Simulation of a System's Behaviour and Its Physical Environment:
How to Master Tool Integration

Rainer Gerlich
BSSE System and Software Engineering

Auf dem Ruhbuehl 181
D-88090 Immenstaad, Germany

Phone +49/7545/91.12.58

Mobile: +49/171/80.20.659 Fax+49/7545/91.12.40

e-mail: gerlich@t-online.devww: http://home.t-online.de/home/gerlich/

Abstract: This paper describes why and how two
different types of simulation need to be integrated:
event-driven simulation (applied to the system's
behaviour and asynchronous environmental parts) on
one side and time-discrete or multi-rate simulation
(applied to the system's control part and synchronous
environmental parts) on the other side.

This work has been caried out in the curse of the
ESPRIT projed CRISYS [1] which deds with criticd
distributed automation systems. Simulation is used to
verify and validate such systems arealy in an ealy
development phase.

The example gplicaion includes asynchronous parts
related to overal, highlevel system control and
supervision, and synchronous parts at the lower levels.
Based on this example the benefits of an integrated
simulation environment are discussed together with

organisational measures which ease tool integration.

Keywords: behavioural simulation, multi-rate
simulation, tool integration, event-driven simulation,
continous smulation, time-discrete simulation,

synchronous languages, Lustre, SDL, CRISYS

1. INTRODUCTION

Verificaion and validation of a system in an ealy
development phase [2,3,4,5] requires representative
system simulation and an adequate todl envrionment.
Available smulation tods mainly focus on one of the
following simulation types only: behavioural/discrete
event simulation [6,7], continuous/time-discrete/multi-
rate simulation (CDM)?! [8,9], performance simulation
[10,11,12].

In the past simulation was performed separately for eah
type. Possbly, simulation was restricted to such
applications or parts of it for which appropriate tods
existed. Hence, simulation could not be gplied to verify
and validate a complete system.

When we look on automotive gplicaions in (most of)
the arrent cas no sophisticaed high level system
control exists which needsto be smulated. Coordination
of bre&s, gea and engine was/is only controlled by the
driver. This will change for the near future.

1 In the following the abreviation "CDM" is used for
continuous, time-discrete and multi-rate simulation.

Also, in the space aeasimulation was only applied to
parts of subsystems, e.g. to attitude and orbit control,
guidance and navigation control, thermal and power
supply systems based on CDM simulation.

With the increasing number of low level components
(LLC) and the demand for a higher degree of
automation the nead for a "high level" control system
arises which coordinates the lower levels. To verify and
validate such a system corredly a broader simulation
environment is needed which covers al threesimulation

types: behavioural/event-driven, CDM and performance.

Such a simulation environment allows to develop and
test a new version of a hardware-software combined
system without the need to manufadure the hardware
before the design is sttled. This way the hardware and
software may be danged until an optimum design is
achieved. This is of importance not only for space aeg
but e.g. also in the area of automation.

Integration of event-driven and performance simulation
tools [2,3,13] and of event-driven and CDM toadls [14]
have drealy been performed in the past. Now, in the
course of the CRISYS projed an integration of event-
driven, performance aaxd CDM simulation has been
done.

This paper explains the theoreticd badground and the
techniques which were gplied to tod integration, the
example goplicdion and the capabiliti es of the todls and
the integrated environment.

In chapter 2 the example gplicaion is introduced and
the relevant problems w.r.t. simulation are identified.
Chapter 3 analyses the integration, verificdion and
validation isaues from a principal point of view. The
tool environment is described by chapter 4. Chapter 5
discusses organisational isaues of tool integration and
chapter 6 describes the system's partitioning in the
integrated tool envrionment. Finally, chapter 7
concludes on the performed work.

2. THE APPLICATION

In the CRISYS projed we derived from a complex
application a representative, simplified distributed
application which shall be subjed of our investigations:
it is a system which transports, sorts and dstributes
parts. The system consists of three belt sedions and a
switch for sorting. Fig. 2-1 shows in the upper part the
principal elements: the belt sedions, the switch, the part
feeder and the overall monitoring and control processor

(MCP). The components of the belt sedions are shown
by the lower part of Fig. 2-1. The eavironment is added
to ead of the cmponents: the feeder on top level, the
motor drives on belt level.

