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Abstract—Automated software verification tools support devel-
opers in detecting faults that may lead to runtime errors. A fault
in critical software that slips into the field, e.g., into a spacecraft,
may have fatal consequences. However, there is an enormous
variety of free and commercial tools available. Suppliers and
customers of software need to have a clear understanding what
tools suit the needs and expectations in their domain. We selected
six tools (Polyspace, QA C, Klocwork, and others) and applied
them to real-world spacecraft software. We collected reports from
all the tools and manually verified whether they were justified.
In particular, we clocked the time needed to confirm or disprove
each report. The result is a profile of true and false positive
and negative reports for each tool. We investigate questions
regarding effectiveness and efficiency of different tools and their
combinations, what the best tool is, if it makes sense at all to
apply automated software verification to well-tested software, and
whether tools with many or few reports are preferable.

I. INTRODUCTION

Twenty years ago, the first Ariane 5 launcher rocket self-
destructed 40 seconds after initiation of the flight sequence.
The active as well as the redundant on-board computers
had shut down, all suffering from the same software failure.
Software plays an ever more important role in spacecraft (e.g.,
satellites), which are often one-of-a-kind devices with custom-
built peripherals [16]. And again and again does software
cause critical failures, e.g., the recent loss of the 286 million
USD Hitomi satellite [37], which is just one example of
spaceflight’s history of expensive software failures (cf. [18],
[21], [31]). Guarding against such failures typically includes
a multitude of measures, ranging first and foremost from
testing and validation, over various safety and dependability
analyses, to standardization, process control and improve-
ment, and management considerations. One important activity
among these is verification of source code using automated
software verification (ASV) tools. When software development
is contracted, suppliers and customers need to know what
results to expect from verification processes using these tools.

The ECSS (European Coordination for Space Standardiza-
tion) standard for software engineering states: “The supplier
shall verify source code robustness (e.g. resource sharing,
division by zero, pointers, run-time errors). AIM: use static
analysis for the errors that are difficult to detect at run-time.”
[1] Product assurance requirements for the German national
space program additionally demand to perform static analysis
to assure correct control and data flow, internal consistency
between units (number and types of parameters passed to

functions including function pointers), the absence of non-
deterministic behavior, data corruption and security breaches,
and, in particular, the absence of run-time errors like divisions
by zero, square roots of a negative numbers, overflows and
underflows, out-of-bounds array and pointer accesses, illegal
type conversions, and reading of non-initialized data.

Disputes easily entail between customers and suppliers
about which tools support achieving the necessary quality
of code verification. Both parties need to know how well
verification tools can detect faults. Emanuelsson and Nilsson
note that “even when the tools seemingly provide the same
functionality (e.g. detection of dereferencing of null pointers)
the underlying technology is often not comparable; each tool
typically finds defects which are not found by any of the
other tools.” [11] The choice of tools has an effect on the
effectiveness (e.g., risk that faults slip into the field, and types
of faults detected) and efficiency (e.g., expected percentage of
false positive reports and developer time spent for analyzing
these reports). On the one hand, companies and government
agencies in various domains and countries have this same need.
On the other hand, reliable and detailed information is difficult
to come by. Consequently, organizations evaluate the same
verification tools for similar uses over and over again [8].

We therefore devised a method to evaluate ASV tools (see
Section II) and applied six tools to spacecraft software. Experts
manually validated the generated reports for correctness. We
then consolidated the list, and analyzed data statistically (see
Section III) to answer the following questions:

1) Is it justified to apply ASV to already qualified software?
2) What is the best ASV tool available?
3) Are there significant differences between tools’ capabil-

ities?
4) Does longer analysis runtime mean less reports or better

results?
5) Are tools that issue more reports less cost-efficient than

tools that report fewer ones?
6) Is it effective and efficient to apply more than one tool?
7) Would a simpler evaluation (e.g., counting reports) lead

to comparable results?

Section IV discusses our answers to the above questions based
on data from real-world software, and reviews of experienced
verification engineers. Section V presents related work. Fi-
nally, we conclude (Section VI).
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II. MATERIALS AND METHODS

This section provides details on the study implementation.

A. Terminology

To avoid misunderstandings in the following parts, we first
present our definitions of several terms.

1) Defect, fault, error, failure: A defect is any problem
in software or its (source) code that affects either inter-
nal/structural (e.g., code smells, violations of code layout
rules) or external/functional quality. A fault is a human mistake
that manifests in the code and that rests latent until executed
and activated; i.e., a functional defect. An error is the er-
roneous state of the system that may result under particular
circumstances from activating a fault. The error may lead to a
software or system failure: unexpected or undesired behavior
of the system [2]. For example, a program might crash (Ariane
V), or continue to operate but in an undesired way (Hitomi).

In this paper, we only consider faults, and exclude defects
without functional effects. Albeit, in general, taking care of
non-functional defects is justified: The MISRA-C [24] coding
rules for critical software, for example, restrict use of the C
language to safer subsets, to avoid certain potential problems.
Under the umbrella term of technical debt, there is huge
interest in these kinds of defects.

2) Automated software verification: The ECSS defines soft-
ware verification as the process to confirm that a “product
is designed and produced according to its specifications” [3].
Among other verification activities, the “supplier shall verify
source code robustness (e.g. resource sharing, division by zero,
pointers, run-time errors)” by means of, e.g., the “use [of]
static analysis for the errors that are difficult to detect at run-
time” [1], testing, and other methods [3].

A conventional distinction is made between static and
dynamic analysis. Static analysis detects potential faults by an-
alyzing source or binary code without executing it, e.g., coding
rule checking or abstract interpretation. Dynamic analysis (or
testing) executes software to identify unexpected or undesired
behavior; for instance, unit testing, or test data generation.
Young and Taylor [39] propose to discriminate between pes-
simistically inaccurate folding that is sound because it does
not miss a fault, and optimistically inaccurate sampling that
is complete in its analysis of fault candidates because every
fault reported truly is one (cf. [7]).

