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Abstract.  Performance engineering aims to demonstrate that the software being developed will
meet the performance needs. The goal of robustness engineering is to prove that the system can
function correctly in the presence of faults or stress conditions. From this point of view robustness
engineering comprises performance engineering as a specific case of normal operational
conditions. This shall allow to share the means for monitoring of a system's properties between
performance and robustness engineering. Usually,  performance analysis is done prior to or in
parallel with the development of the operational software by modelling it representatively
regarding performance. This paper describes an approach, called ISG (Instantaneous System and
Software Generation), which allows to measure the performance and the robustness right from the
beginning of the development until the very end when executing the operational software itself.
ISG automates the development process, so that the required instrumentation can easily be inserted
or removed, a capability which is a pre-condition to obtain performance and robustness figures
from the operational software. Consequently, no additional models need to be established to
analyse the non-functional properties of the software under development.
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1 Introduction

For a long time the verification of non-functional properties of software was not well
addressed during the software development process. A detailed analysis (MOVEP) shows that
most methods (e.g. (UML), (Statecharts), (ROOM), (Lustre), (SDL), (MSC)) and tools (e.g.
(StP), (Teamwork), (Statemate), ObjectGEODE (OG), (SDT)) only concentrate on the
functional and operational properties and the interfaces of the software. It often happend and
still happens that the software does not meet its specification at the end due to violation of the
non-functional performance and resource requirements. Therefore specific attention needs to
be given to performance analysis in order to reduce the risks related to software development.

But there are still more risks which are currently not covered by performance engineering: the
risks related to faults (.e.g. loss of resources like processors or communication channels) and
overloads and overflows (which may corrupt system operations). This is a matter of
robustness engineering which aims to prove that the system will remain fully operational or
will behave safe in a degraded mode under exceptional conditions. Obviously, this can only be
demonstrated by exposing the real operational software to stress testing and fault injection.
Hence, robustness engineering extends the ideas of performance engineering regarding risk
management and risk reduction, but needs the real software for analysis of properties.



Performance analysis is usually done by separate modelling activities, e.g. by tools like
SES/workbench (WB) and OPNET (OPNET), because the manual instrumentation of the
operational software itself is errorprone, time-consuming and expensive. Also, due to the
widely used state-of-the-art techniques (e.g. the V-model) the software becomes executable
late during the development cycle. Therefore early analysis of performance properties by the
operational software was not possible at all in the past.

This is different for ISG (Instantaneous System and Software Generation) (ISG). ISG provides
the means to generate executables of a (possibly) distributed system, to instrument the code
for verification and validation purposes, and to stimulate the system for normal operational
conditions, stress testing and fault injection. All these features are subject of automation.
Hence, the robustness and the performance can continuously be demonstrated during the
development of a system.

The automation introduced by ISG is based on formalisation and standardisation. Without
formalisation automation is not possible. ISG formalises the provision of the inputs needed to
define the system, the transformation of the inputs into executable code and the evaluation of
the information generated during execution.

The following chapters will refine the discussion of such topics. Chapter 2 will give a survey
on the ISG approach. Chapter 3 discusses issues of performance engineering and chapter 4
such of robustness engineering. The relevance of ISG to the IT domain is discussed by chapter
5. Finally, chapter 6 will draw the conclusions and outline future work.

2 ISG: An Automated Process Model for Software Development

Fig. 1 gives an overview on the principles of the ISG approach. By taking high-level
engineering information and by applying ISG construction rules, an executable system is
generated, typically within 10 .. 75 minutes1. Then a feedback from the real system is
available regarding the functional and non-functional properties.
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Figure 1: The ISG Approach of System Generation

                                                
1 The generation time depends mostly on the number of process types and amounts roughly to about 1 .. 2
minutes per process type. The upper limit has been observed for the MSL project (MSL1) which consists of
about 40 process types.



2.1 The ISG Process of System Generation

With ISG testing and integration can be performed in top-down manner, yielding full visibility
on the properties of the actual version (Fig. 2) during the whole lifecycle. This is different
from the V-model approach for which a first feedback cannot be received before the coding
phase and integration cannot be done before module testing. Hence, risks which are related to
integration are identified very late, mostly too late to be able to solve a problem with little
effort.
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Figure 2: ISG vs. the V-Model

Fig. 3 shows how the executable code is automatically generated from the user inputs. Such
inputs are processed by ISG utilities, which generate the source code and the environment
needed to build the executables. Having compiled the source code and built the executables,
they are distributed across the network and executed. By instrumentation the information on
the system's properties is produced and presented by an evaluation report after the execution.
A user just has to provide the inputs (in terms of literals and figures defining the system's
components and performance constraints), to start the generation process and then to wait
until the window pops up which displays the evaluation report.

