
Tuning Development of Distributed Real-Time Systems with SDL and MSC:
Current Experience and Future Issues

R. Gerlich

BSSE System and Software Engineering, Auf dem Ruhbuehl 181, D-88090 Immenstaad,
Germany
Phone: +49/7545/91.12.58, Fax: +49/7545/91.12.40, e-mail: gerlich@t-online.de

Keywords: System verification and validation, interdependence between behaviour and
performance, system architecture, performance modelli ng, performance evaluation, exhaustive
simulation, automated code generation, SDL, MSC

Abstract:

SDL provides powerful capabiliti es for verification1 and validation2 of a system's behaviour
and for automated code generation. This allows to perform system validation at a higher level
of abstraction and earlier in the development li fe cycle. However, one needs to be carefully to
really gain advantage of such capabiliti es, especially when applying SDL to a broader class of
applications which may be called "decision-making, distributed systems". Firstly, state
explosion may prevent to get any benefit from exhaustive simulation or much effort is
required to limit the number of states thereby loosing most of the advantages of automated
testing. Secondly, the current means of SDL and of SDL tools may not be suff icient to identify
all bugs of a system's specification and design. Even when exhaustive simulation does not
report any error, the system may not run correctly on the target, or vice versa, the optimum
practical solution may be rejected as erroneous. This paper will analyse the situation, provide
with a solution for tuning of system development which is based on an additional layer, called
EaSySimII, on top of the ObjectGEODE tool, and will identify future issues.

1. Introduction

Compared with other languages a major advantage of SDL and MSC is their capabilit y to
provide on an abstract and formal level the means for definition of (a) information exchange
between a system's components by MSC's (Message Sequence Charts) and (b) a system's
behaviour by FSM's (Finite State Machines). This allows to automate verification of
information exchange and of behaviour. In consequence, verification can be performed at a
higher level of abstraction and earlier in the development li fe cycle. This helps to save costs
and to reduce risks.

1 "Verification" means to check if the system is built right.

2 "Validation" means to confirm that the right system is built . Hence, validation refers to all system properties, while
verification may only refer to some properties.

Due to these advantages SDL was selected during the project OMBSIM [1] which was
execeuted for the European Space Agency ESA/ESTEC in order to define an alternative
system life cycle [2,3,4,5]. As it was already known by previous activities [6] that
consideration of performance impacts is a "must" for system validation the SDL tool
ObjectGEODE [7] was complemented by performance analysis and simulation capabilities
provided by the SES/workbench tool [8]. The resulting tool environment was called
"EaSySim" (Early System Validation Simulation" environment). This environment has been
improved significantly in mean time by BSSE and a completely new implementation
"EaSySim II" [9] is now available which overcomes all the weakness of the first environment
and provides new capabilities for system validation. It is based on ObjectGEODE, the actual
version of GEODE used, and provides the performance simulation capabilities by SDL means
and additional support functions which are implemented as operators in C. EaSySim II still
provides access to SES/workbench, but also to other tools and (user) software in a transparent
manner.

A number of activities have been executed since 1992 when the first ESTEC project HRDMS
[10] on system validation started, which especially concentrated on performance matters.
Since 1992 the development approach has been continuously improved and the productivity of
development steadily increased, mainly based on the powerful capabilities of SDL, but also by
proper organisation of the development steps [5].

This experience now allows to give recommendations for tuning of system development, how
to obtain correct verification results or how to increase system quality. Although extending the
verification process to performance properties, verification becomes much simpler because
notion of time and shared resources introduce an ordering scheme which reduces the number
of system states. This helps to avoid state explosion and to master exhaustive simulation in
such cases when it is not possible otherwise. Moreover, it was recognised that the number of
system states may be taken as a measure for system quality indicating how well defined a
system really is.

To conclude: when extending the verification process towards performance matters this does
not only lead to more reliable results, but it also simplifies system validation and hence allows
to tackle more complex systems.

While SDL is more addressing an abstract, mathematical system, the EaSySim II environment
concentrates on a real, physical system and its properties. This extension of the scope is
needed when dealing with a more general class of distributed systems with SDL.