We do not preclude either of these techniques from our
study. Instead, the decisive criterion is whether the tool will
work without requiring much specific prior knowledge about
the software under test. Hence the term automated verification.
This implies an implicit definition of possible undesired behav-
ior like illegal memory accesses, division by zero, overflows,
etc. Therefore, most static analysis and randomized testing
tools qualify; but unit testing based on test scripts does not,
as it requires prior knowledge in form of the scripts.

3) Signal detection theory: In signal detection theory, a
signal (here: software fault) is either present or not present.
A detecting system can either determine that the signal is
present or not, i.e., an ASV tool either reports a fault or it

does not do so. If an ASV tool correctly reports that there is
a fault, or does correctly not report a fault, we speak of true
positive (TP) and true negative (TN), respectively. Likewise,
if an ASV tool incorrectly reports a fault although there is
none, or reports none although there is one, we call these
false positive (FP) and false negative (FN), respectively. From
the resulting 2 × 2-cell confusion matrix, we can derive the
quality criteria sensitivity (S) and precision (P) for each tool
as

S =
TP

TP + FN
P =

TP

TP + FP

where sensitivity is the ratio of actual faults detected, and
precision the ratio of correct reports. A typical quality measure
derived from the confusion matrix is the Matthews correlation
coefficient. However, the true negatives would dominate the
other three cells. Instead, the Jaccard similarity coefficient,
which is a measure of the overlap between actual and reported
faults, is a more suitable quality measure in this case because
it is independent of true negatives:

J =
TP

FP + FN + TP

B. Material

This section presents the materials for our study.
1) Software under test: In order to study the ASV tools,

we needed source code to which they can be applied. Several
detailed evaluations of ASV tools use specifically crafted
pieces of source code (see Section V). Shiraishi et al. [33]
give advice on constructing such a test suite.

Instead of creating a laboratory environment, we decided
to base our analysis on real-world software from our domain.
The decision is basically a trade-off between internal validity
(i.e., control about the experimental setting) and external
validity (i.e., representativeness and realism). Risks/downsides
of using real-world software are that the true number of faults
are mostly unknown (false negatives), laborious analyses are
necessary to decide whether a report is a true or false positive,
and that one has no control over the distributions of fault
types; in particular, some kinds of faults may be present several
times, while others are not present at all.

Benefits of using real-world software are increased realism
because we have inherently natural fault distributions, and
that ASV tools do not analyze small, isolated code snippets
but have the full program context available. One tool in our
test grouped together reports that originated from the same
fault; had we only used single-fault snippets, this usability
feature would not have become visible. Also, the process of
first collecting reports and then deciding whether a report is
justified better resembles real-world usage. Furthermore, we
can clock analysis times, which vary considerably for reports.

SuT (pseudonym, Software under Test) is an on-board
software/middleware for controlling spacecraft and its pe-
ripherals. It is classified as ECSS criticality class B, i.e., if
not executed, or not executed correctly, can lead to the loss
of a mission. The development contract was awarded to a
major commercial space system company, and supported by



a research institute. The analyzed software package contains
610 functions in ≈ 42000 lines of code. At the time of this
study, the software had passed its qualification review, i.e., the
last milestone review before acceptance: It was fully validated
against its requirements baseline, and verification activities
were completed (cf. [1]). It is said to be “qualified”. Coverage
from automated unit tests was about 90%.

2) Selection of ASV tools: Due to high demand for support
of software verification, a vast variety of commercial and free
ASV tools exists. Out of this variety, we selected six tools that
we deemed particularly relevant.

a) Code Prover (Polyspace): is a sound static analysis
tool, i.e., it claims to be able to prove the absence of certain
types of runtime errors. Polyspace was developed from a
science prototype in the aftermath of the Ariane 5 disaster [22].
It is therefore a natural choice for our study. Technically, it
builds on abstract interpretation based on complex polyhedra
to determine the possible values of variables of a program.
It highlights code according to a traffic light metaphor of
green (proven to be correct), red (proven to cause a failure),
or orange (undecided). Among contractors, it is particularly
feared for its license cost, steep learning curve, and orange
messages which can amount for up to 20% of the code (see
[10], [11], [30]). For an average flight software, this can mean
several thousand orange reports, which must be checked.

b) Bug Finder (Polyspace): is offered as a light-weight
version of the Code Prover. It aims to be complete (i.e., make
no false reports) and has a shorter execution time so that devel-
opers can use it on their desktop computer while developing,
allowing them to fix easily detectable faults immediately. It
supports coding rules checking. However, Bug Finder cannot
to prove the absence of runtime errors.

c) QA C: has a history of more than twenty years, and
has broad popularity in automotive industry. As many other
tools, it started out as a coding rule checker but has since
seen several improvements. It now has support for advanced
data flow analysis. QA C has far-reaching support for coding
rules (in particular, MISRA-C [24]), which can easily cause
thousands of complaints if other coding standards were used
during development. However, as we do not want to check
coding rules, we filtered out any MISRA-C complaints.

d) Klocwork: focuses on finding bugs and fixing security
flaws. The tool is meant to be closely integrated into the
developer’s desktop, to be as close as possible to where code
is written, modified, tested and reviewed. This enables finding
problems at the earliest point in the process, resulting in fewer
failed tests and fewer impacts on cost and schedule.

e) DCRTT: is an in-house product of a small software
verification company that specializes on critical embedded
software and offers verification services to aerospace enter-
prises and agencies. DCRTT employs randomized testing,
executing functions of the software under test with random
data, to gather information that hints at undesired behavior.

f) gcc: is the GNU C compiler; being a compiler, it
is at the forefront of static analysis. One does not naturally
expect highly sophisticated analysis results from a compiler.

However, the gcc is popular as compiler among space software
companies. In our study, gcc is used with the -Wall option.

3) DeWitt clauses and tool anonymization: DeWitt clauses
are today part of many end user license agreements (see [19]
for examples). In essence, they forbid the software licensee to
publish the results of testing or benchmarking of the licensed
software. Klass and Burger [19] judge this as wasteful because
developers will have to spend precious time on re-evaluating
the same tools, while the quality of the evaluations themselves
will, in many cases, remain rather shallow.