By each iteration ISG transforms one consistent version of the system into the next one. There
are a number of entries where the generation process may be restarted. Two principal entries
are shown by Fig. 3: the "major" cycle which is required after a structural change and the
"minor" cycle which may be executed in case of pure re-compilation, e.g. after update of a
source file.
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Figure 3: The Automated Process Model of ISG



The user inputs define a system in terms of processes, Finite State Machines (FSM), incoming
and outgoing data, the functions to process the data (called „User-Defined Functions“, UDF),
nodes (CPUs) where the activity shall be executed, logical channels and performance
properties and constraints such as timeout, expected CPU consumption, periods (including
time jitter), amount of transmitted data.

ISG automatically provides the infrastructure for data communication and scheduling,
performance analysis, verification and validation for a given topology (Fig. 4). The
application-specific processing of the data is performed by UDFs which can be plugged into
the framework as provided by ISG. At the beginning (instrumented) stubs are generated by
ISG, which ensure the system's execution right from the beginning. Later on the UDFs as
provided by the user are plugged-in successively into the drawers (PID) provided by ISG. A
UDF may also be generated automatically with ISG.
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Figure 4: The Automatically Generated Environment for Embedding of Application-Specific Functions
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Figure 5: ISG Supported Features

Fig. 5 shows the principal features of ISG to support an application: (1) to provide the
infrastructure for data communication and scheduling, (2) to complement the application by
its environment either for stimulation (including stress testing and fault injection) or to disturb



the system, (3) to embed user-provided or ISG-provided application specific code for data
processing and to embed them within instrumented code, (4) to generate automatically UDFs
from high-level user inputs.

A standard format (DASIA’99) is used to exchange data. This format includes logical
information about the the sender, the receiver, the transfered data and the time and duration of
the transfer. Its contents may be translated into other exchange formats or derived from such
formats provided that these formats also include the minimum information required for (time-
stamped) data exchange.

As sender and receiver are defined on a logical level which is converted into the routing
information by the output drivers, a change of the topology is easily possible without any need
to change the logical definition of the system. Currently, such a change is possible at the time
of system generation or distribution of the executables, but it may be extended to the existing
dynamic reconfiguration2 as described by (RTL).

To get information about performance like CPU consumption ISG either uses system services
(e.g. in case of Unix platforms) or it provides itself the needed services as in case of the real-
time operating system VxWorks. For monitoring of resources like memory consumption or
buffer utilisation ISG instruments the source code.

Currently, ISG generates C source code, but it may be ported to other programming languages
as well. It also may interface with existing code supporting C interface standards.

2.2 Application Areas of ISG

Basically, ISG addresses system generation from scratch by making this process more
efficient and less risky. However, due to the capability to embed user-defined code it may also
interface with already existing code which is plugged into the ISG-provided skeleton as a
UDF (see Fig. 4). From this point of view it may be applied to port legacy software to a
modern platform: ISG provides (immediately) the infrastructure and the existing, platform-
independent software is plugged in as UDF.

Also, a bridge can be established from another tool environment, which is already, to ISG in
order to take benefit from its testing, reporting, verification and validation capabilities.
Components which require a complex hardware environment for integration and testing on
system level, can easily be integrated with ISG on pure software level, which is less expensive
more flexible regarding iterations and probably earlier available than a hardware platform.

ISG is currently used in the technical area, e.g for the MSL project (MSL1, MSL2) and the
CRISYS project (CRISYS). MSL is the „Material Science Laboratory“ of the International
Space Station planned to fly in 2001/2002. In the CRISYS project ISG will be used for two
applications acting as an integration and V&V platform for (1) a back-up power supply of a
nuclear power plant and (2) a mail sorting and distribution system.

Characteristic for the current „technical“ application domain are:

- the number of process types is rather high and only a few instances exist for each
process type (e.g. 40 process types and 50 instances in total for MSL),

                                                
2 This technology will be applied to the software of the Automated Transfer Vehicle (ATV) which is part of the
International Space Station ISS.



- the instances may need to communicate directly via shared memory,

- resources like memory and CPU power may be small.

