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Abstract:

SDL provides powerful capabiliti es for verificaion! and validatior? of a system's behaviour
and for automated code generation. This allows to perform system validation at a higher level
of abstradion and ealier in the development life g/cle. However, ore needs to be caefully to
redly gain advantage of such capabiliti es, espedally when applying SDL to a broader classof
applicaions which may be cdled "dedsiorrmaking, distributed systems'. Firstly, state
explosion may prevent to get any benefit from exhaustive smulation a much effort is
required to limit the number of states thereby loosing most of the alvantages of automated
testing. Secondy, the arrent means of SDL and d SDL tools may nat be sufficient to identify
all bugs of a system's edficaion and design. Even when exhaustive simulation daes not
report any error, the system may not run corredly on the target, or vice versa, the optimum
pradicd solution may be rejeded as erroneous. This paper will analyse the situation, povide
with asolution for tuning of system development which is based onan additional layer, cdled
EaSySimll, on top of the ObjectGEODE tool, and will identify future issues.

1. Introduction

Compared with ather languages a major advantage of SDL and MSC is their cgpability to
provide on an abstrad and formal level the means for definition d (a) information exchange
between a system's comporents by MSC's (Message Sequence Charts) and (b) a system's
behaviour by FSM's (Finite State Madhines). This alows to automate verificaion d
information exchange and d behaviour. In consequence, verificaion can be performed at a
higher level of abstradion and ealier in the development life g/cle. This helps to save @sts
and to reduce risks.

1 "verification" means to check if the system is built right.

2 "vadidation" means to confirm that the right system is built. Hence validation refers to al system properties, while
verification may only refer to some properties.



Due to these advantages SDL was selected during the project OMBSIM [1] which was
execeuted for the European Space Agency ESA/ESTEC in order to define an alternative
system life cycle [2,3,4,5]. As it was aready known by previous activities [6] that
consideration of performance impacts is a "must" for system validation the SDL tool
ObjectGEODE [7] was complemented by performance analysis and simulation capabilities
provided by the SES/workbench tool [8]. The resulting tool environment was called
"EaSySim" (Early System Validation Simulation” environment). This environment has been
improved significantly in mean time by BSSE and a completely new implementation
"EaSySim 11" [9] is now available which overcomes all the weakness of the first environment
and provides new capabilities for system validation. It is based on ObjectGEODE, the actual
version of GEODE used, and provides the performance simulation capabilities by SDL means
and additional support functions which are implemented as operators in C. EaSySim Il still
provides access to SES/workbench, but also to other tools and (user) software in a transparent
manner.

A number of activities have been executed since 1992 when the first ESTEC project HRDMS
[10] on system validation started, which especially concentrated on performance matters.
Since 1992 the development approach has been continuously improved and the productivity of
devel opment steadily increased, mainly based on the powerful capabilities of SDL, but also by
proper organisation of the development steps[5].

This experience now alows to give recommendations for tuning of system development, how
to obtain correct verification results or how to increase system quality. Although extending the
verification process to performance properties, verification becomes much simpler because
notion of time and shared resources introduce an ordering scheme which reduces the number
of system states. This helps to avoid state explosion and to master exhaustive simulation in
such cases when it is not possible otherwise. Moreover, it was recognised that the number of
system states may be taken as a measure for system quality indicating how well defined a
systemredly is.

To conclude: when extending the verification process towards performance matters this does
not only lead to more reliable results, but it also simplifies system validation and hence allows
to tackle more complex systems.

While SDL is more addressing an abstract, mathematical system, the EaSySim Il environment
concentrates on a real, physica system and its properties. This extension of the scope is
needed when dealing with a more general class of distributed systemswith SDL.

2. The Impact of Performance on System Validation

This section identifies the risks which arise when the SDL capabilities for behavioura
verification are applied to alarger class of distributed systems without considering all relevant
system aspects such as performance. Otherwise errors in a system may remain hidden and may
cause sporadic or permanent faults during later system operation.

2.1 An Extended Application Domain Requires An Extended Scope of Validation

In the past, SDL was mainly applied to telecommunication applications. Such applications
form a sub-class of "distributed applications" which often can be characterised as a sequence
of "one-point-to-one-point” communications. Many such communications may occur at the



same time and they may compete for resources. But they do not disturb each other during
execution of a protocol sequence, because there is no signal exchange between them.