2. The Impact of Performance on System Validation

This section identifies the risks which arise when the SDL capabilities for behavioural
verification are applied to a larger class of distributed systems without considering all relevant
system aspects such as performance. Otherwise errors in a system may remain hidden and may
cause sporadic or permanent faults during later system operation.

2.1 An Extended Application Domain Requires An Extended Scope of Validation

In the past, SDL was mainly applied to telecommunication applications. Such applications
form a sub-class of "distributed applications" which often can be characterised as a sequence
of "one-point-to-one-point" communications. Many such communications may occur at the

same time and they may compete for resources. But they do not disturb each other during
execution of a protocol sequence, because there is no signal exchange between them.

Usually, no such communication request has a higher priority than any other, and the next
action will not start before the previous action has been completed. This makes it reasonable
to ignore time and to assume that a state transition does not take any significant time at all.
Performance aspects may be important but they only impact the consumption of resources and
the duration of activities, and not the system behaviour.

However when taking into account a more general class of distributed systems for which "n-
point-to-m-point" connections ("anybody can communicate with anybody else at any time")
are allowed, time plays a more important role: performance of the (real) distributed system
may impact the validation process and the results may not match the (physical) system
architecture.

The reason is: signals may not propagate with the same (average) transmission rate through a
network. When they take different paths (1) the transmission rate may depend on the path, (2)
the number of processing steps may be different. If transmission rate is assumed to be infinite
(zero propagation time) this dependency is not recognised. Also, in case processing time is
ignored the number of processing steps do not impact the final arrival time of a signal. But
consumption of time makes the difference between "ideal" and physical systems. And this
difference makes validation harder in case of distributed systems with arbitrary
communications.

Due to zero-propagation time signals arrive in a order in a process queue which may be
different from the order in the physical system. Consequently, the real sequence on the
physical architecture may never occur during simulation. Hence, successful verification by
simulation with SDL and SDL tools does not necessarily mean that the system will work
correctly on teh architecture because the impact by performance is not known: whether it
invalidates the result or not.

As it is shown in section 2.2 even in case of a synchronous master-slave protocol which is run
on two uni-directional lines, time consumption of transmission and data processing cannot be
neglected.

Hence, in order to obtain results which are compliant with the real, physical system we need
to consider performance matters already during system validation by simulation.

Several activities are known which introduce notion of time in SDL [11,12,13,14], but they
only concentrate on aspects like channel delays and response times or violation of
performance constraints, but do not consider that time may impact system behaviour. They
analyse time delays e.g. in the queues of application processes although the signals may not
have to wait there, but e.g. in the network or the on the processors. Behaviour remains the
same when time consumption in physical resources added.

As SDL tools already provide the capability of exhaustive simulation and support a priori
distributed systems it is possible to extend tool capabilities such that a more general class of
distributed systems is covered. The EaSySim II environment provides such enhanced
capabilities on top of the ObjectGEODE tool: consequently, a user can exploit the
performance of a certain system architecture and can validate such a distributed system under
realistic conditions.

2.2 A Protocol Example: Succeeding with Validation of an Erroneous System

The protocol shown by Fig. 2a has been used during the project HRDMS [10] and in mean
time it turned out that it is a very good example to demonstrate (a) violation of validated
behaviour when introducing timing aspects, (b) the weakness of validation of system
properties under artificial (simplified) operational conditions, (c) the interaction between
system tuning and correctness of results of exhaustive simulation, (d) the significant reduction
of system states when introducing performance aspects into exhaustive simulation.

The protocol is completely deterministic and synchronous from a logical point of view, which
is the reason that people believe that performance matters can really be ignored for its
validation. When taking exactly the sequence of signals as shown by Fig. 2a the protocol will
never run free of errors on the system architecture of Fig. 2b. And this is the good point of its
determinism. When starting to remove the bug (by varying the sequence of the signals and
playing with timing) the protocol may loose its determinism due to performance and
environmental impacts and it becomes even harder to identify the bug.

Processor Device X
(Master) (Slave)

Source

Device Y
(Slave)
SinkInitiator

poll sink

poll source

sink ready

source ready

condition source

condition sink

request data

transmit datatransmit data

transmit datatransmit data

request data

transmit datatransmit data

request data

check source

check sink

source ok

sink ok

more requests

Problem:
Due to varying propagation times in a network the inital sequence of signals may not be the final sequence!