This is different from the „Information Technology“ (IT) domain of database processing,
information management and client-server systems, using e.g. COBOL and SQL beside C and
C++, with usually a high number of instances (clients) per application type and strict
separation of the client’s address space.

However, the concepts of ISG are not limited to the pure technical domain. The available
infrastructure can be adapted with little effort to cover the needs of the IT domain, so that all
the generation, verification and validation capabilities would be available for such
applications as well. Also, the experience to automatically generate user-defined functions
(UDFs) for data processing from user inputs can be well applied to areas where SQL, COBOL
and C++ are used.

2.3 Future Evolution

The future evolution of ISG will be related to interface with existing user environments, to
adapt ISG to other application domains, to increase the percentage of automatically generated
UDFs, and to provide a user interface adequate for the application domain.

According to a number of discussions it seems that the needed formalisation of user inputs (as
required for automation) needs to be hidden as far as possible to get the automated approach
accepted by the user. In case of MSL  (MSL2) engineers used already spreadsheets intensively
and a major part of the existing datasheets could be reused for the definition of the software.
Therefore this representation was kept and a meta-model was established to introduce the
required formal definition level. For other applications the adequate representation of user
inputs needs to be discussed with the users.

It is believed that the current datasheet-based representation can be still reused as an
intermediate representation of ISG, into which the dedicated user representations are
transformed.

The essential point is to keep the informal world of a user, but to enhance it towards a higher
degree of formalisation, e.g. by using a slightly different organisation which allows for formal
checks.

E.g. in case engineers are used to provide their inputs by specification and design documents,
these documents could be organised such that the formal inputs appear within "informal" text
and the user really does not recognise that the input scheme is formalised.

2.4 Summary on ISG

ISG automates the software development process and combines system generation with
verification and validation. This allows to derive information about functional and non-
functional properties from the real system right from the beginning. Due to automated
instrumentation the real system itself can deliver information which in the past could only be
provided by a separate prototype. As ISG has a modular structure and uses construction rules
and templates for system generation, it can easily adapted to different application domains.
The currently used format of user inputs can also be adapted to user needs, capable to request
formal inputs in a „quasi-informal“ manner. The automation of the development process
implies automation of maintenance.



3 Performance Engineering

This chapter explains the means for performance analysis which are automatically built-in by
ISG into the operational software system.

ISG checks the consistency of the behaviour, the compliance of achieved performance with
performance requirements and the robustness of the system. It records timeouts, cycle
overruns and exceeded deadlines. It compares the estimated CPU load with the measured one
and provides a new estimation, so that a user can refine his performance estimations.

The load figures are calculated for each instance of a process type ("cmdhandler" in Fig. 6
below) and for all instances. In case all instances of a processes need to execute on the same
CPU („ONETARGET“ mode, e.g. at an early development phase when the target processors
are not available), but they should be distributed across a network of CPUs, ISG estimates the
load for each CPU (FCU and PSU in Fig. 6) from the „ONETARGET“ figure.

    Process   inst consumed  load         load   CPU     Comment                               Node
                  time        %            %    load
                            process       all    %

  processes

1  cmdhandler all 1374.55s -              -      -      duration
2  cmdhandler all 16.29s    67.48%       4.66%  1.192%  tot_sequProg_busyTime                  -
3  cmdhandler 1   16.29s    67.48%       4.66%  1.192%  instance_sequProg_busyTime             FCU
4  cmdhandler all  7.30s    30.24%       2.09%  0.534%  tot_asyncIO_busyTime                   -
5  cmdhandler 1    7.30s    30.24%       2.09%  0.534%  instance_asyncIO_busyTime              FCU
6  cmdhandler all 23.59s    97.72%       6.75%  1.726%  tot_process_busyTime                   -
7  cmdhandler 1   23.59s    97.72%       6.75%  1.726%  instance_busyTime                      FCU
7a cmdhandler 1   24.14s   100.00%       6.90%  1.766%  tot_busyTime(corrected)                FCU
8  cmdhandler all 24.14s   100.00%       6.90%  1.766%  tot_busyTime(system)                   -

-  -          -    -        -            -     25.581%  totalSystemUtilisation_mode=           ONETARGET
-  -          -    -        -            -     15.613%  systemUtilisation_(estimated)_for_node FCU
-  -          -    -        -            -      9.973%  systemUtilisation_(estimated)_for_node PSU

Figure 6: Calculation of CPU Utilisation

A similar calculation is done for the network utilisation (Fig. 7). For each physical channel (as
defined by the user) ISG counts the transmitted bytes which are exchanged between the CPUs
(in the example there are two CPUs: FCU and PSU) and calculates the channel utilisation.
When executing all the components of a distributed system on one processor only, a delay
may be generated which represents the difference between communication by local channels
(e.g. message queues, IPC) and remote channels such as UDP and TCP/IP.

