
Automation of Requirements-based Testing

Ralf Gerlich, Rainer Gerlich
Dr. Rainer Gerlich BSSE System and Software Engineering (BSSE)

Manual requirements-based testing is time-consuming: Input data must cover the
requirements and observed output data must be checked for their compatibility with the
requirements. Testcases can also be automatically generated from test models. However,
these models first have to be established manually. In contrast, the approach to be
presented here uses simpler ways of formalizing requirements to automatically map test
data generated for automatic robustness testing using massive stimulation to requirements
and to check the results for correctness.

The State of Requirements Verification using Function Tests

Figure 1 shows the classical approach to requirements verification using function or unit
tests and manually designed test cases. The source code is written based on the
requirements, and a mapping between functions and requirements is established
manually. Test cases for unit testing are manually derived from the requirements. Input
data and expected outputs are transformed into test scripts, which are used to execute the
tests and generate a pass/fail verdict.

Figure 1: Verification by manually established test cases

Model-driven Approaches to Requirements Testing

In the last few years various approaches for deriving tests for requirements verification
from models have been proposed. For this, the desired behaviour is modelled and
annotations for determining requirements coverage and checking of requirements
fulfilment are added[1]. Using random walks or similar methods test sequences and test
data are derived from the models and transformed to test scripts manually or
automatically.

In the ideal case a specification model is available which can be used for such a method
with only few modifications. Otherwise, a test model needs to be established and verified
against the specification manually – with the latter often only being present in text form.

Automated Robustness Testing

Automated robustness tests – sometimes also referred to by the term “fuzzing” – are used
to test a component for robustness against unexpected or undesired inputs[2]. The
component is stimulated using, e.g., random data, and the behaviour of the component is
monitored for anomalies during execution. This may even allow identification of
functional defects in the component. The simple form of test data generation using
random data allows for a high test data throughput – resulting in massive stimulation.

The results of these tests, however, do not allow for conclusions about the fulfilment or
coverage of requirements. A mapping from test inputs to requirements is missing.

Automated Requirements-based Testing

Automated requirements based testing on source code-level requires and aims to
automatically establish a correlation between requirements and test cases. At the same
time the mapping between the requirements and the affected functions in the code needs
to be found. Test data shall be automatically generated and applied, in order to reduce the
manual effort drastically.

The selected approach uses three mappings [3]:

 between input data to requirements (requirements coverage),
 between requirements and functions, and
 between requirements and oracles.

This principle is shown in Figure 2. Machine-readable requirements are integrated with
the function test and evaluated during massive stimulation. This allows determination of
both requirements coverage and fulfilment. In the case of non-fulfilment the associated
test data vector describes a counter-example.

Figure 2: Principal Approach

Oracles are used for evaluation of requirements fulfilment. An oracle is an executable
procedure which generates a pass/fail/don’t-know-verdict for a pair of input and observed
output. It is possible for single oracles to only provide definite results for specific real
subsets of the input domain. Ideally all oracles together cover the whole input domain.

Figure 3 shows further details of the automatic approach. The input space is sampled by a
configurable number of samples, using massive stimulation. The oracles are applied to
each test vector and the resulting verdict is recorded. This way, counter-examples for
non-fulfilment of requirements can be found.

Requirements and functions generally form an n:m relationship. Specific requirements
can apply to multiple functions, such as requirements on numerical accuracy. Similarly, a
single function can implement multiple requirements or contribute to their
implementation.

Figure 3: Process Details

To map requirements and functions to each other, the affected elements – data objects,
structures, parameters – must be extracted from the text of the requirement and be
associated to their counterparts in the Code. This can be done using naming rules which
translate names from the requirements to names in the code – possibly using an identity
mapping. This way oracles can be mapped to functions by concatenating the relationships
of oracles to requirements and requirements to functions. An elaborate manual mapping
can be avoided this way.

Figure 4 illustrates the logical flow in the context of hierarchical requirements. Top-down
requirements are detailed down to a level at which they can be transformed into code.
This is the highest level at which oracles can be defined in a meaningful manner.
Requirements on higher level are usually not suitable for verification by code-level- or
unit tests.

Figure 4: Overall Process for hierarchical Requirements

Massive Stimulation and the Derivation of Test Vectors

For each function a test environment is established automatically, which stimulates the
function using data from the input domain of parameters – including global variables [2].
Special cases such as -1 or 0 for integers are considered specifically. Other methods for
targeted coverage of specific parts of the code are used, such as constraint-based or other
search-based approaches to test data selection. In addition, invalid values can be injected
and parts of the code can be specifically modified or supplemented, e.g. to simulate lack of
memory and similar conditions.

Interesting test case candidates for generation of regression test suites are then selected
from the massive set of test inputs. An input may be interesting if it contributes to
requirement or code coverage, elicits exceptional behaviour or violates the rules implied
by an oracle. These suites can also be re-executed with external test management tools –
such as Cantata or VectorCAST – and their results can be re-evaluated.

Further analyses are possible: Input data that add to code, but not to requirement coverage,
may indicate either missing requirements or unnecessary code. An oracle for which the
pre-condition is never fulfilled may be related to a non-covered requirement.