Requirements for transmission:

- data must arrive in requested order

- any sequence of request/transmit signals is
allowed which matches this requirement

variation of sequences
allowed for eqivalent
signals !!!
ok signals may arrive
in any order

variation of sequences
allowed for eqivalent
signals !!!
ready signals may
arrive in any order

Fig. 2a: A Sample Protocol

From a logical point of view this protocol seems to be free of conflicts. However, conflicts
arise from the given architecture: one needs to execute it under real conditions to identify the

conflict. In consequence, one can never be sure that no error will occur in the real
environment when performance aspects are ignored during system validation by simulation.

The goal of the protocol shown by Fig. 2a is to exchange data between the source and sink
devices. This transfer is initiated and supervised by the processor (master) for each data
request. As it is a typical "master-slave" protocol it should be free of conflicts. But this is not
true.

The processor polls the source and sink devices whether they can provide data or whether they
are ready to accept data, respectively. If both respond with 'ready' the processor conditions the
devices and requests data, cycle for cycle. At the end of data transmission the processor
checks the source and sink devices whether all data have been transmitted correctly. And this
final checking sequence causes the problem (Fig. 2c)

Processor
(Master)

..

..

from_proc to_proc

master
request

slave
response

slave - slave
communication
controled by

master
A / IR B / RS

Device n

(Slave)

Device 1

(Slave)

Device 2

(Slave)

Source Sink

Interrogation (IR)

Response (RS)

Fig. 2b: System Architecture

When ignoring
transmission time all
transmitted data arrive
before the final checks.
This is different when
shared resources like
bus or processor cycles
are consumed on a real
architecture like the one
shown by Fig. 2b. Then
the signal sent from the
source device to the
sink device is
synchronised with the
bus cycles. This causes

the last data sent from the source to the sink to arrive later at the sink device than the check
signal issued by the processor directly to the sink device. This confirms (a).

The reason is that data coming from the source are delayed by two bus cycles before they
arrive at the sink. During the first bus cycle the request signal is processed by the source
device and the data are written to the output registers. During the second cycle the data is
transmitted to the sink device. However, the check signal is directly sent from the processor to
the sink device and is therefore one cycle faster.

To solve this problem an idea could be to change the sequence of the check signals (check
sink, then check source, see Fig. 2a) and to add a further cycle between the last data request
and transmission of the check signal for the device, because this will delay the check sink
signal by two cycles which are needed according to Fig. 2c.

However, as mentioned already above this will make li fe even harder. For a certain test the
protocol may run correctly, but not in all cases. If several transmissions are initiated on the
processor, the delay of the check signal will provide an empty bus slot which may be used by
another protocol sequence running in parallel. If this sequence addresses the same sink device,
the sink will again identify an error due to incompatibilit y of its state with the incoming data
(in best case) or it will accept the wrong data (in worst case). This confirms hypotheses (b)
and (c). In consequence, exhaustive simulation executed with filter conditions will deliver
wrong results because such side effects may not be detected due to filtering of side effects.

A

Dev. 1

chck2poll 2 poll 1

proc

Dev. 2 proc

condition 2 condition 1

poll devicesProcessor wait for rdy condition devices

proc

B 2 rdy 1 rdy

data
rqu

data
trns

data
rqu

data
rqu

proc proc

data
trns

data
trns

data
rec data

rec

data
rec

chck1

proc

fault

proc
chck

Illegal data !

chck

1 ok2 ok

data request
data reception

check dev.
rec. checks

cond.

cond.
Source

Sink

Transfer has already been terminated!

Fig. 2c: Timing Aspects

Hence, the behaviour of the protocol changes from "completely deterministic" to "non-
deterministic" due to performance impacts and potential side effects from other data transfers.
Only the two constraints (1) "two cycles delay between request of last data and transmission
of the check signal for the sink device" and (2) "no further signal must be transferred to the
sink device between the last data request and transmission of the check signal" solves the
problem and the protocol can always be executed completely deterministic and correct.