#1      udp    fcu psu   468.00    0.00%
#2      udp    psu fcu   887.00    0.01%
overall all    psu fcu  1355.00    0.01%

#1      udp    fcu fcu 19958.00    0.18%
overall all    fcu fcu 19958.00    0.18%

#1      udp    psu psu 14895.00    0.14%
overall all    psu psu 14895.00    0.14%

Figure 7: Calculation of Network Utilisation



Also, the ISG report informs about the buffer utilisation (Fig. 8) so that the buffers can be
optimised towards their actually used size.

#Samples:                  3563  for acq_hdl
#bufferStore:              1784  for acq_hdl
#bufferGet:                3562  for acq_hdl
#bufferFree:               1781  for acq_hdl
MaximumQueueLength:        3     for acq_hdl
MeanValueOfQueueLength:    1.00  for acq_hdl

Figure 8: Information on Resource Consumption

Moreover, ISG provides information about the processing power of a certain processor type,
so that it can easily be compared with other types. This is done by measuring the time needed
to execute a dummy loop step (Fig. 9). Such figures may depend slightly on the compiler, of
course.

#CalibSamples:            22538
minExecTimePerDummyLoopStep:   0.110us
meanExecTimePerDummyLoopStep:  0.133us
maxExecTimePerDummyLoopStep:  40.350us

loopStepsMin:                 100.000
loopStepsMean:                124.408
loopStepsMax:                 199.000

Figure 9:  CPU Calibration

Moreover, response times are calculated by ISG. A user may identify the start of a handshake
between two processes: a process sends a message to another process and expects a response.
To measure the response time, the sending process (S) inserts the start time in the data
exchange format, and the responding process (D, destination) inserts the actual time when it
responds. Hence, each of the processes can measure the transmission time and the sender can
calculate the overall response time. Fig. 10 shows the minimum, mean and maximum figures
as provided by the ISG evaluation report for each of the actions executed during a state
transition. The naming convention is:

<process>/<initial state>/<input>  ➠   <output>/<final state>/<destination>

     sdt1/init/init_serial_line      -> daemonack/operational/cmdhandler

#samples=4 resp(S->D->S)=(0.000000 44.543982 54.134011)ms

resp(D->S)   =(0.000000 19.197762 25.722027)ms

Figure 10:  Response Times

Reports also provided by ISG but not shown here are: "coverage of data processing actions",
"list of non-covered actions", "coverage of states", "list of non-covered states", "executed state
transitions", "exception report", "error injection report", "timer report", "timing and sizing
budgets".



By timing diagrams (Fig. 11) more information on the event flow is provided (by clicking on
an event the transmitted data are displayed). The data flow between the processes is shown by
Message Sequence Charts (MSC). A MSC gives either detailed information on the exchanged
data and the involved FSM (so that it can be used for debugging) or summary information on
communication by a highly compressed timescale as shown by Fig. 12.

Figure 11:  Timing Diagram on Events

Figure 12:  Message Sequence Chart Describing the Overall Data Flow

4 Robustness Engineering

Robustness engineering is the consequent extension of performance engineering regarding
risk reduction and demonstration of quality of service under stress and fault conditions. It can
share all the means needed for performance engineering. But it requires additional means to
demonstrate the system's robustness. Such means are autoamtically provided by ISG.



Robustness engineering deals with

- fault prevention
- fault removal
- fault tolerance.

ISG covers fault prevention by formal checks and automated construction of the system. Fault
removal is supported by rejection of incorrect and inconsistent inputs, by automated insertion
of run-time assertions, by giving a feedback on behaviour (received data, states, executed
actions, exceptions), performance (cycle overruns, timeout, exceeded deadlines), by
evaluation and presentation of results regarding coverage analysis, resource analysis,
performance analysis, by supporting fault injection, automated test stimulation, stress testing,
scaling of time.

