 
requirements, and a mapping between functions and requirements is established 
manually. Test cases for unit testing are manually derived from the requirements. Input 
data and expected outputs are transformed into test scripts, which are used to execute the 
tests and generate a pass/fail verdict. 

 

Figure 1: Verification by manually established test cases 

 
Model-driven Approaches to Requirements Testing 

In the last few years various approaches for deriving tests for requirements verification 
from models have been proposed. For this, the desired behaviour is modelled and 
annotations for determining requirements coverage and checking of requirements 
fulfilment are added[1]. Using random walks or similar methods test sequences and test 
data are derived from the models and transformed to test scripts manually or 
automatically. 



In the ideal case a specification model is available which can be used for such a method 
with only few modifications. Otherwise, a test model needs to be established and verified 
against the specification manually – with the latter often only being present in text form. 

Automated Robustness Testing 

Automated robustness tests – sometimes also referred to by the term “fuzzing” – are used 
to test a component for robustness against unexpected or undesired inputs[2]. The 
component is stimulated using, e.g., random data, and the behaviour of the component is 
monitored for anomalies during execution. This may even allow identification of 
functional defects in the component. The simple form of test data generation using 
random data allows for a high test data throughput – resulting in massive stimulation. 

The results of these tests, however, do not allow for conclusions about the fulfilment or 
coverage of requirements. A mapping from test inputs to requirements is missing. 

Automated Requirements-based Testing 

Automated requirements based testing on source code-level requires and aims to 
automatically establish a correlation between requirements and test cases. At the same 
time the mapping between the requirements and the affected functions in the code needs 
to be found. Test data shall be automatically generated and applied, in order to reduce the 
manual effort drastically. 

The selected approach uses three mappings [3]: 

 between input data to requirements (requirements coverage), 
 between requirements and functions, and 
 between requirements and oracles. 

This principle is shown in Figure 2. Machine-readable requirements are integrated with 
the function test and evaluated during massive stimulation. This allows determination of 
both requirements coverage and fulfilment. In the case of non-fulfilment the associated 
test data vector describes a counter-example. 

 

Figure 2: Principal Approach 

Oracles are used for evaluation of requirements fulfilment. An oracle is an executable 
procedure which generates a pass/fail/don’t-know-verdict for a pair of input and observed 
output. It is possible for single oracles to only provide definite results for specific real 
subsets of the input domain. Ideally all oracles together cover the whole input domain. 



Figure 3 shows further details of the automatic approach. The input space is sampled by a 
configurable number of samples, using massive stimulation. The oracles are applied to 
each test vector and the resulting verdict is recorded. This way, counter-examples for 
non-fulfilment of requirements can be found. 

Requirements and functions generally form an n:m relationship. Specific requirements 
can apply to multiple functions, such as requirements on numerical accuracy. Similarly, a 
single function can implement multiple requirements or contribute to their 
implementation. 

 

Figure 3: Process Details 

 

To map requirements and functions to each other, the affected elements – data objects, 
structures, parameters – must be extracted from the text of the requirement and be 
associated to their counterparts in the Code. This can be done using naming rules which 
translate names from the requirements to names in the code – possibly using an identity 
mapping. This way oracles can be mapped to functions by concatenating the relationships 
of oracles to requirements and requirements to functions. An elaborate manual mapping 
can be avoided this way. 

Figure 4 illustrates the logical flow in the context of hierarchical requirements. Top-down 
requirements are detailed down to a level at which they can be transformed into code. 
This is the highest level at which oracles can be defined in a meaningful manner. 
Requirements on higher level are usually not suitable for verification by code-level- or 
unit tests. 



 

Figure 4: Overall Process for hierarchical Requirements 

 

Massive Stimulation and the Derivation of Test Vectors 

For each function a test environment is established automatically, which stimulates the 
function using data from the input domain of parameters – including global variables [2]. 
Special cases such as -1 or 0 for integers are considered specifically. Other methods for 
targeted coverage of specific parts of the code are used, such as constraint-based or other 
search-based approaches to test data selection. In addition, invalid values can be injected 
and parts of the code can be specifically modified or supplemented, e.g. to simulate lack of 
memory and similar conditions. 