The protocol of Figs. 2a-2c has been implemented
in SDL for several implementations of the bus as
shown by Figs. 3 - 7. The principal system
structure (Fig. 3) has always been kept and mainly
the bus implementation was changed. For
optimisation of system performance the timing of
data requests in the processor was also varied, e.g.
the next request may be sent before the data of the
previous request arrives.

Fig. 3: Principal System Structure

If processing time and transmission time are
ignored system performance does not matter at all.
So the simplest solution is to send the next data
request (or the final check) only when the
requested data have been received. This ensures
execution of the protocol free of errors as long as
no other data transfer is running in parallel which
may use the empty bus slots and may cause a state
mismatch in the source or sink devices. However,
when introducing time consumption this way of

protocol processing becomes very inefficient because three cycles are always needed per data
request yielding a bus utilisation of only 33% at most.

To achieve a higher bus utilisation, all signals following the ready signals could be issued
immediately by the processor because it should be a matter of the bus interface to queue all
such signals. But with SDL one cannot always proceed in this manner. If transmitting all the
signals by a single burst they will be stored in a SDL queue and selected from this queue
depending on which mode is used for simulation in a tool. In case "random simulation mode"
is applied the sequence of the signals will be changed and the SDL simulator will detect errors
in the protocol, although in practice they will not occur.

Knowing about this problem the bus clock can be used to transmit request by request
synchronously from the processor not waiting for a response. Then bus utilisation remains as
efficient as in case of a burst.

Such processing also reduces the number of system (SDL) states: the queue lengths are
reduced to one element only at a certain time and this simplifies significantly exhaustive
simulation because instead of n! mutations only 1! are considered by the tool.

Figs. 4 - 7 (Figures 5b-7 and the tables follow on the next pages) show several representations
of the bus, changing from a very simple bus representation to the real bus architecture
consisting of two uni-directional bus lines and a bus clock. Table 1a gives the results of
verification by exhaustive simulation for the simple bus models (Figs. 4, 5a-c) which do not
take into account timing aspects. Table 1b shows the results for the full bus architecture based
on synchronous transfer of the data related to Figs. 6a-c and 7.

Fig. 4: Simple Bi-Directional Bus
with Broadcasting

Fig. 5a: Bus with Two Uni-Directional Bus Lines

Two cases have been investigated for the full bus architecture of Fig. 6: (1) the period of the
bus clock has been set to a non-zero value (the expected case) or (1) it has been set to a zero
value in order to ignore transmission time.

In case of Fig. 7 an equivalent "functional" bus architecture without clock is used in order to
get a comparison between non-zero bus time slots and equivalent transmission steps with zero
transmission time. This means that in case of Fig. 7 a signal is immediately transferred after
its reception without waiting for the bus clock.

Fig. 6a: Fully Representative Bus

Fig. 6b: Uni-Directional Bus Line with Clock
 (Device-to-Processor Line)

Fig. 5b: Device-to-Processor
Line (RS bus)

Fig. 6c: Bus Clock

Fig. 4 shows the simplest implementation of the bus: the bus just distributes the received
signal to all connected devices (the sending device excepted) and acts as a bi-directional bus
with one bus line. The bus shown by Figs. 5a - 5b introduce two uni-directional bus lines. So
the bus of Fig. 5 already represents the real architecture but it still ignores time consumption.

Fig. 7: Uni-Directional Bus Line (w/o clock)
(Device-to-Processor Line)

 In the next step shown by Figs.
6a - 6c a bus clock is introduced
driving both bus lines. This bus is
a fully representative model of the
real bus w.r.t. the required degree
of detail. The IR bus (bus A in
Fig. 2b) transfers the signals from
the processor to the devices and
the RS bus (bus B in Fig. 2b)
takes the opposite direction. Fig. 7
shows a representation which is
functionally equivalent to the one
of Fig. 6b when the bus period is
set to zero, but gives different
simulation results.

Table 1a shows the results of
simulation for three simple bus
types. No error is detected, but the
system has low performance. The
low utilisation of the bus will be
recognised later when the

software is executed on the real hardware. However, then it is very expensive to change the
processing algorithm for the protocol.