Regarding fault tolerance ISG implements exception handling on the level of the FSMs, e.g.
for timeout conditions, illegal data inputs, and allows to define redundant communication
channels. Management of redundant processors is supported on the level of FSMs, too. Fig.
13 shows the verification and validation concept of ISG: the automated system generation
based on a formal definition (bottom), the checking and reporting capabilities to identify
errors (top), and system stimulation (in the middle).
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System Operations
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Figure 13: ISG Verification and Validation Concept

Three principal test modes exist:

1. testing related to the normal operational scenario

2. stress testing
either by stimulation of a high number of process at a high input rate and/or by scaling of time

3. fault injection
by stimulation with illegal inputs or by loss of data



Mode 1 and possibly mode 2 are a matter of performance engineering, while modes 2 and 3
are clearly a matter of robustness engineering. While the test objective of mode 1 is to prove
absence of errors and the presence of the desired capabilities, the test objective of modes 2
and 3 is to create errors, but hopefully to fail with this intention.

The errors which may be detected can be classified as

a. errors detected by visual checks and tool support at pre-run-time (static checks)

b. errors detected during execution due to error messages
which cover e.g. illegal inputs to states, lack of resources like buffer overflow, exhausting of 
disk space and database, exceeded deadlines, cycle overruns

c. errors detected at post-run-time by coverage and performance analysis
e.g. non-covered states, too high response times.

Starting with mode 1 (normal testing) a first set of errors will be recognised. But the removal
of such errors does not imply that the system will be freee of errors. In case of overload
situations a number of unsolved problems will come up, e.g. loss of communication
capabilities due to overload of the processor, loss of operational capabilities of the operating
system due to lack of disk space etc. Such situations are typical for e.g. client-server systems
for which the load cannot be determinned in advance because the number of instances / clients
is unknown or the load they are generating.

Therefore it is necessary to expose the system to tests related to steps 2 and 3 in order to be
sure that a system will not crash in case an overload situation occurs. Vice versa, the system
design must consider such undesired situations in advance, e.g. by implementation of self-
protection mechanisms which help a system to survive. Then by execution of test modes 2 and
3 the prove can be given that the system is capable to tolerate stress and fault conditions.

The commonly used test approaches like „testing with operational profiles“ (e.g. (Musa93))
aim to minimise occurence of faults during later operation, but they do not intend to remove
every fault (e.g. Ehrlich93)). Frequently executed parts of a system are well tested, but rarely
executed parts are excluded from testing, more or less. Testing is stopped when an estimation
indicates that a sufficiently low probability for fault occurence is achieved according to the
actually applied set of tests.

As it is difficult to generate stress situation or faults, complex test software is required, e.g. to
generate an overload condition which requires a large number of processes to be active, or
partial loss of information. Therefore ISG has built-in capabilities for stress testing and fault
injection. For each process type a stimulation rate and the type of fault injection can be
specified which makes it easy to create an overload or to loose information. This can be done
on a high abstraction level by giving patterns like wild card options.

Hardware and software faults are recognised by a software system either as illegal or missing
input. An illegal input prevents processing of the received data and generation of a result.
Hence, an illegal input causes missing input. Therefore occurence of faults can be
representatively modeled by loss of data (for testing of the exception handlers the illegal
inputs must occur, of course, and loss of data is not sufficient).

Fig. 14 shows the results of an experiment to measure the robustness of a system against loss
of data. The probability to loose data has been increased from 0 to 1. For this example the
coverage of states decreases suddenly from 100% to a small value already at probabilities
close to zero. This shows that the system-under-test is not very robust regarding loss of data



and occurence of faults, respectively. Vice versa, if the system would be sufficiently robust
such a test would document that the system fulfills the robustness requirements.

Loss-Of-Data
Probability

% Coverage
of States

# Exceptions

0 100 200
0.01 100 129
0.02 78.38 212
0.03 78.38 186
0.04 37.94 93
0.05 37.84 120
0.10 37.84 270
0.50 36.04 355
0.70 36.04 557
1.00 36.04 840

Figure 14: Analysis of Robustness: An Example

A surprising result is that the number of exceptions does not monotonically increase with the
fault injection probability: by loosing data the number of system activities decrease, and
consequently the chance that an exception will occur decreases as well. When the minimum
coverage of states is reached then the number of exceptions increases again, because no
interference between decreasing number of actions and increasing number of lost data occurs
anymore. Hence, the number of observed exceptions cannot be used as a measure for a
system’s robustness.