The so-called Toyota-study of static analysis tools [32]
gained quite some attention among practitioners in 2015.
However, it has since been withdrawn from IEEE Explore.
John Regehr, having linked to a copy of the study in his
blog, writes: “Whoops – it looks like Coverity/Synopsys has
a DeWitt clause in their EULA [end-user license agreement]
and based on this, they sent me a cease and desist notice.”1

According to German law, everybody has the right to observe,
investigate and test the behavior of a program to understand
its ideas and principles, and these rights may not be restricted
through contracts. Respective clauses would be legally void.
Yet the publisher of this paper is IEEE and located in the
US. While Klass and Burger [19] note that a DeWitt clause
will probably not hold in court, it has not been tested yet.
We therefore anonymize tools to ToolA, ..., ToolF to separate
names from results to be on the safe side. Furthermore, we
want to stress that our goal is not to recommend a single best
tool (this information might already be outdated with the next
version of an ASV tool) but to present a study methodology,
explain difficulties of evaluating ASV tools, and show how
diverse the ecosystem of ASV tools is.

C. Method

Basically, the evaluation method is as follows:
1) Apply each ASV tool to the SuT, and collect the reports
2) Consolidate the reports into a single set, while noting

which tool reported what
3) Validate each report to decide whether it is true or false

positive; clock and record analysis time
4) Perform data analysis and evaluation

Next, we present intricacies and details of this process.
1) Apply ASV tools: To collect the tool reports, we used

each tool on the software under test.
a) Configuration of tools: Configuring ASV tools turned

out to be non-trivial in most cases. We ran several tools mul-
tiple times, fiddling around with and optimizing configuration
options. By doing several iterations, we controlled the risk of
unfortunate/unfair configurations.

b) Fault type catalog: Different tools give different
names to the same faults: “Unreachable Code” may be
called {“Dead code”, “Unreachable code”, “wasAlwaysFalse”,
“INVARIANT CONDITION.UNREACH”, “Invariant opera-
tions”}, or “Array Index Out-of-Bounds” may be {“Out of

1https://blog.regehr.org/archives/1217 Accessed 2017-08-21



bounds array index”, “Excp”, “ABV.GENERAL”, “2844 Ar-
rays”}. We created a fault type catalog [12] to handle naming
issues, describe kinds of faults, show examples and give faults
unambiguous names throughout our evaluation.

c) Criticality of reports: Some ASV tools issue criticality
levels alongside the reports that can be used for filtering. We
use our own levels that are documented in the fault type
catalog. The least critical class of faults are non-functional
defects like style violations. We do not deal with these in our
study. Next are warnings that indicate a possibly unintended
operation in the source code which may (but not necessarily
does) manifest as an error. It might signal a problem or
deviating developer intentions but is not a fault in the first
place (e.g.: Arithmetic Operation on NULL Pointer, Multiple
return paths, Invariant Condition, Unreachable Code and Un-
used Result). Critical faults impact the correctness of system
operations if activated, i.e., resulting in error or failure (e.g.:
Array Index Out-of-Bounds, Dereference of NULL-Pointer,
Non-terminating Loop, (Possible) Recursion and Undefined
Result of Arithmetic Operation).

d) Data export: Several tools came with their own GUI.
Exporting machine-readable lists of reports is not the normal
way of working with the tools. Furthermore, line numbers are
not included in exports by default. Of course, this complicates
automated processing of report data. We had to obtain special,
normally unavailable licenses that allowed to export line num-
bers. Inquiring why, a vendor told us that if they allowed such
export, much fewer licenses would suffice to check the same
amount of software, because a few analysts could generate the
reports and then distribute them to developers. There would
be no need to continuously use the tool; what they consider a
misuse. In our experience, all vendors we had to contact had
no reservations against providing the respective licenses after
understanding why we needed it. When conducting a similar
study, one should check in advance with the vendors that they
are willing to provide machine-readable result data.

2) Consolidate reports: We collected all the reports gener-
ated by the ASV tools in a single table, removing duplicate
reports by different tools regarding the same suspected fault.

a) Manual merging: We intended to automate most of
the consolidation work, exploiting location (file + line number)
and fault type information. We anticipated only some manual
work for harmonization. However, while consolidation did
not require in-depth analyses of individual reports, matching
related reports caused significant manual effort. For example,
tools reported slightly different locations for the same report.

b) Analyzed Subset: Due to the enormous effort for
analysis, we selected a subset of 60 functions (≈ 10% of
functions and lines of code) for further analysis. We selected
30 functions randomly and 30 ones with the highest numbers
of reports. Interestingly, the average number of reports per line
of code was similar in both sets. Functions in the second set
were simply longer.

c) Reporting of consecutive faults/grouping: Sometimes
several consecutive reports may have the same single fault
as their origin, and can be grouped. For example, imagine

an array of length n, where index n + 5 is accessed before
index n + 3 is accessed. Both accesses may cause an error
because the array is too short/index too high. When executing
the program, accessing n+3 could not lead to a failure because
accessing n + 5 would have done so before. We call n + 3
a consecutive fault of n + 5, and a tool may decide to not
issue a separate (unnecessary) report in this case (e.g., for
usability reasons). However, if consecutive faults are not dealt
with separately, either the tool would have a false negative (for
not reporting), or other tools would have a false positive (for
reporting a non-fault), which would both be unfair. Hence, we
checked for consecutive faults and tracked information about
them. Some tools also provided grouping information.

3) Validate reports: Experts judged every report in the
consolidated list to determine whether it was true or false
positive. We clocked and recorded the time (in minutes)
needed for each report separately.

a) With- and without-context view assessment: Whether
a fault is present depends on the values of variables and
parameters at the location of the fault. The values are typically
constrained by the program execution before reaching the
respective location (call context). Thus not all values are
possible, and, consequently, an error may be possible in one
context, and impossible in another one. A report is then a true
or false positive depending on whether context is considered.
The with-context view is more precise, however, only as
long as the context does not change. Library functions, for
example, may be used in changing contexts. And must then
be re-analyzed every time. The without-context view is more
sensitive but causes more false positive reports.