Usualy, no such communication request has a higher priority than any other, and the next
action will not start before the previous action has been completed. This makes it reasonable
to ignore time and to assume that a state transition does not take any significant time at all.
Performance aspects may be important but they only impact the consumption of resources and
the duration of activities, and not the system behaviour.

However when taking into account a more general class of distributed systems for which "n-
point-to-m-point” connections ("anybody can communicate with anybody else at any time")
are alowed, time plays a more important role: performance of the (real) distributed system
may impact the validation process and the results may not match the (physical) system
architecture.

The reason is: signals may not propagate with the same (average) transmission rate through a
network. When they take different paths (1) the transmission rate may depend on the path, (2)
the number of processing steps may be different. If transmission rate is assumed to be infinite
(zero propagation time) this dependency is not recognised. Also, in case processing time is
ignored the number of processing steps do not impact the final arrival time of a signal. But
consumption of time makes the difference between "ideal" and physical systems. And this
difference makes vaidation harder in case of distributed systems with arbitrary
communications.

Due to zero-propagation time signals arrive in a order in a process queue which may be
different from the order in the physical system. Consequently, the real sequence on the
physical architecture may never occur during simulation. Hence, successful verification by
simulation with SDL and SDL tools does not necessarily mean that the system will work
correctly on teh architecture because the impact by performance is not known: whether it
invalidates the result or not.

Asitisshown in section 2.2 even in case of a synchronous master-slave protocol which is run
on two uni-directional lines, time consumption of transmission and data processing cannot be
neglected.

Hence, in order to obtain results which are compliant with the real, physical system we need
to consider performance matters already during system validation by simulation.

Several activities are known which introduce notion of time in SDL [11,12,13,14], but they
only concentrate on aspects like channel delays and response times or violation of
performance constraints, but do not consider that time may impact system behaviour. They
analyse time delays e.g. in the queues of application processes although the signals may not
have to wait there, but e.g. in the network or the on the processors. Behaviour remains the
same when time consumption in physical resources added.

As SDL tools aready provide the capability of exhaustive simulation and support a priori
distributed systems it is possible to extend tool capabilities such that a more genera class of
distributed systems is covered. The EaSySim Il environment provides such enhanced
capabilities on top of the ObjectGEODE tool: consequently, a user can exploit the
performance of a certain system architecture and can validate such a distributed system under
realistic conditions.



2.2 A Protocol Example: Succeeding with Validation of an Erroneous System

The protocol shown by Fig. 2a has been used during the project HRDMS [10] and in mean
time it turned out that it is a very good example to demonstrate (a) violation of validated
behaviour when introducing timing aspects, (b) the weakness of validation of system
properties under artificial (simplified) operational conditions, (c) the interaction between
system tuning and correctness of results of exhaustive simulation, (d) the significant reduction
of system states when introducing performance aspects into exhaustive simulation.

The protocol is completely deterministic and synchronous from alogical point of view, which
is the reason that people believe that performance matters can really be ignored for its
validation. When taking exactly the sequence of signals as shown by Fig. 2a the protocol will
never run free of errors on the system architecture of Fig. 2b. And thisisthe good point of its
determinism. When starting to remove the bug (by varying the sequence of the signals and
playing with timing) the protocol may loose its determinism due to performance and
environmental impacts and it becomes even harder to identify the bug.
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Fig. 2a: A Sample Protocol

From a logical point of view this protocol seems to be free of conflicts. However, conflicts
arise from the given architecture: one needs to execute it under real conditions to identify the



conflict. In consequence ore can rever be sure that no error will occur in the red
environment when performance aspects are ignored during system validation by simulation.

The goa of the protocol shown by Fig. 2ais to exchange data between the source and sink
devices. This transfer is initiated and supervised by the processor (master) for ead data
request. Asit is atypica "master-slave" protocol it shoud be freeof conflicts. But thisis not
true.

The procesor palsthe source and sink devices whether they can provide data or whether they
are realy to accept data, respedively. If both respondwith ‘ready’ the procesor condtions the
devices and requests data, cycle for cycle. At the end d data transmisson the processor
cheds the source and sink devices whether all data have been transmitted corredly. And this
final checking sequence causes the problem (Fig. 2c)

When ignoring
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(Master) Cgﬁ\ﬁunlség\{l%n transmitted data arive

AlIR B/RS controled by before the final chedks.
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ool Sevices — architecure like the one
eviee shown by Fig. 2b. Then

(Slave) (Slave) (Slave) the signal sent from the
Source Sink source device to the
sink device is

Fig. 2b: System Architecture synchronised with the

bus cycles. This causes
the last data sent from the source to the sink to arrive later at the sink device than the dedk
signal issued by the processor directly to the sink device. This confirms (a).