For our further considerations it is essential to mention
that this application is distributed which means the
system includes ®vera independent clocks. Of course,
we auld try to synchronise dl clocks, but the question
isif thisis always possble under normal and anomalous
conditions. As we will see later, continuous
synchronisation is not posshle in case of our application
due to environmental or operational impacts.

Feeder Belt Section 1| Switch
Belt Section
LLC's of Belt Section 2/3 |

Motor Light
Drive Barrier 1

LLC's of Belt Section 1

Motor Light Bar Code OCR Light Switch
Drive Barrier 1 Scanner Scanner| | Barrier N

Light
Barrier N

Fig. 2-1: The Part Sorting and Distribution System

The parts are put on the initial belt sedion 1 and
identified by an OCR system and a bar code reader.
Their postions relative to the evironment are
monitored by light barriers. The light barriers are
intelligent and do not only provide adark/light signal,
but perform plausibility chedks on a part's dimensions
and henceinlcude a ontrol part. Also, the scanners, the
switch and the motor drive have own controllers.

Depending on the information receved from the OCR
system and/or the bar code realer the switch direds a
part to final belt sedion 2 or 3. The drive of ead belt is
independently controlled by a speedometer. The
operator may stop ead belt or all belts by an emergency
button. Such a stop and the following restart disturbs
synchronisation of the three belt sedions: the different
medhanicd and physicd properties of eat belt sedion
reguire independent control of speed during start and
stop.

The monitoring and control processor (MCP) supervises
the low level components (LLC) (internals of the three
belt sedions and the switch) and responds to their
service requests. It has typicdly an asynchronous
behaviour: the sequence of the parts is not equidistant,
the belt may even be ampty for some time, hence
reguests concerning such parts are not predictable. Also,
exceptions occur randomly from the LLC's e.g. in case
of ajam or removal of parts from the belt. The event

rate of the MCP is (mainly) related to the flow of the
parts on the belt.

The LLC's are of synchronous nature: they continuously
sample sensor vaues (light barriers, tachometer) and
derive adions which are dther input to the MCP, the
belt drive, the switch or a following LLC. Their
sampling frequency depends on the speed of belt
movement and the required resolution of a part's
position. If the (average) length of a part is 300mm and
the required resolution is 3 mm, the sampling frequency
of the LLC's is 2 kHz.

The physicd environment requires CDM simulation in
case of the motor drive and event-driven simulation for
the feder. It is asuumed that the drive's ged is
correlated with the local clock of each belt section.

Following exceptions concerning transportation and
part's identification may occur: two parts are not clealy
separated and hence identified as one part, a part may
get lost, the paosition of the parts on the belt changes
relative to the other parts during transportation, the
distance between two conseautive parts is too small to
change the switch position, the belts run at different
spedal. A belt may even be stopped whil e the other ones
are still moving.

The docks of ead sedion may differ in frequency and
may have a non-zero phase shift.

There ae similarities between this applicaion and a
space aplicaion which also includes a misson and
monitoring system at high level with asynchronous
behaviour like MCP and sensors and aduators of
AOCS/GNC and TCS which are of synchronous nature
and are runring at different and independent clock
frequencies. Hence, the integration isaues as discussed
for the example gplication are dso o relevance for a
distributed space application.

3. INTEGRATION ISSUES

When discusing about integration of simulation
environments of different types, first it should be
clarified if such an integration is meaningful or not.
After discusson of the daraderistics of event-
driven/behavioural and CDM simulation, this chapter
will discuss about such integration issues.

3.1 CDM and Synchronous Simulation

Typicdly, CDM simulation is applied to problems
which necessarily require intermediate steps in time to
move from instant t1 to t2: if t1 and t2 are abitrarily
seleded it is not possble in general to derive the system
state & t2 dredly from the state & t1. Usualy, the
system function is non-linea (e.g. differential eguations
neal to be solved) and requires intrapolation to get the
state & t2 at sufficient acaragy. Such systems need
time-discrete simulation.

Moreover, the numericd methods usually require
equidistant steps in time, which leads to periodic

sampling of sensor values, cdculation of system states
and aduator commands. Some parts of the system may
exeaute & larger periods (which are fixed over time)
being multiples of the basic (smallest) period.