The experts therefore judged every report twice: once as-
suming the without-context view — which is usually easier
and faster — and once assuming the with-context view. In the
with-context case, judgments considered the whole call tree up
to the main entry point if necessary. Both analysis times were
recorded: first the without-context time, and then separately
the additional time for with-context analysis.

4) Data analysis and evaluation: Finally, statistical data
analysis and evaluation commenced.

a) Data format: Our fault database has one row for
each fault, with columns as explained in Table I. For easier
handling, the fault database was created in Excel. When it was
finished, it was imported into R for further statistical analysis.

b) Tool Vendor De-Briefing: When data collection was
finished, we conducted de-briefings with the tool vendors.
We wanted to re-check again whether we made a blunder
when applying tools and potentially iterate data gathering,
to share results regarding tools with their respective vendors
(EULAs prohibited sharing detailed results across vendors),
and because some vendors were very interested in feedback.

The de-briefings confirmed that we did not make any
major mistakes when applying the tools. In-depth technical
discussions came about with the development team of one
vendor about a handful of false negative reports that, according
to the tool’s handbook, should have been detected. It turned
out that the handbook had to be updated. Regarding feedback,



TABLE I
COLUMNS OF THE REPORT DATABASE

Field Description
ID Unique identifier for the suspected

fault; i.e., its ID in the consolidated list
file Path and file name of the file where the

report is found
function Name of function containing the report
line Source line number of report
type Fault type according to our catalog
description A human-readable description of report

that justifies its type classification
implied by If report is a consecutive fault, then the

other one’s ID (cf. grouping)
decision w/o
context

TRUE if report is true positive without
considering context, FALSE otherwise

analysis time Minutes spent for analyzing report
without considering context.

justification Human-readable explanation for above
decision

[decision
with context]

Above three fields repeated for the
“with-context” case

[found by
ToolA...F]

For each ASV tool, whether or not it
issued this report

interest of the vendors was very mixed. It ranged from the
in-depth discussions to polite disinterest of one vendor that
mentioned that their users had a different use case.

c) Handling of consecutive faults: Recall that consec-
utive faults cannot cause an error because a system would
already be in an erroneous state due to the predecessor. In
order to normalize data, we decided to ignore reports for
consecutive faults because they disadvantage tools that do
not report them but only the predecessor. However, a tool
that only reports the consecutive faults but not predecessor
would then be disadvantaged. So, analysis first iterated through
all “impliedBy” relations in the data: if a tool reported a
consecutive fault but not the predecessor, we assumed that
it had, instead, reported the predecessor. Nine reports were
affected. We excluded 147 critical and 83 warning consecutive
faults from further analysis (between 30-40% for most tools,
cf. Table II). The consecutive faults caused additional effort in
the study. We had to manually decide whether — and, if yes,
in what way — they were related to which other faults. In
the real world, consecutive faults are usually fixed implicitly
when the predecessor fault is fixed. So they will not show up
again when the ASV tool is rerun, need not be fixed explicitly,
and should cause only negligible effort (as long as the tool is
used iteratively, and in parallel to development).

d) Combining with- and without-context views: In order
to simplify results, we integrated both cases into one view:
Results are primarily based on the decisions for the with-
context case (see [13] for more details on the two cases).
However, we treat critical reports that are false positive in the

with-context case and true positive in the without context case
as true positive but warning reports. The reasoning is that the
pragmatic scenario for ASV is to ensure that software is free
of critical faults as cheap as possible. Still, critical without-
context reports are potential future maintenance problems very
much like with-context warnings. So they are worthwhile
being dealt with as well. This modification affected 16 reports.

III. RESULTS

From the consolidated reports, we extracted information
about the six ASV tools.

a) Comparison of key figures: Figure II presents overall
per tool statistics. Six columns present the numbers for indi-
vidual tools, whereas “Overall” presents an overall table for
all tools, which is computed as whatever is more appropriate
for the row. It can be the sum of the tool columns (e.g., unique
contribution), using overall lists (e.g., sensitivity and precision
7©), (weighted) averages (e.g., rows A©), or multiple linear

regression (e.g., rows F©).
The first row of the table 1© lists the runtime of the tools.

There are two clusters of tools: one with tools with rather short
run times, and one with significantly longer times. 2© shows
the percentage of true positive reports in the without-context
view that become false positive in the with-context view.
Again, there are two groups of tools: 0% and > 0%. These two
groups are also visible in 3©, which shows the total number of
critical reports issued by the tool. ToolD has issued only one
report ( 3© and 4©). It was probably used by the developers
during development and its reports immediately addressed, or
it did not issue many reports at all. The unique contribution
5© is the number of critical faults detected exclusively by the

tool. There were 39 faults that only one single tool detected;
more than half of them came from ToolB. 6© shows the ratio
of consecutive faults among all of the tool’s reports. 7© reports
the sensitivity and precision of reports split by warning and
critical, and overall. Unsurprisingly, the two groups show in
the sensitivity for critical reports. 8© is the total time (in
minutes) the experts wasted judging false positive reports by
the tool. The tools that score high on detecting critical faults,
also cause the highest efforts for analysis of false positive
reports. The effect carries forward in overall total analysis
times, and the derived time needed per source line of code 9©.
Note that the Overall times for using all tools are less than
the sums of all tools’ times because of overlaps between tool
reports. A clear distinction between average times (in minutes)
to find a warning or critical true positive A© is not obvious.
What can be seen, however, is that the overall average time
necessary to find a critical true positive is much higher than
for warning true positives. Minimum analysis times per report
are often 0 minutes because analysis times of less than 30
seconds were rounded down. The Jaccard similarity coefficient
in B© measures the overlap of the tool’s reports with the list
of actual faults, i.e., what it should have reported. Once more,
ToolB, ToolC, and ToolF give better results than the other
three tools. Yet ToolB and ToolC appear to be more effective
for critical faults and not so much for warnings, while ToolF



TABLE II
COMPARISON OF SEVERAL KEY FIGURES OF TOOLS

Overall ToolA ToolB ToolC ToolD ToolE ToolF
1© Tool runtime (minutes) - 10 300 600 15 3 5

