
BSSE System and Software Engineering

Bessere +
Sichere
Software
Effizient erzeugen

R.Gerlich, R.Gerlich (BSSE)

Integrated Design and Testing of Safety-Critical g g g y
Real-time Systems in Space

MBTUC11
Model-Based Testing

MBT User Conference 2011
19 10 2011 Berlin Germany

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2011 All Rights Reserved MBTUC11 "Integrated Design and Testing of Safety-Critical Real-time Systems in Space" 1

19.10.2011 Berlin, Germany

Dr. Rainer Gerlich BSSE System and Software Engineering Tel. +49/7545/91.12.58
Auf dem Ruhbühl 181 Fax +49/7545/91.12.40
88090 Immenstaad Mobil +49/171/80.20.659
Germany email Rainer.Gerlich@bsse.biz

BSSE System and Software Engineering

Bessere +
Sichere
Software
Effizient erzeugen

Model =
Abstract representation

of a system

MBT in context of MDE

Test in context of V&V:

• Tests support verification

Model

Stimulation + Test
of the Model

Testing on modelling and
on target level:

Are these two different things?

• Tests support validation

Verification

• provide input-output vectors

• support fault injection

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2011 All Rights Reserved MBTUC11 "Integrated Design and Testing of Safety-Critical Real-time Systems in Space" 2

Target System
Stimulation + Test

of the code

Validation

• provide feedback on specification

• provide performance figures

BSSE System and Software Engineering

Bessere +
Sichere
Software
Effizient erzeugen

MBT in context of MDE and Automation

Code generator generates the code
+ instrumentation for recording of properties

Test generator generates the test environment
for stimulation

Trash on modelling level
=

More trash on target level
Verification

Model

The whole process is driven
from the model only!

N l i t ti !

Refine the Model
(and the Modelling
Environment) using
Feedback from the

System

Auto-
Stimulation + Test

of the model

System Generation
Test Generation

Root of both is the

MODEL

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2011 All Rights Reserved MBTUC11 "Integrated Design and Testing of Safety-Critical Real-time Systems in Space" 3

Target System

No manual intervention!

V&V on target is in focus, too

Automatic Verification
Automatic Generation

Automatic Testing

Auto-
Stimulation + Test

of the code

BSSE System and Software Engineering

Bessere +
Sichere
Software
Effizient erzeugen

Code Generation
Test Generation

The Power of Fully Automated
Process Chains and Integration

RT & Commun.
Infrastructre

Domain 10 min

Executable
Specification

+
T t Sti l ti

Visualised Properties

Feedback for
V lid ti f S ifi ti

Modelling Level Target Level

DSL
Domain

40 processes
2 processors

300 state trans
100 states
300 cmds

Test Stimulation

20 min

Validation of Specification

500 data items
O/B database

Calibration
Monitoring 10 min

Integration on
higher Level

after
domain-specific

testing

• Continuous correlation model – target

• Continuous feedback from executable system
in representative environment

Test Generation
Code Generation

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2011 All Rights Reserved MBTUC11 "Integrated Design and Testing of Safety-Critical Real-time Systems in Space" 4

Data Processing
& Archiving

g
pre-/post-proc.

10 min
Executable

Specification
+

Test Stimulation

0
Visualised Properties

Feedback for
Validation of Specification

spread
sheet

BSSE System and Software Engineering

Bessere +
Sichere
Software
Effizient erzeugen

Feedback by Visualisation
(examples only)

state+trans coverage

command buffer statistics

cmd inj statistics

Due to automated model-based stimulation
immediate feedback from a system

executable in a representative environment

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2011 All Rights Reserved MBTUC11 "Integrated Design and Testing of Safety-Critical Real-time Systems in Space"
5

CPU + Channel Utilisation

DB operations
atomic data types

Command + Data Profiles

Response
Times
fw-bw

BSSE System and Software Engineering

Bessere +
Sichere
Software
Effizient erzeugen

What is a Model?

A model represents a specification

UML?

Name of Signal Data Type Input Range Physical Range Acqui. Rate HW Module Calibration Type
CFDdrive_pot REAL32 0 - 10V 0 - 200 mm 100 ASM F1 FctASM1_Std
CFDrot_pot1 REAL32 0 - 10V 0 - 360 ° 100 ASM F1 FctASM1_Std
CFDrot_pot2 REAL32 0 - 10V 0 - 360 ° 100 ASM F1 FctASM1_Std
CF_reg_v_pot REAL32 0 - 10V 0 - 270 ° 10 ASM F1 FctASM1_Std
GS_press_low REAL32 0 - 10 V 0 - 2 bar abs. 10 ASM F1 FctASM1_Std
CFVpenn_chamb REAL32 0 - 10 V 1.e-7 - 1000 mbar 1 ASM F1 FctASM1_Pressure
VGSpenning_ms REAL32 0 - 10 V 1.e-7 - 1000 mbar 1 ASM F1 FctASM1_Pressure

Contents of a spreadsheet?

with text_io; use text_io;
package body mytypes is
mydatai : integer;
function myfunction return integer is
mydatai2 : integer;

begin
mydatai2:=mydatai +1;
mydatai :=mydatai2+1;
put_line("mydatai =" & integer'image(mydatai));
put_line("mydatai2=" & integer'image(mydatai2));
return 0;

end myfunction;
end mytypes;

Ada code when re-engineering?