Although system representation for test 3 is more complex due to the two bus lines, less
system states were generated. This confirms that more complex systems do not necessarily
have a higher number of system states. It is a matter of possible paths through the system, and
obviously the bus of Fig. 5 is more accurately defined than the one of Fig. 4. This tuning
aspect is discussed in more detail in section 3. Table 1b gives the results for six different
timing approaches.

In case of test 4 the same algorithm as for tests 1 - 3 was used. As the next data request is only
issued when the response for the previous request arrives no error was observed, but bus
utilisation is still poor. It is surprising that the number of system states is again much lower
compared to tests 2 and 3 although the bus is more complex. The reduction of system states
occurs because the clock synchronises the processing steps and ambiguities in system
behaviour are removed. This confirms hypothesis (d) given at the beginning of this section.

A burst of data requests is issued for test 5. The SDL specific queueing mechanism caused an
error during random and exhaustive simulation. Although the algorithm is correct (it includes
the required delay between data requests and checks), SDL simulation will reject this
algorithm because the way the SDL tool is simulating the system is the same as in real world.

Test 6 adjusted the algorithm to the needs of the SDL tool and transferred the data requests
synchronously with the bus clock. The missing delay between data requests and checks was
detected. For test 7 the bus period was set to zero. This increased the number of system states
and exhaustive simulation did not terminate because computer resources were exhausted.

Functionality Ref.
to

Fig.

Bus
Period

Bus
Cycles

States Trans. # Errors
Random

Sim.

Errors
Exhaust.

Sim.

Bus
Util.
%

Correct Result

1 simple bus
next data request
or check when
previous data
received
3 data requests

- n/a n/a 184 329 0 0 33 yes
but low

performance
protection

needed against
side effects

2 simple bus with
broadcasting
next data request
or check when
previous data
received
3 data requests

4 n/a n/a 830 1910 0 0 33 yes
but low

performance
protection

needed against
side effects

3 simple bus with
broadcasting and
two uni-
directional lines
next data request
or check when
previous data
received
3 data requests

5 n/a n/a 617 1320 0 0 33 yes
but low

performance
protection

needed against
side effects

Table 1a: Results of Protocol Validation for Functional Bus Representations

Exhaustive simulation was aborted and the error in protocol processing was not yet identified.

Test 8 repeated test 7 with the equivalent bus implementation of Fig. 7 which does not use the
bus clock. Again, the number of system states is significantly higher when performance
aspects are ignored, bit exhaustive simulation terminates. The need for the additional delay
was not detected. Test 9 runs the correct algorithm under real timing conditions and the
correct result is obtained.

3. Tuning of System Development

In the previous chapter the risks and chances for system development were discussed: (1) if
not all system properties (like performacne) are subject of verification and validation the
system will not run correctly in the real environment although no errors have been identified
during the verification and validation process, (2) if inappropriate verification and validation
procedures are applied correct implementations may be rejected, (3) consideration of
performance aspects simplifies the verification and validation steps because a real, physical
system behaves much simpler than an abstract, mathematical system.

Although SDL provides already powerful capabilities for verification and validation of
distributed systems, means are missing which allow for detailed and representative modelling
of timing. In consequence, SDL has to be enhanced such that the needs of verification and
validation of a real (distributed) system will be met.

According to above conclusions (1) - (3) capabilities for performance analysis and simulation
and the scheduling policies like priority-based, pre-emptive scheduling need to be added.
EaSySim II does it on top of ObjectGEODE.

Functionality Ref.
to

Fig.

Bus
Period

Bus
Cycles

States Trans. # Errors
Random

Sim.

Errors
Exhaust.

Sim.

Bus
Util.
%

Correct Result

4 real bus
architecture
next data request
or check when
previous data
received
3 data requests

6 non-
zero

24 470 990 0 0 33 yes
but low

performance
protection

needed against
side effects

5 real bus
architecture
burst of 3 data
requests, delay
before checks

6 non-
zero

n/a
(due
to

error)

715 1556 1 1 →
100

no
data requests are
not processed in
the right order

6 real bus
architecture
synchronous
transfer of
requests and
checks, no delay
between last
request and
checks

6 non-
zero

n/a
(due
to

error)