2© True positive with context−−−−−−→ false positive 11% 0% 13% 20% 0% 0% 10%
3© Total number of critical reports 86 8 73 48 1 11 58
4© Total number of warnings reported 184 13 14 71 1 17 96
4© Ratio of critical reports out of all reports 32% 38% 72% 29% 50% 39% 31%
5© Unique contribution (critical) 39 1 23 10 0 2 3
6© Consecutive fault ratio ≈ 50% 32% 48% 38% 33% 72% 37%
7© Sensitivity / precision (total) in % 100 / 78 10 / 90 37 / 77 38 / 59 1 / 100 13 / 89 69 / 87
7© Sensitivity / precision (critical) in % 100 / 83 8 / 75 72 / 81 48 / 97 1 / 100 14 / 91 55 / 83
7© Sensitivity / precision (warning) in % 100 / 76 10 / 100 18 / 71 32 / 45 1 / 100 12 / 88 77 / 88
8© Time wasted on false positives (minutes) 373 20 54 269 0 25 88
9© Analysis time for all reports (minutes) 1083 80 372 735 11 97 510
9© Analysis time per source line of code (min.) 0.45 0.03 0.16 0.31 0.00 0.04 0.21
9© Min/max analysis time per report (minutes) 0 / 61 0 / 25 0 / 25 0 / 61 5 / 6 0 / 18 0 / 25
A© Avg. time to find a warning true positive 5.13 4.21 4.96 9.42 5.50 3.88 3.57
A© Avg. time to find a critical true positive 15.25 13.33 7.29 21.62 11.00 9.70 13.08
B© Similarity (Jaccard) to optimal profile 1.00 0.09 0.34 0.31 0.01 0.12 0.64
B© Similarity (Jaccard) to opt. critical profile 1.00 0.08 0.61 0.47 0.01 0.14 0.49
C© Avg. critical true positive when run as 2nd 16.0 3.2 38.4 23.2 0.6 5.4 25.4
C© ... when run as 3rd 11.2 1.9 30.0 16.1 0.3 3.1 15.9
C© ... when run as 4th 8.2 1.4 24.7 11.7 0.1 2.2 9.4
D© Avg. additional total effort when run as 2nd 226.1 42.8 245.6 614.8 8.6 59.0 385.8
D© ... when run as 3rd 177.5 23.9 161.8 534.1 6.8 37.9 300.6
D© ... when run as 4th 147.9 15.7 110.9 483.6 5.6 26.7 245.2
E© Avg. add. effort per true positive when 2nd 14.5 13.37 6.40 26.50 14.33 10.93 15.19
E© ... when run as 3rd 16.5 12.58 5.39 33.17 22.67 12.23 18.91
E© ... when run as 4th 19.1 11.21 4.49 41.33 56.00 12.14 26.09
F© Predict functions with many warnings, R2 0.43 0.02 0.00 0.12 0.01 0.21 0.24
F© Predict functions with many criticals, R2 0.40 0.00 0.19 0.12 0.00 0.01 0.08
G© Perceived usability - ++ 0 0 + +++ +

is good on critical faults but performs even better for warning
faults. Data in the C© rows presents the number of critical
faults the tool would find when run as second, third or fourth
tool after the other tools. The value given is the average of
permutations of other tools run before it. The added benefit
of running an additional tool decreases with each tool, and
follows a tangential curve towards the unique contribution
( 5©). The additional effort required for analysis of reports
when running the tool after other tools D© decreases as well:
True positives detected by the earlier-run tools need not be
analyzed again because we assume that they were fixed. We
limited the cost of false positives that were already detected
by earlier-run tools to no more than five minutes each, because
we assume that a developer will still possess knowledge from
analyzing the report earlier that helps him judge the report as
false positive quicker. With regards to the average additional
effort per critical true positive E©, we see no clear trend: for
ToolC and ToolF, the effort per true positive ratio increases,
for ToolB, it decreases, and for the others it remains more
or less the same. R2 values of Pearson correlation strengths
(coefficient r squared) given in F© rows represent how well
fault-prone functions can be predicted using the raw number of
reports (true and false positives, including consecutive faults)
issued for them; i.e., how much of the variance in fault-
proneness of functions is explained by the number of non-
judged reports issued by the tool. The two Overall figures use

TABLE III
PEARSON SIMILARITY R FOR TOOLS’ DETECTION PROFILES

ToolA ToolB ToolC ToolD ToolE ToolF
ToolA 1.00 0.18 0.14 -0.03 0.40 -0.07
ToolB 0.18 1.00 0.23 0.03 0.31 -0.21
ToolC 0.14 0.23 1.00 0.03 0.30 -0.31
ToolD -0.03 0.03 0.03 1.00 -0.04 -0.14
ToolE 0.40 0.31 0.30 -0.04 1.00 -0.16
ToolF -0.07 -0.21 -0.31 -0.14 -0.16 1.00

multiple linear regression adjusted R2
adj values to predict fault-

prone functions from all tools’ non-judged reports. Perceived
usability G© is a rough assessment of how well usability of
the tool was perceived by our verification experts. Factored
in are efforts for learning, runtime (waiting for results), a
nice interface but also machine-readable output to allow for
integration in custom development environments.

b) Correlation of tools’ reporting profiles: A tool’s de-
tection profile is a vector that has entries of 1 for each fault
correctly detected and reported by the tool, and 0 for each fault
that it missed. False positive and true negative reports are left
out. For these vectors, the Pearson correlation coefficient r is
a measure of similarity. Table III lists coefficients of detection
profile similarity between pairs of tools. Values closer to 1
resemble high similarity, while values closer to -1 denote that
the tools complement each other.



IV. DISCUSSION

This section gives answers to the research questions, and
discusses threats to validity.

