
Accuracy of Simulation

Rainer Gerlich
BSSE System and Software Engineering

Auf dem Ruhbuehl 181
D-88090 Immenstaad, Germany

Phone +49/7545/91.12.58 Mobile: +49/171/80.20.659Fax +49/7545/91.12.40
e-mail: gerlich@t-online.dewww: http://home.t-online.de/home/gerlich/

Keywords: SDL, validity of simulation results, performance impacts, EaSySim II

1. INTRODUCTION

This paper discusses the correctness of simulation results in view of system validation,
addressing functional, behavioural and performance aspects. It raises the question "how much
can we rely on the results of simulation?" and tries to give an answer on "what we need to do
to get representative results by simulation".

During the ESA/ESTEC study HRDMS (Highly Reliable Data Management System and
Simulation) [1] which concentrated on performance validation several faults were identified
which were directly related to timing conditions, i.e. under different timing conditions the
faults would not have been occured. These results doubted that purely functional or
behavioural validation of a system without consideration of performance impacts will allow to
conclude on a system's correctness.

Errors which are related to performance impacts may force a re-design of a system and may be
very expensive if the errors are detected too late. Usually performance aspects are considered
rather late in the li fecycle, so that concentration on functional or behavioural aspects may lead
to serious problems during and especially at the end of system development. However, most
of the known methods and tools ignore performance aspects. This makes it diff icult to identify
risks early enough.

Based on this experience the question was raised if and how we can detect such errors with
current methods and tools. One case out of the set of faults identified during HRDMS was
selected (as described in [2]) and investigated in more detail with SDL extended by
performance capabiliti es in the EaSySim II environment [3,4]. The general problem raised by
the identified fault is that the sequence of state transitions usually looks different if delays
caused by the physical environment are considered.

During the exercises executed for above example [2] it was recognised that the risk to miss a
fault is the higher the more the system is optimised for performance. However, without
consideration of performance impacts such an optimisation is not possible. Hence, currently -
without having capabiliti es for performance simulation - a system is validated for functions
and behaviour, but later modified for performance reasons: so the proof of validation is lost,
the system may behave erroneous. In worst case an error occurs rarely only in some situations
which may not happen during the tests.

The weak points of purely functional and behavioural simulation and validation are discussed
now for SDL and it is shown why and how performance extensions will help to succeed.

2. ACCURACY IMPACTS

The exercises which were executed in the EaSySim II environment showed that

1. competition for a shared resource such as a CPU or a bus impacts significantly the
validation result,

2. introduction of resource consumption helps to reduce the number of system states, and
to avoid state explosion.

According to (1) nearly every (wrong) result can be obtained when the simulation model and
environment are not suff iciently representative (as described in [2]), which is especially true if
resource consumption is not considered.

On the other side state explosion may prevent that we will get any valid, representative result
on a system's correctness at all . By the exercises with peformance extensions it was
recognised that the number of system states is reduced when performance impacts are
considered: a physical system behaves much simpler than an ideal mathematical system. As
SDL executes a model more mathematically-oriented, performance extensions will help to get
(valid) results where otherwise no representative result is obtained due to state explosion.

2.1 The Impact by Resource Consumption

A resource is usually a hardware component of a system such as a processor or a bus. When a
process is consuming such a resource it is usually delayed: because either the use of the
resource takes some time or a process has to wait because the resource is consumed by
another process which shares the same resource. This will im pact the sequence of state
transitions, of course.

Process

P1

Process

P3

Process

P2

t13

t23

t12

S13

S23

S12

t22

Fig. 1: Transitions vs. Propagation Time

The question was raised whether the set of
state transitions as obtained during exhaustive
simulation includes all possible combinations,
i.e. also the sequences occuring when (shared)
resources are consumed. However, this is not
true in general as is explained by the example
given by Fig. 1.

Here we have three processes P1, P2 and P3
which communicate via signals, e.g. S12, S13
and S23 where Sij indicates the flow of data
from process i to process j. We further assume
that S23 is not sent before P2 has executed an
internal state transition. The transmission times
of the signals are t12, t13, t23 and the
execution time of the state transition at P2 is
t22.

We now consider following sequence without
applying resource (time) consumption: S12 and S13 are issued at the same time by P1. On
reception of S12 P2 executes a state transition during which S23 is sent to P3. This causes that
S13 arrives earlier at P3 than S23.