558 1153 1 1 →
100

yes
missing delay
before checks

caused an error

7 same as above 6 zero n/a 20971
50

80185
50

0 0 →
100

no
missing delay
not identified
exh. sim. does
not terminate

8 same as above
but with
equivalent
architecture,
no clock

7 n/a n/a 18130 56760 0 0 →
100

no
missing delay
not identified

9 real bus
architecture
burst of 3 data
requests, 2 bus
cycles delay
between last data
request and first
check (check
sink)

6 non-
zero

17 →
100

yes
protection

needed against
side effects

Tab. 1b: Results of Protocol Validation for Fully Representative Bus

But tuning of system development can also be done in view of quality and feasibilit y. It was
recognised that the number of system states provides a feedback on ambiguities left open in
system definition: if undesired paths through a system's FSM's are removed then the number
of system states decreases. Reduction of number of system states by more accurate
implementation and by consideration of performance matters allows to master verification and
validation of systems for which exhaustive simulation would not terminate otherwise.

Fig. 8: Dependence of System States on Number of
Processes

In fact, state explosion is a
criti cal point of exhaustive
simulation. It does not help at
all to have such a powerful
capabilit y, but to fail for
practical cases.

As was mentioned in section 2
filtering is not a good idea to
make exhaustive simulation
feasible because it may exclude
critical cases, especially
interaction with parallel
activities. To take real
advantage of exhaustive
simulation one needs to reduce
system states by other measures.

Fig. 8 shows the dependency of
number of system states w.r.t.

to number of processes for different implementations of an application. For case 4
performance aspects have not been considered. In this case systems of up to 15 processes may
be validated by exhaustive simulation. It is believed that EaSySim II represents already an
approach which creates a minimum number of system states (cases 1-3). But even in case of
EaSySim II the number of processes are limited to about 20 - 25 processes3. The feasibilit y or
unfeasibilit y of exhaustive simulation is also impacted by the simulation time which is about 8
hours for case 4 and 12 processes and about 1 hour for cases 1-3 and 18 processes.

3.1 Means for Tuning Verification and Validation

For tuning of verification and validation with SDL four different measures have been
identified which reduce the number of system states and increase quality of a system:

1. use of a subset of SDL,
e.g. avoid to distribute timers all over the SDL model, to use VIEW/REVEAL and
EXPORT/IMPORT because such constructs may generate a lot of background traff ic
and a number of system states you can't control

2. enhancement of SDL tools by means which are adequate for the system under
development
EaSySim II provides optimised time managment and supports scheduling policies

3. consideration of performance aspects as described in the previous sections,

4. unambigous (and error free) definition of a system's behaviour by FSM's by evaluating
the feedback from exhaustive simulation.

3 In section 3.2 the means will be described which are provided by EaSySim II to escape from this limitation:transparent
partitioning of a SDL system.

A reduction by a about four orders of magnitude was achieved for a sample application. The
reduction at the beginning was obtained by means (1) and (2), while means (3) and (4)
contributed to "fine tuning" at the end.

This experience is reflected by the EaSySim II ∆-approach which is shown by Fig. 9.

EaSySim II extends ObjectGEODE. It
provides support functions which help
to organise a SDL system such that the
number of system states can be reduced
and resources can be consumed. Also,
by this organisation a system can easily
be distributed in a transparent manner.
Moreover, this mechanism allows to
communicate with other simulation
tools such as SES/workbench or other
software like window managers,
database systems and other EaSySim II
environments on the same or on remote
processors.

Communication

Network

Resource,

&
Interface Mgt.

Scenario

EaSySim II
Modelling
Approach

Components

Functional

Application Data

Resource Access,
&

Scenarios

Access of External Tools,
Resource Access,

&
Scenarios

Access of External Tools,

Fig. 9: The EaSySim II ∆-Approach EaSySim II divides a system into three
principal parts: (1) a management part

which drives the tests and system operation and provides an interface to the outside world, (2)
a "functional" part which covers functional, behavioural and performance aspects of the
application, and (3) a "communication" part which represents the network of the application
through which the functional components are communicating with each other under
consideration of performance.