A. Is it justified to apply ASV to already qualified software?

The question has two perspectives: an absolute quality
improvement perspective and an economic view.

a) Quality improvement perspective: Wagner et al. [36]
compare static analysis reports to bug reports/fixes, and find a
rather poor connection. Ayewah et al. [6] summarize that only
4% of faults are detected, and attribute that to the analysis
method (pattern analysis). We evaluated tools like ToolA or
ToolD that indeed were not very sensitive to critical faults.
Yet other tools are almost ten times more sensitive to critical
faults. ASV tools issued a total of 86 critical and 184 warning
reports. Out of these, 70 critical (83%) and almost 140 warning
(76%) reports were true positive, i.e., indeed faulty code. So,
the answer to the first view is: yes, applying ASV is justified
because it will still detect faults.

b) Economic perspective: ASV has been found to be
economic compared to later tests and validation if applied in
time [11], [40]. In our case, however, SuT was already verified
and validated. Still, the average time to find a true positive is
≈ 5 minutes (warning) and ≈ 15 minutes (critical). Whether
this effort is too much depends on one’s quality goals, and
schedule reserve. As a ballpark figure, one should calculate
with a 10 to 30 seconds analysis per source line of code plus
effort for fixing plus set up costs. For a 40,000 LOC software
this easily sums up to several months of developer effort.

B. Are there significant differences between different ASV
tools’ capabilities?

In their seminal work, Young and Taylor [39] postulate
that no single practicable fault-detection technique is capable
of finding all faults. Based on theory, we expect to find
differences. Two groups — three if we put ToolD on its own
— can easily be discerned. ToolB, ToolC and ToolF focus
more on critical issues. Context is more important here, they
have longer runtimes, more unique critical contributions, are
more sensitive to critical faults than the other tools, and cause
more effort for judging their reports, also resulting in longer
analysis times in total, per line and per true positive.

But tools also differ within their groups. ToolF, for exam-
ple, is highly sensitive to warning-level faults. The detection
profiles of ToolB and ToolF complement each other in several
aspects. In general, pairwise similarity of detection profiles is
barely r > 0.3, and only one r ≥ 0.4. Almost every tool has
several unique contributions to detection of critical faults.

There are significant differences between ASV tools’ capa-
bilities. It may be worthwhile to combine tools (like ToolF)
with other tools because detection profiles are so different.

C. What is the best ASV tool available?

Sadly, we are unable to answer this question. Firstly, we
only surveyed six tools. While we are confident to have
analyzed top-notch tools, there may be better ones among the

dozens of other tools. Secondly, there are so many parameters
that influence evaluation — like grouping/consecutive faults,
context, warning vs. critical, handling of non-fault defects,
iterative use, usability, learning curve, developer effort, li-
cense costs2, and runtime; some of which we have not even
addressed in our study — that it is impossible to state a
universally valid answer.

Third, as far as the space domain with its extreme failure
costs is concerned, a good choice may be tools with high
sensitivity to critical faults and maximum unique contribution.
So ToolB may be the first choice. But using a second or even
third tool may be considered. ToolC heavily contributes to
critical fault detection when run second or third, while ToolF is
rather complementary to ToolB and is strong on warning-level
faults. ToolE scores by wasting few time on false positives and
low time to find a true positive, high precision, fast runtime,
and nice usability features. ToolA has, for example, very low
analysis times per line of code and per true positive warning,
and very high precision regarding warning messages.

D. Does longer analysis runtime mean more precise reports
or better results?

Practitioners evaluating tools might be tempted to think
that longer runtime means more sophisticated analysis, or, for
usability reasons, favor short-running tools. However, there are
not many conclusions that can be drawn from tool runtime
alone. There seems to be a relation between longer runtime
and a focus on critical faults; yet ToolF is an exception to this
rule. Likewise, longer analysis time seems to be associated
with more complete detection (sensitivity) of critical faults;
with ToolF again being the exception. For warning-level faults,
there is no indication of such a relation. Regarding precision,
there seems to be no correlation with runtime.

Longer runtime does not imply higher or lower precision.
While there seems to be some relation from longer runtime to
the quality of results (higher sensitivity to critical faults, focus
on critical-level report), there are exceptions to this.

E. Are tools that issue more reports less cost-efficient?

A tool that issues more reports causes more effort for check-
ing these reports. Software developers (or their managers)
might therefore be reluctant to use such a tool, and instead,
use tools that issue fewer reports (cf. [11]).

Indeed, the analysis cost per line of code is higher for tools
that issue more reports: ToolB, ToolC and ToolF issued over
100 reports each, and cause analysis efforts per line of code
greater 0.15 minutes, while ToolA, ToolD and ToolE cause
efforts < 0.05 minutes. The three tools also cause more time
wasted for false positives. But this trend is not observed for
average time to find a warning true positive. All tools except
for ToolC cause similar efforts between three and five minutes
per warning-level fault. For critical faults, ToolA, ToolC, and
ToolF cause higher efforts but the difference is rather small.

2A single tool may cost up to several ten-thousand EUR per year, which
may a be relevant figure even in a business environment.



To sum the answer up: Tools that issue more reports are
more costly to use but they are not less cost-efficient. Cost-
efficiency is not a reason to not apply tools that issue more
reports. Reducing cost is a reason to not apply such tools, but
at the risk that undetected faults cause problems and consume
efforts later on. In particular, even the large amounts of orange
reports from tools like Code Prover (see Section II-B2a) may
be worthwhile being dealt with.

F. Is it effective and efficient to apply more than one tool?

We address both parts of the question separately.
1) Is it effective to apply more than one tool?: A precon-

dition for improving quality is that applying different tools
leads to more true positive findings being made. Only then
can more faults be fixed, and thereby quality be improved.
This section investigates the question whether using more tools
adds valuable information about existing faults.

“Effective” means that applying another tool adds benefit
to software quality. Emanuelsson and Nilsson find that static
analysis tools “provide largely non-overlapping functionality”
[11]. With our broader definition of automated software ver-
ification, we obtain even more diversity. It suggests itself
that additional tools will find more true positives, improve
quality, and hence be effective. Our data supports this: All
tools (except for ToolD) find true positives even when run as
second, third, fourth, or even as sixth tool due to the observed
unique contribution by every tool.

The raw number of reports generated by each tool can ex-
plain only little of the variance in fault-proneness of functions
(Figure II, rows F©). The maximum for a single tool is 0.24
for warnings and 0.19 for critical faults. Combining several
reports, R2

adj = 0.40 (critical) and R2
adj = 0.43 (warning) of

the variance is explained. This could possibly be exploited
to cheaply identify fault-prone functions by merely counting
reports of several ASV tools.