By a second iteration we introduce time and assume that t12+t22+t23 < t13. Hence, under this
condition S23 arrives before S13 at P3 and this sequence will never occur in the set of

sequences for t12=t22=t23=t13=0, because S12 and S13 are sent during the same state
transition.

Different conclusions are now possible:

1. no time consumption:

a. S13 shall really arrive before S23, then the simulation gives a correct result;
however, its correctness still depends on performance properties of the real system
which may invalidate this result, so this result is worthless.

b. S13 shall arrive after S23, then P1 needs to be changed, S13 needs to be issued by a
later state transition, possibly triggered by a timer; however, if the channel between
P1 and P3 would later cause the needed delay, then this change would not be needed
and leads to erroneous or less performant system behaviour later on. In any case, the
result is useless because the real properties are not considered.

2. with time consumption

a. S13 shall really arrive before S23, then the simulation indicates a problem, if the
delay of S13 by channel P1 - P3 is too high: the system architecture needs to be
changed; if delay t13<t12+t22+t23 then simulation gives a correct and representative
result.

b. S23 shall arrive after S23, then in case t13>t12+t22+t23 the simulation confirms
correctness of the system, otherwise a problem is identified.

In case 2 always representative results are obtained and the right conclusions are derived,
while in case 1 the simulation result "ok" or "not ok" still may be changed when the
performance properties of the system are introduced.

This example demonstrates the impact of performance on a simulation result. Time
consumption in a part of a model is independent of the logic of a state transition in another
part, and vice versa.

In the example given by [2] (which is a little bit more complicated) such missing performance
impact caused that the final checks which are sent at the end of a protocol to arrive before the
last data.

In consequence, without consideration of performance a representative validation result may
never be achieved by simulation. Vice versa, the performance properties of a physical system
will help us to succeed with validation if we condition the validation environment in the right
manner. The results of such exercises were considered when EaSySim II was built.

2.2 Verification with SDL

SDL allows to model a real physical system as an abstract mathematical system only: it
assumes zero time consumption for a state transition and zero propagation time of signals.
This may lead to different and wrong results compared with the behaviour of the physical
system. As discussed above, if time is consumed during a state transition the sequence of
issued (SDL) signals may look quite different compared with the case when no (processor and
bus) time is consumed. Of course, this impacts the overall behaviour of the system because
the queue inputs will also change over time. Consequently, a MSC generated for the physical
system will look quite different.

The need for modelling of performance aspects becomes more urgent for a distributed system
for which propagation of information through a network is significant. When time is not
considered a processing sequence may occur for the SDL model which will never be observed
in the real environment or vice versa, a sequence of the real world will never be generated by
the SDL model.

E.g. information may propagate through a system with different speed. This will cause that the
sequence of data may be changed and that the data (or the results of data procvessing) will
arrive in another order at a certain destination. Hence, illegal racing conditions may never be
observed, if time is not considered during simulation, and they will cause erroneous, non-
expected system behaviour later on.

Also, the processing of the queue inputs as it is usually performed in SDL differs from what
happens really in the physical system. SDL considers all possible combinations of queue
inputs which causes an explosion of system states already when a rather small number of
elements is stored in a queue.

For a physical system usually a certain strategy is applied for processing of a number of
inputs, which is done e.g. based on priority-driven pre-emptive scheduling. This causes that
only one of the large number of combinations will be executed in practice: for n elements of a
queue only n possible queue states occur compared to n! queue states which are currently
considered during exhaustive simulation.

Moreover, having passed a resource, signals will arrive at a process queue one after the other.
Consequently, in most cases only one element will be in the queue, apart from such cases
were the processor is not fast enough to finish its work before the next signal arrives. So we
have the following two principal cases:

1. a queue has one element only (due to "dispersion" by resources), or

2. if more members are in the queue we apply a strategy which allows us to select uniquely
a certain queue element for processing (which is not necessarily the first one in the
queue).

So a combinatorial explosion does not happen. The full (discrete and finite, but huge)
spectrum of combinations is significantly reduced when taking into account properties of the
physical system.

Now, it could be argued that the combinatorial treatment of the queue contents reflects the
potential delays of signals by the resources (channels): due to different transmission or
processing time signals will be mixed such that they arrive randomly at a process queue.
Hence, the random selection of queue elements just simulates such delays and random arrival
times.