Fig. 10: Impact by Logical Faults and Performance
Aspects

It is also possible to change the
communication topology at run-time.
This allows to perform redundancy
switching for a fault-tolerant system
after occurence of a fault. Hence the
Fault Identification and Recovery
Procedure (FDIR) can be subject of
exhaustive simulation.

Fig. 10 demonstrates the impacts of (3)
and (4) on number of system states
during exhaustive simulation. A real,
physical system is activated by
switching on its components one after
the other. In SDL all start transitions are
executed at time "T0". This causes a lot
of additional system states as is shown

by Fig. 10. The same happens when terminating a system immediately. EaSySim II provides
the means to activate or de-activate a SDL system like a physical system and this reduces
significantly the number of system states. The mechanisms provided by EaSySim II act like a
capacitor connected across the poles of an electrical switch.

Moreover, it was observed that number of system states is also reduced when a logical fault is
removed like an illegal path through the FSM's, a deadlock or an exception.

3.2 Means to Tune Efficiency of System Development

It was already pointed out that SDL provides powerful capabiliti es to make system
development more eff icient e.g. by means of formal description of behaviour, exhaustive
simulation and automated code generation. Such capabiliti es have to be complemented when
applying SDL to a broader class of distributed systems as discussed above.

Early transition to the target system will confirm the simulation results and hence is
recommended. Fig. 11 shows the steps through such a li fe cycle and how the implementation
approaches more and more the final system in the host and target environment.

EaSySim II provides such means
which simpli fy the transition
between host and target
environments, between simulation
and generated code. It provides an
automated procedure for code
generation from SDL code
including automated creation of the
libraries speeding up the whole
process to 15 mintes only.
Moreover, EaSySim II tools
remove performance instrumen-
tation automatically.

Target SystemHost System

Target CodeSimulation

Specification

Design

Final System

Platform

Phases
Life Cycle

Hardware-
Software
Integration

Fig. 11: Two-Dimensional Life Cycle

Not all details of an
implementation do contribute to a
system's behaviour. To avoid state
explosion one either needs to
follow above suggestions or one
also may export (or needs to

export) some details to other languages such as C or Ada4.

This applies to the set of (large) data structures, which may also be divided into a SDL part if
relevant for behaviour and a C/Ada part if not relevant. If e.g. a variable x defined in SDL is
only needed to make a decision like "x>0" then (the real variable) x should not be declared in
SDL but the boolean SDL operator testx could be used which imports the result of the
comparison "x>0" from C/Ada to SDL. In this case not all values of x are made visible to the
exhaustive simulator but only such values which impact behaviour. This yields a significant
reduction of SDL system space.

EaSySim II supports transparent partition of a system (not impacting its architecture): system
processes my be included in more than one EaSySim II environment. So the scope of
exhaustive simulation can be limited to some parts only, and exhaustive simulation can
sequentially be applied to all system parts one after the other.

4 The author has already successfully implemented SDL operators in Ada [15].

4. Future Issues

Currently, exhaustive simulation concentrates more on the combinatorial exploration of state
space. When introducing performance, shared resources and more sophisticated scheduling
policies multiple occurence of events nearly disappears and hence the need for combinatorial
exploration becomes less important. What needs more detailed investigation is the timed
execution of events and its consideration by exhaustive simulation, preferably in a more
formal manner. When considering performance, interference between parallel system
activities becomes much more important for system verification and validation.

Also, in order to master state explosion a more abstract interface should be introduced for
implementation of behaviour. The object-oriented paradigm seems to be appropriate to cover
this point: information hiding should be applied to such parts of an (SDL) implementation
which do not impact a system's behaviour. More principal considerations are needed in this
context.

5. Conclusions

Potential risks have been discussed which occur when SDL is used for development of a more
general type of distributed systems and means were identified to master such risks. It was
described how wrong conclusions may be derived on the correctness of an SDL
implementation: a SDL system may be considered as correct after verification by SDL
simulation, although it will never run correctly under real conditions. Vice versa, a correct
implementation may be rejected by the SDL simulator. This is very dissatisfying and
dangerous in case of safety-critical systems.

The EaSySim II environment was presented as a solution for most of the problems which are
currently not solved by SDL and for optimisation of development of distributed systems.