2) Is it efficient to apply more than one tool?: We can
approach efficiency from a short- and a long-term perspective.

a) Short-term view: Efficiency compared to reviewing:
Reviews are known to be economically efficient. Hence, we
can decide efficiency through comparison with reviews. Zheng
et al. [40] claim a 30 − 40% efficiency benefit of FlexeLint
and Klocwork. Klocwork was part of our study but we know
nothing about FlexeLint. So we first estimate bounds for the
efficiency of FlexeLint.

On the one side, we know from [40] that it generates
twice as many reports as Klocwork, giving us an approximate
lower bound. On the other side, one study [11] discarded
Code Prover because it generated more reports than FlexeLint.
So effort for FlexeLint is somewhere between Klocwork and
Code Prover, which are both part of our study. Furthermore,
FlexeLint reports are easier to analyze because they are more
shallow [11]. Using our data, we roughly estimate the effort
for using FlexeLint with 15 minutes per true positive, which
is 30 − 40% [40] below review effort. Klocwork, as a lower
bound, is, of course, in the same range. Hence, an effort of less
than 15 minutes plus 30− 40% ≈ 20 minutes per critical true
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Fig. 1. Analysis effort vs. critical faults detected by tool combinations.
Marks colored according to main contributor; center colored with second main
contributor. Marks shifted by small random offsets to emphasize visible effect.
Dotted black line is the review efficiency.

positive is efficient. Figure 1 shows analysis effort compared
to critical faults found. Most tool combinations are above the
review efficiency line, implying more true positives in shorter
time; and the ones below it are not far off.

b) Long-term view: Customer perspective: The cost of
quality consists of positive and negative cost. Positive costs
are spent for achieving higher quality like testing and static
analysis. Negative (or non-conformance) costs are costs in-
curred because the software is lacking in quality, e.g., causing
a software failure leading to loss of a spacecraft, repair costs,
bad publicity, and so on (cf. [31]). The sweet spot of quality
is where the sum of both costs is minimized.

Let us assume that a satellite costs about 200 million EUR.
10% of development and production efforts are spent on
software, so risks originating from software might roughly be
10% as well. If an approximate 20% of science missions fail,
we estimate a 10% × 20% × 200 = 4 million EUR software
risk in a mission. Reducing failure risk by 10% saves about
400K EUR [14], [31]. Soley [34] estimates that basic code
faults account for 10% of faults in production code. If these
10% could be obtained through ASV, it was efficient to invest
up to 400K EUR in ASV. Given a cost of 400 EUR per line
of flight software code [4], we have 50,000 lines of code.
ASV with 0.45 minutes average analysis time per line of code
for analysis with all tools (Table II) at 2 EUR per developer
minute, is far below 400K EUR and leaves a margin for things
like license costs, or configuration efforts.



G. Would a simpler evaluation method lead to comparable
results?

We invested considerable efforts in the tool evaluation.
When we had our debriefing discussions with the vendors,
they told us that our evaluation was probably the most so-
phisticated analysis done so far. Often interns and students
are tasked with doing rather superficial tool evaluations. But
the necessary expertise, and the efforts for configuring (and
running) tools and consolidating and judging reports should
not be underestimated. Practitioners will perhaps have to pick
tools more by gut feeling than informed decision because of
the effort otherwise necessary.

Would we have come to similar results with a simpler
approach? For several reasons, we do not think so. If the
evaluation is to be fair, it cannot be very much simplified.

For example, a simpler evaluation method might merely
look at the number of reports. However, the R2

adj values of the
individual tools show that the number of reports can barely
explain the variance in fault-proneness of functions. Such
methods must therefore be ruled out.

a) Relevance of context: Applying tools to code that has
been specifically crafted to a certain fault is like applying
them in a without-context view. Instead of crafted examples,
we used real-world code. This code is embedded in a larger
application and therefore has a call context. The true strength
of many ASV tools will only show in the presence of context.

For tools like ToolB, ToolC and ToolF, true or false positive
decisions changed up to 20%; whereas other tools were not
affected. Critical reports in the without-context case may
become false positives in the with-context case, but there are
no critical reports that become false positives from with- to
without-context case (16 vs. 0 reports). For warning reports, it
is the other way around: More without-context warnings be-
come with-context false positives than with-context warnings
becoming without-context false positives (4 vs. 14 reports). To
summarize: Context reduces the amounts of critical and certain
kinds of warning reports, but increases warnings of other types,
e.g., ones associated with defensive programming.

b) Clocking analysis time: For obtaining meaningful
times for judging reports, the code analyzed must have a
real-world context. And, of course, the experts doing the
judging should be knowledgeable of the domain as well as
software verification. We could answer questions regarding the
efficiency of ASV on the basis of clocked analysis times.

c) Consecutive faults: Handling of consecutive faults
poses a severe problem for consolidation of the report list.
Determining whether a fault is merely a consecutive fault
is a considerable additional analysis effort. However, this
information is needed, otherwise the results of two tools (one
reporting and one not reporting consecutive faults) cannot be
compared. A study that ignores the issue of consecutive faults
will be extremely biased against or in favor of tools like ToolE.

d) Lessons for future evaluations: Some tool vendors
effectively sabotage benchmarking; either consciously through
DeWitt-clauses, or (inadvertently) by technical means like not

exporting report locations (line numbers). Instead, standard-
ization of report data should be achieved. Open interfaces are
needed to make benchmarking easier, to allow meta-tools to
incorporate results from other tools, and to provide enhanced
verification services. Far more than one thousand hours of
work were carried out by experienced industry personnel. We
could automate much less of the work than originally intended.
If no solution is found for the issues of automating analysis,
neither will full-scale in-depth studies be possible, nor can
smart meta-tools be provided.

Evaluation of tools allows advances regarding qualities like
sensitive or precision in the first place. More and repeated
efforts with the help of the research community are probably
necessary to aid practitioners with their choice (cf. [8]). The
research community should pay more attention to evaluating
tools; and to developing evaluation methods. We do not
yet have a method for choosing the most suitable tool or
combination of tools in a given situation, but this is what
practitioners need.