The reason is that data coming from the source ae delayed by two bus cycles before they
arrive & the sink. During the first bus cycle the request signal is processed by the source
device and the data ae written to the output registers. During the second cycle the data is
transmitted to the sink device However, the chedk signal is diredly sent from the procesr to
the sink device and is therefore one cycle faster.

To solve this problem an idea ©uld be to change the sequence of the ded signals (chedk
sink, then chedk source, seeFig. 2a8) and to add a further cycle between the last data request
and transmisson d the dhed signa for the device because this will delay the dedk sink
signal by two cycles which are needed according to Fig. 2c.

However, as mentioned arealy above this will make life even harder. For a cetain test the
protocol may run corredly, bu not in al cases. If severa transmissons are initiated on the
processor, the delay of the cdhedk signal will provide an empty bus dot which may be used by
another protocol sequencerunning in peralédl. If this sequence aldresss the same sink device,
the sink will again identify an error due to incompatibility of its gate with the incoming data
(in best case) or it will accet the wrong data (in worst case). This confirms hypotheses (b)
and (c). In consequence, exhaustive simulation exeauted with filter condtions will deliver
wrong results because such side effects may not be detected due to filtering of side effects.
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Fig. 2c: Timing Aspects

Hence, the behaviour of the protocol changes from "completely deterministic’ to "non-
deterministic" due to performance impacts and potential side effects from other data transfers.
Only the two constraints (1) "two cycles delay between request of last data and transmission
of the check signal for the sink device" and (2) "no further signal must be transferred to the
sink device between the last data request and transmission of the check signal" solves the
problem and the protocol can always be executed completely deterministic and correct.
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Fig. 3: Principal System Structure

The protocol of Figs. 2a-2¢c has been implemented
in SDL for severa implementations of the bus as
shown by Figs. 3 - 7. The principal system
structure (Fig. 3) has aways been kept and mainly
the bus implementation was changed. For
optimisation of system performance the timing of
data requests in the processor was aso varied, e.g.
the next request may be sent before the data of the
previous request arrives.

If processing time and transmission time are
ignored system performance does not matter at all.
So the simplest solution is to send the next data
request (or the final check) only when the
requested data have been received. This ensures
execution of the protocol free of errors as long as
no other data transfer is running in paralel which
may use the empty bus slots and may cause a state
mismatch in the source or sink devices. However,

when introducing time consumption this way of

protocol processing becomes very inefficient because three cycles are aways needed per data
request yielding a bus utilisation of only 33% at most.



To achieve a higher bus utilisation, all signals following the ready signals could be issued
immediately by the processor because it should be a matter of the bus interface to queue all
such signals. But with SDL one cannot always proceed in this manner. If transmitting all the
signals by a single burst they will be stored in a SDL queue and selected from this queue
depending on which mode is used for simulation in atool. In case "random simulation mode"
is applied the sequence of the signals will be changed and the SDL simulator will detect errors
in the protocol, although in practice they will not occur.

Knowing about this problem the bus clock can be used to transmit request by request
synchronously from the processor not waiting for a response. Then bus utilisation remains as
efficient asin case of aburst.

Such processing aso reduces the number of system (SDL) states. the queue lengths are
reduced to one element only at a certain time and this simplifies significantly exhaustive
simulation because instead of n! mutations only 1! are considered by the tool.

Figs. 4 - 7 (Figures 5b-7 and the tables follow on the next pages) show severa representations
of the bus, changing from a very simple bus representation to the real bus architecture
consisting of two uni-directiona bus lines and a bus clock. Table 1a gives the results of
verification by exhaustive simulation for the simple bus models (Figs. 4, 5a-c) which do not
take into account timing aspects. Table 1b shows the results for the full bus architecture based
on synchronous transfer of the datarelated to Figs. 6a-c and 7.
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Fig. 4. Smple Bi-Directional Bus
with Broadcasting

Two cases have been investigated for the full bus architecture of Fig. 6: (1) the period of the
bus clock has been set to a non-zero value (the expected case) or (1) it has been set to a zero
value in order to ignore transmission time.