Performance matters were identified as the main reason for such weakness of verification.
Hence, verification and validation without consideration of performance is meaningless,
because one does not know about its potential impact. Implementations which are considered
as completely deterministic and correct may turn out as non-deterministic and incorrect in
practice, even when people believe to be sure that the implementation is correct and
performance cannot cause any problem.

Moreover, it was shown that consideration of performance aspects do simpli fy verification
and validation significantly and help to master state explosion. So the extension of verification
and validation from purely behavioural to performance aspects does not complicate system
development, but eases it and reduces risks at early life cycle phases.

The number of system states and state transitions should be considered as a representative
figure for quality of an implementation. A high figure may indicate that the system is not yet
well defined.

The capabiliti es needed to complement SDL and SDL tools by performance evaluation issues
can be provided as add-on's. However, more formal consideration of performance aspects and
better support by the language to master state explosion are needed.

References:

[1] OMBSIM (On-Board Management System Behavioural Simulation, ESTEC contract
no. 10430/93/NL/FM(SC), Final Report Nov. 1995, Noordwijk, The Netherlands

[2] R.Gerlich, Ch.Schaffer, Y.Tanurhan, V.Debus: EaSyVaDe / EaSySim: "Early System
Validation of Design by Behavioural Simulation", ESTEC 3rd Workshop on
"Simulators for European Space Programmes", November 15-17, 1994, Noordwijk,
The Netherlands

[3] R.Gerlich, C. Joergensen: An Alternative Lifecycle Based on Object-Oriented
Strategies, International Symposium on "On-Board Real-Time Software" , November
13-15, 1995, Noordwijk, The Netherlands

[4] R.Gerlich, Th. Stingl, Ch. Schaffer, F. Teston, G. Martinelli , Y. Tanurhan: Use of an
Extended SDL Environment for Specification and Design of On-Board Operations,
Systems Engineering Workshop, November 28-30, 1995, ESTEC, Noordwijk, The
Netherlands

[5a] R.Gerlich: From CASE to CIVE: A Future Challenge, 'DASIA 96' - Data Systems in
Aerospace, May 20-23, 1996, Rome, Italy

[5b] R.Gerlich: Experience with Simulation, Automated Code Generation and Integration,
'DASIA 97' - Data Systems in Aerospace, May 26 - 29, 1997, Sevilla, Spain

[6] R.Gerlich, N.Schäfer, A.Schäferhoff : Early Validation of DMS Design by a Reusable
Environment, EUROSPACE On-Board Data Management Symposium on
"Technology and Applications for Space Data Management Systems", January 25-27,
1994, Rome, Italy

[7] ObjectGEODE SDL-Tool, Verilog, 150 rue Vauquelin, F-31081 Toulouse Cedex,
France

[8] SES/workbench, Scientific and Engineering Software Inc., Building A, 4301 Westbank
Drive, Austin, Texas, 78746-6564, USA

[9] EaSySim II: The Enhanced Environment for System Validation, R. Gerlich BSSE, Auf
dem Ruhbuehl 181, D-88090 Immenstaad, Germany

[10] HRDMS (Highly Reliable DMS and Simulation), ESTEC contract no.
9882/92/NL/JG(SC), Final Report, 1994

[11] L.Braga, R.Manione, P.Renditore: A Formal Description Language for the Modelli ng
and Simulation of Timed Interaction Diagrams, FORTE/PSTV'96 Conference,
Kaiserslautern, October 8-11, 1996

[12] M. Buetow, M.Mestern, C.Schapiro, P.S.Kritzinger: Performance Modelli ng with the
Formal Specification Language SDL, FORTE/PSTV'96 Conference, Kaiserslautern,
October 8-11, 1996

[13] S.Fischer: Implementation of multi -media systems based on real-time extension of
Estelle, FORTE/PSTV'96 Conference, Kaiserslautern, October 8-11, 1996

[14] M.Diefenbruch, J.Hintelmann, B.Mueller-Clostermann: The QUEST-Approach for the
Performance Evaluation of SDL-Systems, FORTE/PSTV'96 Conference,
Kaiserslautern, October 8-11, 1996

[15] R.Gerlich, Y.Lejeune: How to use ObjectGEODE with Ada, January 1997, internal
communication, unpublished