However, as we have seen by the example of section 2.1 the intersection between the
spectrum of system states for a physical and a mathematical model may be empty: the
combinatorial processing of queues may not be representative for the real world. With other
words: if we try to model performance impacts by combinatorial execution we may not use
the real set of event sequences. We can only be sure to meet the real behaviour if we consider
all properties of a system, especially performance properties, where they impact system
behaviour. We surely will fail, when we try to model such impacts at parts of the systems
where the performance constraints are not occuring in practice.

Consequently, a performance extension of SDL should allow for strategy-driven modelli ng
and simulation, not only to support representative modeling, but also to reduce the number of
system states to the number which is related to the physical system.

2.3 A Formal Notation on Performance is still Needed

As was discussed by [2] and in section 2.1 nearly arbitrary results can be achieved by
simulation which may be either correct or wrong: the simulation is saying "ok", but it is not,
or, it is saying "not ok", but the system is "ok". However, in any case when considerung
performance impacts such representaive results are still obtained by execution of the model,
not by formal analysis li ke for the Finite State Machines. This is dissatisfying. The reason is
that still a formal notation is missing which allows to express performance impacts in a
representative manner and which is useful in practice.

The question is now can we add to SDL a formal notation concerning consumption of and
competition for resources such that we can identify in a formal manner that there is conflict or
not. For the time being this question cannot be answered, but we can think about a solution, at
least.

A major advantage of exhaustive simulation is that it provides results and identifies bugs
without being asked specifically for the violated property or the property in question. This
makes it superior to other approaches which will give correct answers, but need to be asked
for it. And here we have again a problem: a human being is not capable to take care of all
properties and potential bugs in a system. If we wouuld be aware of them, we already now
would be able to build perfect systems. Hence, the best approach is useless if it needs a perfect
operator. So the question remains which notation can help us to improve the situation.

Also, there is another problem which is related to interference of signal sequences: when only
one sequence of signals, e.g. of a protocol, is considered, everything may seem to be ok,
although it is not under real conditions later on when several sequences may compete for the
same resource.

In case of the example which was shown in [2] a signal had to be delayed by several bus
cycles in order to prevent that it arrives to early at the destination. Now, for performance
optimisation another signal could try to use the empty slots. Then it may happen that a signal
with the same destination as the delayed signal (issued by another process) will t ake such
slots: hence, data might arrive at the destination which will disturb the still on-going protocol
and cause an error.

Unfortunately, such an erroneous situation does not occur rather often, it is more likely to
occur very rarely. Missing such events during simulation may also lead to wrong conclusions
about a system's correctness. Again, currently such errors related to performance matters can
only be identified by test. It would be extremely helpful if they could be detected by analysis.

3. CONCLUSIONS

Although SDL provides good support for system analysis and simulation, it still i s not perfect:
it lacks (at least the language) of support for performance modelli ng, and it makes things more
complex as they really are. First steps towards extension of SDL have been done, but more
steps are still needed to allow for representative modelli ng, and to get results which can be
trusted.

What is needed is

1. an extension which allows

a. to specify consumption of resources,

b. to define a strategy how competing processes can consume a shared resource

2. a formal notation by which the temporal propagation of information can be specified.

To add such features to SDL would mean a big step forward to allow for representative
modelling and to get accurate results by simulation.

4. REFERENCES

[1a] HRDMS (Highly Reliable DMS and Simulation), ESTEC contract no.
9882/92/NL/JG(SC), Final Report, 1994, Noordwijk, The Netherlands

[1b] R.Gerlich, N.Schäfer, A.Schäferhoff : Early Validation of DMS Design by a Reusable
Environment, EUROSPACE On-Board Data Management Symposium on "Technology
and Applications for Space Data Management Systems", January 25-27, 1994, Rome,
Italy

[2] R.Gerlich: Tuning Development of Distributed Real-Time Systems with SDL and
MSC:Current Experience and Future Issues", SDL'97 Forum, September 22-26, 1997,
Evry, France

[3] EaSySim II: The Enhanced Environment for System Validation, R. Gerlich BSSE, Auf
dem Ruhbuehl 181, D-88090 Immenstaad, Germany

[4] EaSySim II User's Manual, R. Gerlich BSSE, Auf dem Ruhbuehl 181, D-88090
Immenstaad, Germany