Fig. 5a: Buswith Two Uni-Directional Bus Lines

In case of Fig. 7 an equivaent "functional” bus architecture without clock is used in order to
get a comparison between non-zero bus time slots and equivalent transmission steps with zero
transmission time. This means that in case of Fig. 7 asignal is immediately transferred after
its reception without waiting for the bus clock.
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Fig. 4 shows the simplest implementation of the bus: the bus just distributes the received
signal to al connected devices (the sending device excepted) and acts as a bi-directional bus
with one bus line. The bus shown by Figs. 5a - 5b introduce two uni-directional bus lines. So
the bus of Fig. 5 already represents the real architecture but it still ignores time consumption.



In the next step shown by Figs.
6a - 6¢ a bus clock is introduced
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Table l1a shows the results of

SRR —— ) simulation for three simple bus
’ types. No error is detected, but the

system has low performance. The
Fig. 7: Uni-Directional Bus Line (w/o clock) low utilisation of the bus will be
(Device-to-Processor Line) recognised  later when the

software is executed on the rea hardware. However, then it is very expensive to change the

processing algorithm for the protocol.

Although system representation for test 3 is more complex due to the two bus lines, less
system states were generated. This confirms that more complex systems do not necessarily
have a higher number of system states. It is a matter of possible paths through the system, and
obviously the bus of Fig. 5 is more accurately defined than the one of Fig. 4. This tuning
aspect is discussed in more detail in section 3. Table 1b gives the results for six different
timing approaches.

In case of test 4 the same algorithm as for tests 1 - 3 was used. As the next data request is only
issued when the response for the previous request arrives no error was observed, but bus
utilisation is still poor. It is surprising that the number of system states is again much lower
compared to tests 2 and 3 although the bus is more complex. The reduction of system states
occurs because the clock synchronises the processing steps and ambiguities in system
behaviour are removed. This confirms hypothesis (d) given at the beginning of this section.

A burst of datarequests isissued for test 5. The SDL specific queueing mechanism caused an
error during random and exhaustive simulation. Although the algorithm is correct (it includes
the required delay between data requests and checks), SDL simulation will reject this
algorithm because the way the SDL tool is simulating the system is the same asin real world.

Test 6 adjusted the algorithm to the needs of the SDL tool and transferred the data requests
synchronously with the bus clock. The missing delay between data requests and checks was
detected. For test 7 the bus period was set to zero. This increased the number of system states
and exhaustive ssmulation did not terminate because computer resources were exhausted.



# Functionality Ref. | Bus | #Bus | States | Trans. | # Errors | # Errors | Bus | Correct Result
to | Period | Cycles Random | Exhaust. | Util.
Fig. Sim. Sim. %

1 | simple bus - n/a n/a 184 329 0 0 33 yes
next data request but low
or check when performance
previous data protection
received needed against
3 datarequests side effects

2 |simple bus with| 4 n/a n/a 830 1910 0 0 33 yes
broadcasting but low
next data request performance
or check when protection
previous data needed against
received side effects
3 datarequests

3 |simple bus with| 5 n/a n/a 617 1320 0 0 33 yes
broadcasting and but low
two uni- performance
directional lines protection
next data request needed against
or check when side effects
previous data
received
3 datarequests

Table 1la: Results of Protocol Validation for Functional Bus Representations
Exhaustive simulation was aborted and the error in protocol processing was not yet identified.

Test 8 repeated test 7 with the equivaent bus implementation of Fig. 7 which does not use the
bus clock. Again, the number of system states is significantly higher when performance
aspects are ignored, bit exhaustive simulation terminates. The need for the additional delay
was nhot detected. Test 9 runs the correct algorithm under real timing conditions and the
correct result is obtained.

3. Tuning of System Development

In the previous chapter the risks and chances for system development were discussed: (1) if
not all system properties (like performacne) are subject of verification and validation the
system will not run correctly in the real environment although no errors have been identified
during the verification and validation process, (2) if inappropriate verification and validation
procedures are applied correct implementations may be regected, (3) consideration of
performance aspects simplifies the verification and validation steps because a real, physical
system behaves much simpler than an abstract, mathematical system.

Although SDL provides already powerful capabilities for verification and validation of
distributed systems, means are missing which allow for detailed and representative modelling
of timing. In consequence, SDL has to be enhanced such that the needs of verification and
validation of areal (distributed) system will be met.