Future work should include more tools and more diverse
code. It should address creating an open and evolving database
about code, and true and false reports. Tools should be applied
iteratively, fixing bugs in between. However, this would further
complicate data collection. Usability and psychological aspects
need to be addressed as well. For example, long runtimes
reduce interactivity, require discipline, and may be less re-
warding for developers (cf. [11], [38]). Getting dozens of such
reports might be perceived as much more frustrating than get-
ting shallow and easily judged try-and-fix ones. Long runtimes
might need to be reflected in project schedules, because fixing
must start long before the end of the project to accommodate
the long waiting times in the process. Also, detection of non-
fault defects and their immediate and long-term effects should
be regarded (e.g., technical debt) in evaluations.

Last but not least: While in-depth evaluation of ASV tools
is costly, one learns a lot about the tools and their methods.

H. Limitations and Threats to Validity

We think we found fair compromises for dealing with the
issues of context and consecutive faults. Yet both aspects can
influence evaluation results.

Our 10%-sample (60 functions) probably generalizes to the
whole project. But generalization to other projects may be
limited. SuT has its peculiarities like being a space flight
middleware, being qualified at time of analysis, having 90%
unit test coverage, and passed one analysis with ToolB after
half of the duration (and was probably frequently checked with
ToolD.) One should therefore not assume that one tool is, in
all situations, better than another. Instead, a method is needed
to come to a well-grounded decision about which tools are
more suitable in a given situation.

We did not modify the SuT code in response to confirmed
reports, and then re-run tools. Tools only had a single shot
(after the configuration optimization). And we do not know
about faults that were not detected by any tool. Report
analysis times were clocked only once per report. There are



probably variations between experts; although they all were
experienced. The fault catalog tried to standardize how to
judge individual faults but such decisions may depend as well.

V. RELATED WORK

Psychological aspects of static analysis are studied by
Ostberg et al. [26]. Ayewah et al. [5] analyzed the use of
static analysis tools in the broader scope of organizational
policies. They conclude that tools are an important asset for
finding faults before production. Similar benefits are seen in
academic environments where automated analysis tools can
provide quick, automated and objective assessment of code
quality, and thereby improve quality and readability [23].
Hovemeyer and Pugh [17] stress the difference between style
checkers and fault detecting tools, and note that the latter can
find considerable amounts of faults even in software written by
experts. Plösch et al. [29] compare static analysis tool results
to human reviews in order to determine how good automated
analysis is. They also find that static analysis is valuable for
guiding expert reviews [28].

Wagner et al. [36] applied the static analysis tools PMD
and FindBugs on software from two projects in order to
characterize reports made by the tools. Lessons learned for a
corporate environment is presented by Emanuelsson and Niels-
son [11]. The experience reports provide interesting qualitative
information on the use of such tools. A study by Temmerman
et al. [35] is quite detailed in its analysis but it is restricted
to MISRA rule checking, not functionality. Ourghanlian [27]
presents a case study of Polyspace and Frama-C for nuclear
power plants but argues that the number of Polyspace’s orange
reports was too high to handle them. The domain is similar to
spaceflight because power plants are also one-of-kind devices,
which one does not want to fail. Shiraishi et al. [32], [33]
evaluate several tools with crafted code snippets. Information
on creating a test corpus can also be found in [9], [20].
In particular, the NIST Reports on the Static Analysis Tool
Expositions (e.g., [25]) provide comprehensive overviews.

Hellström [15] presents a host of different commercial
and open source analysis tools. He selects some for further
evaluation, focusing on usability, providing false positives and
negatives for a simple set of crafted faults. He finds that open
source tools are not capable of keeping up with the quality of
commercial ones.

VI. CONCLUSION

Verification of software code is an important component of
validation and verification activities to ensure correct software.
This is of particular interest in domains and businesses,
where a software failure, caused by a fault, can have severe
consequences. In our domain — spaceflight — a single failure
can mean the loss of a several hundred million EUR spacecraft.
To support code verification activities, automated software
verification tools analyze source code, in order to identify code
that is suspected to not perform as expected.

Although ASV tools have long reached a mature state,
and should be a common part of any modern development

environment, they still face rejection. Typical criticism is that
they find too few real faults, or that they report too many
false positives and cause more cost then they bring benefit. For
large purchasers of spacecraft with their embedded software,
transparency of verification tools’ capabilities is a precondition
for effective quality assurance. Commercial companies and
agencies alike are in dire need; yet reliable and in-depth
studies are missing. Therefore a study of six ASV tools to
evaluate them with real-world flight software was contracted.
We investigated several questions and found that

• ASV tools can find faults efficiently even in software that
has been qualified, disarming criticism that they would
not find real faults or be too expensive;

• there are big differences between tools and capabilities;
• there is, however, no simple, universally valid answer to

the question, what the best ASV tool is;
• longer analysis runtime does not lead to higher precision

of results but indicates a focus on critical rather than
warning-level faults;

• tools that issue more reports cause higher analysis cost
trivially because they report more faults but they are not
less cost-efficient;

• it is effective and often efficient to apply more than one
ASV tool to find further faults; and

• there are studies that evaluate ASV tools but they often
do not go into details enough.

The discussion about consecutive faults emphasizes the ad-
vantages of using ASV early, i.e., integrated into development.
As further contributions we

• address critical embedded software in a domain that
requires it to be dependable and safe,

• report an elaborate study (including clocked analysis
times) of several ASV tools,

• include several state of the art tools, using high quality
(90% test coverage and validated), real-world software,

• analyze the added benefit from combining tools both from
effectiveness and efficiency views,

• propose a structure for a fault database to collect infor-
mation about true and false positive reports,

• present and discuss a method for evaluating tools, and
• inform practitioners and researchers of several pitfalls that

conducting an ASV tool evaluation can have.

We as practitioners want to motivate other researchers to
get involved in evaluating tools. There is a need for more
transparency in automated software verification, and for well-
grounded methods for selecting tools that suit a given situation.
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