The Oracle Approach

In this approach the oracles are represented as temporal implications: If Condition A holds
for the input before calling the function, then Condition B must hold for the tuple of input
and output after execution of the function (Figure 5). If Condition A is not fulfilled before
the function call, Condition B is not evaluated and the oracle provides don’t know as result.
Here, Condition A is called the pre-condition.

Using this structure a tautology – i.e. an expression that is always true – can be used as pre-
condition. In this case, Condition B must hold for every test vector. This way, e.g.,
restrictions for the ranges of the results can be expressed.

Using known relations between requirements at different levels the results can be mapped
to higher-level requirements. This way on each level the functions contributing to positive
or negative verification results can be determined.

Although verification using massive stimulation is based on a large number of test vectors,
the set of these test vectors is finite after all. Thus a complete analysis of the input space is
usually not possible. However, the number of automatically generated stimuli usually
exceeds by far the number of test cases providable using manual methods – which is
relevant specifically for finding counter-examples.

Figure 5: Structure of Oracles

Examples

Consider as an example an oracle for the square-root-function. The simple approach 𝑥 ≥

0 ⇒ √𝑥 = 𝑥 would be mathematically sound. However, it is not applicable where

numerical precision is finite. A correct approach for normalised floating point values

would be 𝑥 ≥ 𝑓 ⇒
√

< 𝜀, where 𝑓 is the smallest normalized floating-point

number. For 0 < 𝑥 < 𝑓 absolute error limits would have to be used.

An oracle for the abs-function from the C Standard Library seems even simpler: 𝑥 ∈ 𝑖𝑛𝑡
⇒ 𝑎𝑏𝑠(𝑥) ≥ 0. Interestingly the value of abs(INT_MIN) is negative, as INT_MIN itself

cannot be represented as a value of int.

Type ranges are also to be considered in other cases: The oracle
√

< 𝜀 for the

square function will produce many apparent counter-examples, as for many values of 𝑥
squaring them leads to a float-point overflow.

Thus also here – as for many other approaches of formalising requirements – the
possibility of detecting incomplete and inaccurate requirements is present.

Truth tables, e.g. for system states, can be easily represented, as Figure 6 shows.

Figure 6: Checking System States using Oracles

Requirements Notation

At the moment most requirements are expressed in free text, which cannot be
automatically evaluated. An analysis of such requirements led to the conclusion of them
being incomplete, ambiguous or inconsistent, and thus not being applicable for this
method. In manual verification, these shortcomings have to be compensated by creativity.

A pre-requisite for formalisation of requirements is an adequate notation. This notation
can also come in a form more suitable to the user than the oracle form. However, it has to
be automatically transformable into the oracle notation. Requirements presented in a
formalised table structure are convenient for this.

Quality Assurance of Oracles

Like any other code, also oracles are subject to quality assurance. Mistakes in oracles
could otherwise lead to overlooking possibly critical software faults. As each oracle can
be applied to large subsets of the input domain, it is even possible for faults with huge
impact to be overlooked if the oracle is incorrect. A similar risk exists in manual testing,
albeit for a different reason, namely not considering relevant test cases in the first place
or constructing the expected output in an incorrect manner.

Outlook and Future Work
As no machine-readable requirements were available, the current implementation is
based on oracles manually implemented in C, with the aim of showing feasibility and
advantages.
In future work a more abstract form shall be identified which is also more acceptable to
users. For this, text-based requirements shall be analysed and transformed into an
adequate notation which can be automatically translated into oracles. For this close
contact to potential users is necessary.

Acknowledgements

The contents of this paper is the result of the project “Automated Source-code-based
Testing, Continued” for the European Space Agency (ESA) (ESA Contract No.
4000116014) within the General Support Technology Programme (GSTP). The budget
has been provided by the German Ministry of Economy and Energy ((BMWi) via the
space management at the German Space Centre DLR. We would like to thank our
technical officer, Maria Hernek (ESA), for her supporting our work and the impulse
towards using massive stimulation for requirements-based testing.

References
[1] H.-J. Herpel, G. Willich, J. Li, J. Xie, B. Johansen, K. Kvinnesland, S. Krueger, P.

Barrios: “MATTS – A step towards Model Based Testing”, Eurospace Symposium
DASIA’2016 “DAta Systems in Aerospace”, May 10th-12th, 2016, Tallinn, Estonia.

[2] R. Gerlich, R. Gerlich, M. Prochazka, K. Kvinnesland, B. Johansen: “A Case Study
on Automated Source-Code-Based Testing Methods”, Eurospace Symposium
DASIA’2013 “DAta Systems in Aerospace”, May 14th-16th, 2013, Porto, Portugal

[3] R. Gerlich, R. Gerlich, M. Hernek, J. Ramachandran, A. Pascoe, G. Johnson:
“Challenges Regarding Automation of Requirements-based Testing”, Eurospace
Symposium DASIA’2017 “DAta Systems in Aerospace”, May 30th – June 1st,
2017, Gothenborg, Sweden