According to above conclusions (1) - (3) capabilities for performance analysis and simulation
and the scheduling policies like priority-based, pre-emptive scheduling need to be added.
EaSySim Il doesit on top of ObjectGEODE.



# Functionality | Ref.| Bus | # Bus| States| Trans.| # Errors| # Errors| Bus | Correct Result
to | Period| Cycles Random| Exhaust.| Util.
Fig. Sim. Sim. %

4 |real bus 6 non- 24 470 | 990 0 0 33 yes
architecture zero but low
next data request performance
or chek when protection
previous data needed agains
received side effects
3 data requests

5 [real bus 6 non- n/a 715 | 1556 1 1 N no
architecture zero | (due 100 | data requests a
burst of 3 data to not processed i
requests, delay error) the right order
before checks

6 |real bus 6 non- n/a 558 | 1153 1 1 N yes
architecture zero | (due 100 | missing delay
synchronous to before checks
transfer of error) caused an erro|
requests and
cheks, no delay
between last
request and
checks

7 | same as above 6 zero n/a |20971|80185 0 0 N no

50 50 100 | missing delay
not identified
exh. sim. does
not terminate

8 | same as above 7 n/a n/a |18130| 56760 0 0 N no
but with 100 | missing delay
equivalent not identified
architecture,
no clock

9 [red bus| 6 non- 17 N yes
architecture zero 100 protection
bugt of 3 daa needed agains
requests, 2 hus side effects
cycles delay
between last data
request and first
chedk (chedk
sink)

Tab. 1b: Results of Protocol Validation for Fully Representative Bus

But tuning of system development can also be dore in view of quality and feasibility. It was
reagnised that the number of system states provides a feedbad< on ambiguities left open in
system definition: if undesired paths through a system's FSM's are removed then the number
of system states deaeases. Reduction o number of system states by more acarate
implementation and by consideration d performance matters all ows to master verificaion and
validation of systems for which exhaustive simulation would not terminate otherwise.
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Fig. 8: Dependence of System Sates on Number of _

Processes Fig. 8 shows the dependency of

number of system states w.r.t.
to number of processes for different implementations of an applicaion. For case 4
performance apeds have not been considered. In this case systems of upto 15 pocesses may
be validated by exhaustive simulation. It is believed that EaSySim |l represents already an
approach which creaes a minimum number of system states (cases 1-3). But even in case of
EaSySim Il the number of processes are limited to about 20 - 25 pocesss3. The feasibility or
unfeasibility of exhaustive smulationis aso impaded by the simulation time which is abou 8
hours for case 4 and 12 processes and about 1 hour for cases 1-3 and 18 processes.

3.1 Meansfor Tuning Verification and Validation

For tuning of verificaion and validation with SDL four different measures have been
identified which reduce the number of system states and increase quality of a system:

1. use of a subset of SDL,
e.g. avoid to dstribute timers al over the SDL model, to use VIEW/REVEAL and
EXPORT/IMPORT because such constructs may generate alot of badkground traffic
and a number of system states you can't control

2. enhancement of SDL tools by means which are alequate for the system under
development
EaSySim Il provides optimised time managment and supports scheduling policies

3. consideration of performance aspects as described in the previous sections,

4. unambigous (and error freg definition d a system's behaviour by FSM's by evaluating
the feedback from exhaustive simulation.

3 In sedion 32 the means will be described which are provided by EaSySim Il to escgpe from this limitation:transparent
partitioning of a SDL system.



A reduction by a about four orders of magnitude was achieved for a sample application. The
reduction at the beginning was obtained by means (1) and (2), while means (3) and (4)
contributed to "fine tuning” at the end.

This experience is reflected by the EaSySim |1 A-approach which is shown by Fig. 9.
EaSySim |l extends ObjectGEODE. It

Resoures provides support functions which help
Interfoge Mgt to organise a SDL system such that the

number of system states can be reduced
and resources can be consumed. Also,
by this organisation a system can easily
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be distributed in a transparent manner.
Moreover, this mechanism allows to
communicate with other simulation
tools such as SES/workbench or other
software like window managers,
database systems and other EaSySim |1
environments on the same or on remote
Processors.

_ _ 0 EaSySim |l divides a system into three

Fig. 9: The EaSySm Il A-Approach principal parts: (1) a management part
which drives the tests and system operation and provides an interface to the outside world, (2)
a "functional" part which covers functional, behavioura and performance aspects of the
application, and (3) a "communication” part which represents the network of the application
through which the functional components are communicating with each other under
consideration of performance.