By robustness engineering different implementation choices may be evaluated. E.g. a strategy
which increases robustness against loss of data, may cause an overload. Consider an
application  for which a process shall cyclically execute. A solution is to start the process
once, and the process itself cares about generation of the next cyclic events: on reception of
the actual event it requests for the next event. What is very critical in this case is that the
process stops execution completely at first loss of a signal. So this approach is not very robust.

Now, to get a higher probability to survive two signals could be issued, hoping that at least
one signal will arrive. However, this solution ignores the reason why a signal may be lost: it
may be lost due to an overload. But doubling of the signal rate increases the probability of an
overload situation, and does not help at all, it makes the situation even worse.

A robust solution is to make the signal generation independent of the data transfer, e.g. by
using a cyclic software timer. Also, this reduces the data transfer rate because only the
triggering event needs to be sent, but not the request for the next event. Hence, this is the
optimum solution because it is robust against loss of data (even if an event is lost, the cyclic
execution does not terminate), and it reduces the data traffic, i.e. the probability that an
overload situation may occur.

It seems to be very clear that such a problem can be detected by analysis. However,
unfortunately this is very difficult because the potential impacts are hidden under normal
conditions. Therefore it is very important to have an environment which makes it easy to
generate stress and fault conditions like ISG does.



5 Relevance of the Results for The Information Technology Domain

Increase of productivity, risk reduction, higher software quality are keywords which surely are
of interest in the domain of IT software, too. Therefore it is believed that the experience with
ISG in the technical domain regarding formalisation and automation of the software
development and maintenance process is of advantage for the IT domain as well. According to
the current experience with ISG and the knowledge abbout IT applications it is believed that
the current ISG approach can be tailored towards the IT domain.

ISG can be applied to develop software from scratch, but it also may be used to embed
existing software and to generate test environments for performance and robustness
engineering. E.g. it automatically may generate a large number of clients and the needed legal
or illegal inputs for stress testing and fault injection.

For automation of the process model the dependencies between the different development
steps were identified and described in a formal manner, so that the whole set of software and
data can be kept consistent with minimum effort after a change. This also covers automated
maintenance: the set of files of the current and the next version are passed to the ISG assistant
tool which then decides which actions need to be taken. Automated and consistent
maintenance of software is of interest for the IT domain as well, and the available knowledge
about its organisation can be reused.

Moreover, a lot of experience was collected regarding porting and automated installation of
software. It has been observed that interfaces to „Commercial-Off-The-Shelf Software“
(COTS) may change or may depend on the actual configuration of a host. When installing an
update or porting software to another, possibly similar platform such hidden dependencies
may cause a number of problems. In worst case they are not immediately detected at
installation time, but may occur during the later operational phase.

Therefore, the installation process must check for such potential problems and test the correct
execution. This is what ISG does when it is installed and executed.

6 Conclusions and Future Work

In the past, methods and tools concentrated only on the functional aspects during the
development of a software system which caused a significant percentage of delivered systems
to fail or prevented their delivery at all. It is now accepted that performance engineering is
needed in order to avoid that software systems will not meet the non-functional requirements.

Performance enginnering is mostly performed as a sepearate activity prior to or in parallel to
the development of software using dedicated tools, being understood as prototyping activity.
This approach is driven by (1) that the operational software is not ready for execution at an
early development stage, and (2) that it is difficult and expensive to instrument it for
performance analysis.

Robustness engineering is considered as an extension of performance engineering towards
getting software which behaves deterministic under stress and fault conditions. The required
protection mechanism are usually strongly related to the implementation, and therefore it is
difficult to built a representative prototype. Moreover, it is not sufficient to demonstrate that
the prototype will behave correctly. This has to be shown by the real system.

A solution to this problem is provided by ISG, an approach which automatically generates the
infrastructure of a software application and data processing software. Beside speeding up the



development process ISG provides an inexpensive possibility to instrument the automatically
generated source code such that performance, resource and robustness figures can be derived.
As this capability is available right from the beginning of development a representative
prototype is not needed.

Regarding automated system generation a first step was to demonstrate the feasibility of a
fully automated approach like ISG in the domain of real-time and/or distributed systems of
small to medium size, but of high technical complexity. Due to its modularity ISG can be
extended from the current application domain to other domains like IT,  taking benefit of the
available knowledge which has already been collected. This knowledge is related to the
organisation of the automated generation and instrumentation of the code and the
formalisation of the inputs and of the process model.
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