DSL code?

process proc1 has 1 instances with distribution all on cpu1
states:

in cmdstate:
on message hk_data:

keep samestate
end
on message checkout_proc1:

send message cmd_ack to sender
send message checkout_report to msg_handler instance 1 calling stub function checkout_proc1
keep samestate

end
on message report_proc1:

send message cmd_ack to sender
send message err_msg to msg_handler instance 1 calling stub function report_proc1
keep samestate

end
on exception:

send message err_msg to msg_handler instance 1 calling stub function err_msg_proc1
keep samestate

end
d

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2011 All Rights Reserved MBTUC11 "Integrated Design and Testing of Safety-Critical Real-time Systems in Space" 6

end
end

Taking a specification as base for tests
All model types we have used for
• code generation (fully automated)
• test generation (fully automated)

BSSE System and Software Engineering

Bessere +
Sichere
Software
Effizient erzeugen

What is a Test Input on Modelling Level?

Test stimuli automatically derived from a model
and automatically documented together with results?

A test plan and test procedures derived from a model?

Stimulus for an FSM valid or invalid

A set of non-functional parameters deadline, timeout, period
A i ti f id l t ti jitt ti ti

Stimulus for commands, msgs and data valid or invalid, lost

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2011 All Rights Reserved MBTUC11 "Integrated Design and Testing of Safety-Critical Real-time Systems in Space" 7

A variation of ideal parameters time jitter, execution time

Automatically derived test stimuli may also support early operation of a system

A test input may also be omitting of an expected input
e.g. in case of fault injection: loss of data or events
important for critical, fault-tolerant systems

BSSE System and Software Engineering

Bessere +
Sichere
Software
Effizient erzeugen

~ 40 processes
~200 states

2 processors
real-time infrastructure + TC + TM + database:

2000: tool delivered to customer
2003: system accepted by ESA
2009: launched and put into operation

Material Science Laboratory ISS

heaters

FCU

MIL-Bus

Seebeck
measure.

unit
PyrometerUltrasonic

Device
Waterpump

package

MIL-Bus M-Mod.
(RTU)

SPLC

PSU

5 x
RS422

SPLC

MIL-Bus
M- Mod. on

Dig. I/O (BC)

MIL-
bus

(RTU)

5 x
RS422

analogue in

tem
p. TC

 indigital in/out

MIL-bus

Mass
Spectromet

er

Magnetic
Field

Generator

TMP
1 + 2

~80 KLOC when tool delivered
expanded by customer over 3 years

Generation:
~15 min from modelling language ISGL or Excel
automatically generated reports on properties

Input: ~500 Excel-lines

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2011 All Rights Reserved MBTUC11 "Integrated Design and Testing of Safety-Critical Real-time Systems in Space"
8

3 faults detected in first version
of code and test generators
from 2000 - 2003:

• limitation to 250 ground commands

• task priority list for distributed system not correct

• overflow in union (16 bit cmd counter)

• no more faults flagged from the project since 2003/2009

BSSE System and Software Engineering

Bessere +
Sichere
Software
Effizient erzeugen

Early Design Validation

40

50

60

70

80

90

100

C
ov

er
ag

e

Coverage FSM [%]
Coverage states [%]

! FSM stimulation by messages
! Loss of messages / events
! varying fault probability

State and State Transition Coverage vs. FI probability

1000

1200

1400

Injected faults
Identified faults

Evaluation Means
Fault Injection =

Inversion of positive functionality

0

10

20

30

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Fault probability
High probablity of a system collapse
already at very small probablity of 0.5%
for data loss

Injected and. detected faults vs. FI probability

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2011 All Rights Reserved MBTUC11 "Integrated Design and Testing of Safety-Critical Real-time Systems in Space" 9

0

200

400

600

800

1000

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Fault probability

Fa
ul

tsSystem Initialisation Procedure
<Probability to reach the end> = ?
How critical is my system?

BSSE System and Software Engineering

Bessere +
Sichere
Software
Effizient erzeugen

Bridge from UML: Command Manager

Pure functional verification based on UML failed:
non-functional properties were out-of-scope

and
performance and fault tolerance issues could not be detected

due to stepwise stimulation
while massive stimulation is required

verified previously
by a UML tool

but no support of
non-functional properties

8a distribute
verified cmd

3
store

+
verify

6

7
ready

5 verify

CmdDistribution Queue

CheckCmd

p p
especially of fault injection

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2011 All Rights Reserved MBTUC11 "Integrated Design and Testing of Safety-Critical Real-time Systems in Space" 10