Against State Explosion It is aso pOSSlble to Change the
y mpact oy Faulls and Seenano communication topology at run-time.
10 E This adlows to perform redundancy
switching for a fault-tolerant system
after occurence of a fault. Hence the
Fault Identification and Recovery
Procedure (FDIR) can be subject of

exhaustive simulation.
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Fig. 10 demonstrates the impacts of (3)
and (4) on number of system states
during exhaustive simulation. A red,
physica system is activated by
switching on its components one after
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. _ the other. In SDL all start transitions are
Fig. 10: Impact by Logical Faultsand Performance o acited at time "Tq". This causes a lot

Aspects of additional system states as is shown
by Fig. 10. The same happens when terminating a system immediately. EaSySim Il provides
the means to activate or de-activate a SDL system like a physical system and this reduces
significantly the number of system states. The mechanisms provided by EaSySim Il act like a
capacitor connected across the poles of an electrical switch.



Moreover, it was observed that number of system states is also reduced when alogicd fault is
removed like an illegal path through the FSM's, a deadlock or an exception.

3.2 Meansto Tune Efficiency of System Development

It was aready pointed ou that SDL provides powerful capabilities to make system
development more dficient e.g. by means of formal description d behaviour, exhaustive
simulation and automated code generation. Such capabiliti es have to be cmplemented when
applying SDL to a broader class of distributed systems as discussed above.

Early transition to the target system will confirm the simulation results and hence is
recommended. Fig. 11 shows the steps through such alife g/cle and hav the implementation
approaches more and more the final system in the host and target environment.

Simulation Platform Target Code EaSySim I provid&s sich means
which simplify the transition
between host and target
environments, between simulation
and generated code. It provides an
automated procedure for code
generation from SDL  code
including automated credion d the

\\\\\\\\[ W
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Life Cycle Host System Target System

Phases libraries pealing up the whole
process to 15 mintes only.
Design M @. Moreover, EaSySm Il tods

remove performance instrumen-
tation automatically.

Not  all details  of an
implementation do contribute to a
system's behaviour. To avoid state
explosion ore ather neals to
Fig. 11: Two-Dimensional Life Cycle follow abowve suggestions or one
aso may expot (or neels to

export) some details to other languages such as C dr Ada

This applies to the set of (large) data structures, which may also be divided into a SDL part if
relevant for behaviour and a C/Ada part if not relevant. If e.g. avariable x defined in SDL is
only nealed to make adedsion like "x>0" then (the red variable) x shoud na be dedared in
SDL but the bodean SDL operator testx could be used which imports the result of the
comparison "x>0" from C/Adato SDL. In this case nat al values of x are made visible to the
exhaustive simulator but only such values which impad behaviour. This yields a significant
reduction of SDL system space.

EaSySim Il suppats transparent partition d a system (not impading its architedure): system
proceses my be included in more than ore EaSySim Il environment. So the scope of
exhaustive simulation can be limited to some parts only, and exhaustive simulation can
sequentially be applied to all system parts one after the other.

Hardware-
Software
Integration

4 The author has already successfully implemented SDL operators in Ada [15].



4. Future I ssues

Currently, exhaustive simulation concentrates more on the combinatorial exploration d state
space When introducing performance, shared resources and more sophisticaed scheduling
pali cies multiple occurence of events nealy disappeas and hence the need for combinatorial
exploration becomes less important. What neeals more detailed investigation is the timed
exeaution d events and its consideration by exhaustive smulation, peferably in a more
formal manner. When considering performance, interference between perallel system
activities becomes much more important for system verification and validation.

Also, in order to master state explosion a more astrad interface shoud be introduced for
implementation d behaviour. The objed-oriented paradigm seems to be gpropriate to cover
this paint: information hding shoud be gplied to such parts of an (SDL) implementation
which do nd impad a system's behaviour. More principal considerations are nealed in this
context.

5. Conclusions

Potential risks have been dscussd which occur when SDL is used for development of a more
general type of distributed systems and means were identified to master such risks. It was
described howv wrong conclusions may be derived on the orredness of an SDL
implementation: a SDL system may be cnsidered as corred after verificaion by SDL
simulation, although it will never run corredly under red condtions. Vice versa, a orred
implementation may be rejeded by the SDL simulator. This is very disstisfying and
dangerous in case of safety-critical systems.