Interesting test case candidates for generation of regression test suites are then selected 
from the massive set of test inputs. An input may be interesting if it contributes to 
requirement or code coverage, elicits exceptional behaviour or violates the rules implied 
by an oracle. These suites can also be re-executed with external test management tools – 
such as Cantata or VectorCAST – and their results can be re-evaluated. 

Further analyses are possible: Input data that add to code, but not to requirement coverage, 
may indicate either missing requirements or unnecessary code. An oracle for which the 
pre-condition is never fulfilled may be related to a non-covered requirement. 

The Oracle Approach 

In this approach the oracles are represented as temporal implications: If Condition A holds 
for the input before calling the function, then Condition B must hold for the tuple of input 
and output after execution of the function (Figure 5). If Condition A is not fulfilled before 
the function call, Condition B is not evaluated and the oracle provides don’t know as result. 
Here, Condition A is called the pre-condition. 

Using this structure a tautology – i.e. an expression that is always true – can be used as pre-
condition. In this case, Condition B must hold for every test vector. This way, e.g., 
restrictions for the ranges of the results can be expressed. 

Using known relations between requirements at different levels the results can be mapped 
to higher-level requirements. This way on each level the functions contributing to positive 
or negative verification results can be determined. 



Although verification using massive stimulation is based on a large number of test vectors, 
the set of these test vectors is finite after all. Thus a complete analysis of the input space is 
usually not possible. However, the number of automatically generated stimuli usually 
exceeds by far the number of test cases providable using manual methods – which is 
relevant specifically for finding counter-examples. 

 

Figure 5: Structure of Oracles 

 

Examples 

Consider as an example an oracle for the square-root-function. The simple approach 𝑥 ≥

0 ⇒ √𝑥 = 𝑥 would be mathematically sound. However, it is not applicable where 

numerical precision is finite. A correct approach for normalised floating point values 

would be 𝑥 ≥ 𝑓 ⇒
√

< 𝜀, where 𝑓  is the smallest normalized floating-point 

number. For 0 < 𝑥 < 𝑓  absolute error limits would have to be used. 

An oracle for the abs-function from the C Standard Library seems even simpler: 𝑥 ∈ 𝑖𝑛𝑡 
⇒ 𝑎𝑏𝑠(𝑥) ≥ 0. Interestingly the value of abs(INT_MIN) is negative, as INT_MIN itself 

cannot be represented as a value of int. 

Type ranges are also to be considered in other cases: The oracle 
√

< 𝜀 for the 

square function will produce many apparent counter-examples, as for many values of 𝑥 
squaring them leads to a float-point overflow. 

Thus also here – as for many other approaches of formalising requirements – the 
possibility of detecting incomplete and inaccurate requirements is present. 

Truth tables, e.g. for system states, can be easily represented, as Figure 6 shows. 



 

Figure 6: Checking System States using Oracles 

 

Requirements Notation 

At the moment most requirements are expressed in free text, which cannot be 
automatically evaluated. An analysis of such requirements led to the conclusion of them 
being incomplete, ambiguous or inconsistent, and thus not being applicable for this 
method. In manual verification, these shortcomings have to be compensated by creativity. 

A pre-requisite for formalisation of requirements is an adequate notation. This notation 
can also come in a form more suitable to the user than the oracle form. However, it has to 
be automatically transformable into the oracle notation. Requirements presented in a 
formalised table structure are convenient for this. 

Quality Assurance of Oracles 

Like any other code, also oracles are subject to quality assurance. Mistakes in oracles 
could otherwise lead to overlooking possibly critical software faults. As each oracle can 
be applied to large subsets of the input domain, it is even possible for faults with huge 
impact to be overlooked if the oracle is incorrect. A similar risk exists in manual testing, 
albeit for a different reason, namely not considering relevant test cases in the first place 
or constructing the expected output in an incorrect manner.  

Outlook and Future Work 
As no machine-readable requirements were available, the current implementation is 
based on oracles manually implemented in C, with the aim of showing feasibility and 
advantages. 
In future work a more abstract form shall be identified which is also more acceptable to 
users. For this, text-based requirements shall be analysed and transformed into an 
adequate notation which can be automatically translated into oracles. For this close 
contact to potential users is necessary. 
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