1 Cmd uplink

8b NAK
If cmd not accepted

9 ready

result of verification
ACK or NAK

4 Cmd stored

CmdManager SystemControl
2 blocking

BSSE System and Software Engineering

Bessere +
Sichere
Software
Effizient erzeugen

Evaluation of non-functional properties
In presence of Fault Injection

5 verify

CmdDistribution Queue

Deadcode in modelDead code due to distributed logic
spreading over two processes Deadlock in case of loss of signal

Deadlock in case of loss of signal
though fault tolerance should

cover it

8a distribute
verified cmd

3
store

+
verify

6
result of verification

ACK or NAK

7
ready

5 verify

4 Cmd stored

CheckCmdErroneous fault-tolerant approach:
lost signal is really lost,

but next signal is duplicated

Deadcode in model

Deadlock in case of loss of signal

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2011 All Rights Reserved MBTUC11 "Integrated Design and Testing of Safety-Critical Real-time Systems in Space" 11

1 Cmd uplink

8b NAK
If cmd not accepted

CmdManager SystemControl

Missing requirement on
WCET or Uplink Rate

Potential Loss of
Commands

Missing performance requirement
on

uplink rate or WCET

9 ready

2 blocking

BSSE System and Software Engineering

Bessere +
Sichere
Software
Effizient erzeugen

Extracting a Model from Ada code:
Coverage of Finite State Machines

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2011 All Rights Reserved MBTUC11 "Integrated Design and Testing of Safety-Critical Real-time Systems in Space" 12

~ 40 processes
~200 states

2 processors
! Random stimulation
! Dynamic stimulation of FSMs, inputs derived from the model
! surprising, because reachability of states was not a test goal:

Sub-sets (nets) of states, no transition possible
! Fault? in this case: hidden information " testability?
! Conclusion: difficult (impossible) verification of application regarding behaviour

BSSE System and Software Engineering

Bessere +
Sichere
Software
Effizient erzeugen

Performance Characteristics

! Ada
~1 Mio. lines of source code, ~430 KLOC

! FSM
38 FSMs / processes
616 different commands (inputs of FSMs, stimuli)
637 commands in total, tuples of (FSM,cmd)
360 different states
381 states in total tuples of (FSM,state)
1475 transitions (names)
4695 different tuples (FSM, msg, initial state, final state)
9778 atomic actions in FSMs

! Time statistics

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2011 All Rights Reserved MBTUC11 "Integrated Design and Testing of Safety-Critical Real-time Systems in Space" 13

! Time statistics

ISGL model generation from Ada: < 5s

system code generation: ~10min

stimulation: 2000% coverage of input domain (20x at least) ~70 min. (~ 3cmds/s)

BSSE System and Software Engineering

Bessere +
Sichere
Software
Effizient erzeugen

Evaluation of non-functional properties:
Distributed Synchronous System

CyclicHW I/F

Sensor inputs

Synthesis of two models
ISGL for behaviour and real-time
Scade/Lustre for control algorithms

Integration on C code level
Stimulation from behavioural model
Stimulation data provided from Scade analysis

Redundancy

Monitoring

Data Acqusition

Pre-processing

Filtering

PP1 PP2 PP3

Moni1 Moni2 Moni3

Voter1 Voter2 Voter3 Voter4 Ops 1 Ops 2

Operator InterfaceVoting

Preprocessing

3-fold redundant processing network

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2011 All Rights Reserved MBTUC11 "Integrated Design and Testing of Safety-Critical Real-time Systems in Space" 14

Voting

Voter output: yes / no

FB

2 / 2 2 / 2

Actuators Man/machine
interface

Contronic E

Controller Outputs

BSSE System and Software Engineering

Bessere +
Sichere
Software
Effizient erzeugen

Impact of Time Jitter and Data Loss

35

40 Loss of data and Time jitter
↑↑↑↑ % faults / voter discrepancies

high fault rate at rather low time jitter and/or low rate of loss of data

10

15

20

25

30

D
is

cr
ep

an
ci

es
 [%

]

 (N/N)
(N/Y)

Time jitter only

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2011 All Rights Reserved MBTUC11 "Integrated Design and Testing of Safety-Critical Real-time Systems in Space"
15

0

5

0,00% 2,00% 4,00% 6,00% 8,00% 10,00% 12,00% 14,00% 16,00% 18,00% 20,00%

Time Jitter

(N/Y)
(Y/N)
(Y/Y)

→→→→ % Time jitter

Theoretical prediction and “confirmation” after raising doubts, but before ISG V&V:
“should be robust in case of time jitter”

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2011 All Rights Reserved MBTUC11 "Integrated Design and Testing of Safety-Critical Real-time Systems in Space"

BSSE System and Software Engineering

Bessere +
Sichere
Software
Effizient erzeugen

Verification of the Code Generator

Tests automatically derived from a model
require the generated code

to unveil its properties

Reference
Model

Automated

Code + Test
Generation

Transformation

Execution of
Generated Code

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2011 All Rights Reserved MBTUC11 "Integrated Design and Testing of Safety-Critical Real-time Systems in Space" 16

Comparison
Oracle

Observation of
Properties