The EaSySim Il environment was presented as a solution for most of the problems which are
currently not solved by SDL and for optimisation of development of distributed systems.

Performance matters were identified as the main reason for such weakness of verification.
Hence verificdion and validation withou consideration d performance is meaningless
because one does not know abou its potential impad. Implementations which are mnsidered
as completely deterministic and corred may turn ou as nondeterministic and incorred in
pradice, even when people believe to be sure that the implementation is corred and
performance cannot cause any problem.

Moreover, it was $iown that consideration d performance apeds do smplify verificaion
and validation significantly and help to master state explosion. So the extension d verification
and validation from purely behavioural to performance apeds does not complicate system
development, but eases it and reduces risks at early life cycle phases.

The number of system states and state transitions $houd be considered as a representative
figure for quality of an implementation. A high figure may indicae that the system is not yet
well defined.

The caabiliti es neaded to complement SDL and SDL todls by performance evaluation issues
can be provided as add-on's. However, more formal consideration d performance apeds and
better support by the language to master state explosion are needed.

References:

[1]] OMBSIM (On-Board Management System Behavioural Simulation, ESTEC contrad
no. 10430/93/NL/FM(SC), Final Report Nov. 1995, Noordwijk, The Netherlands



[2] R.Gerlich, Ch.Schaffer, Y.Tanurhan, V.Debus: EaSyVaDe / EaSySim: "Early System
Validation o Design by Behaviowral Simulation', ESTEC 3rd Workshop on
"Simulators for European Space Programmes’, November 15-17, 1994,Noordwijk,
The Netherlands

[3] R.Gerlich, C. Joergensen: An Alternative Lifecycle Based on Objed-Oriented
Strategies, International Symposium on "On-Board Red-Time Software” , November
13-15, 1995, Noordwijk, The Netherlands

[4] R.Gerlich, Th. Stingl, Ch. Schaffer, F. Teston, G. Martinelli, Y. Tanurhan: Use of an
Extended SDL Environment for Spedficaion and Design of On-Board Operations,
Systems Engineeing Workshop, November 28-30, 1995,ESTEC, Noordwijk, The
Netherlands

[5a] R.Gerlich: From CASE to CIVE: A Future Challenge, 'DASIA 96 - Data Systems in
Aerospace, May 20-23, 1996, Rome, Italy

[5b] R.Gerlich: Experience with Simulation, Automated Code Generation and Integration,
'DASIA 97' - Data Systems in Aerospace, May 26 - 29, 1997, Sevilla, Spain

[6] R.Gerlich, N.Schéfer, A.Schéferhoff: Early Validation & DMS Design by a Reusable
Environrment, EUROSPACE On-Board Data Management Symposium on
"Techndogy and Applicaions for Space Data Management Systems', January 25-27,
1994, Rome, Italy

[7] ObjedGEODE SDL-Todl, Verilog, 150 rue Vauquelin, F-31081 Toulouse Cedex,
France

[8] SES/workbench, Scientific and Engineaing Software Inc., Building A, 4301Westbank
Drive, Austin, Texas, 78746-6564, USA

[9] EaSySim IlI: The Enhanced Environment for System Validation, R. Gerlich BSE, Auf
dem Ruhbuehl 181, D-88090 Immenstaad, Germany

[10] HRDMS (Highly Reliable DMS and Simulation), ESTEC contrad no.
9882/92/NL/JG(SC), Final Report, 1994

[11] L.Braga, R.Manione, P.Renditore: A Formal Description Language for the Modelling
and Simulation o Timed Interadion Diagrams, FORTE/PSTV'96 Conference,
Kaiserslautern, October 8-11, 1996

[12] M. Buetow, M.Mestern, C.Schapiro, P.S.Kritzinger: Performance Modelling with the
Formal Spedficaion Language SDL, FORTE/PSTV'96 Conference, Kaiserslautern,
October 8-11, 1996

[13] S.Fischer: Implementation d multi-media systems based on red-time etension d
Estelle, FORTE/PSTV'96 Conference, Kaiserslautern, October 8-11, 1996

[14] M.Diefenbruch, J.Hintelmann, B.Muell er-Clostermann: The QUEST-Approach for the
Performance Evauation o SDL-Systems, FORTE/PSTV'96 Conference
Kaiserslautern, October 8-11, 1996

[15] R.Gerlich, Y.Lgeune: How to use ObjedGEODE with Ada, January 1997, internal
communication, unpublished