If the period changes from to time during simulation and
operation, this type is cdled multi-rate simulation. A
singuar caseis an infinite period, e.g. when the operator
stops a belt drive. In a periodic or multi-rate gproach

all system steps are executed synchronously to a clock.

Lustre [15] supparts implementation and verification of
synchronous g/stems. System properties may formally
be proved or checked during simulation.

In the synchronous approach inputs are dways read at
the beginning of a period and exeaution igmust be
completed urtil the end o the period. In fad, an
absolute notion of time is not neeled: everything
happens within a dock period, the system is completely
driven by the dock, al elements are synchronously
progresing with the dock, even if the dock's period
may vary over time.

A belt sedion (as part of the eawironment) of our
application is a typicd example of a synchronous
system: the belt, the parts on the belt, the signals from
light barriers and scanners are synchronously following
the clock of the drive.

Typicdly, the mntrollers of the drive, the scanner and
thelight barriers are dso driven by a belt clock: hence, a
belt's motor drive and its other internals can be

completely modeled by a CDM simulation environment.

3.2 Event-Driven Simulation

In case of event-driven simulation two foll owing events
may be separated by an arbitrary time interval, no
intrapolation is needed. The next system state can be
diredly derived from the previous gate or is passbly
independent of it. E.g. at t1 a timeout may be set which
suddenly changes the system state if it occurs at t2. No
intermediate instants in time need to be entered.

From a simulation paint of view the advantage of event-
driven simulation is that it can rapidly progressin time
as required by the occurence of events, not being
constrained by accuray problems.

In our application the mean time between two events
triggered by a sensor along the belt is AT=L/v, where L
is the average distance between the beginning of two
conseadtive parts on the belt and v is the spead of the
belt. For L=300mm and v=3m/s we ¢€f=100 ms.

The period d a sensor neals to be & most half
(acoording to Shannon's theorem) of At'=As/v where As
=3mmiis the required resolution. Hence we get At=1/2 .
At'=500ps which is smaller thaAT by a factor of 200.

3.3Why to Keep Thingsin Their Specific
Environment

We now analyse whether it is possble to cover all parts
of a distributed system by one simulation type and toadl.
As the synchronous / periodic goproach is the best
approach from a reliability and safety point of view we
start to analyse whether or not to take the synchronous
approach for the whole distributed system.

3.3.1 Performance | ssues

The large difference in rates of R=1/(500us
/100ms)=200100ks like agood reason to separate event-
driven from CDM simulation becaise then we do not
need to run the behavioural part at 2 kHz. However, as
we will seethis is not completely true in any case and
we need further arguments to keep things separate.

What isignored in above comparison is that a number of
Sensors may generate events which need to be procesed
by the behavioural part of a system. Now, if we have N
sensors per belt, eat sensor may generate an event.
This deaeases the mean time between (asynchronous)
events down to AT=AT/N. For large N At may become
smaller than At, and hence it may be better to pdl the
sensors for events at the rate of the synchronous clock.
The bre& even point is N=2 L/As which is 200 in our
case.

This result may be interpreted as: if the mean density of
sensors per part is higher than the required resolution of
pasition, it is better to pdl the sensors in order to limit
the overhead by processing of asynchronous events.

Above limitation of the readion time of asynchronous
events does not lead to degradation of system
performance, becaise the period At represents the
acarragy limit as given by the resolution As. Hence, a
shorter readion time At<At is redly not required.
Consequently, in such a cae paling of asynchronous
events can coexist with cyclic execution.

So it redly depends on the adual system configuration
whether separate processng of asynchronous and
synchronous events brings an advantage of performance
or not.

However, in our case aynchronous processng of events
will be of advantage becaise we have only afew LLC's
in the whole system.

3.3.2 Modélling | ssues

We have seen that ead belt sedion can be onsidered as
a dosed system concerning the low-level components
and the environment. But ead belt sedion may have its
own charaderistics w.r.t. to the other ones: the locd belt
clocks may differ in phase axd period. If a belt is
stopped whil e the others are till runring the crrelation
of events is even lost.

Such deviations are a ®©nsequence of a distributed
system where eab system part is more or less
independent of the other ones by the environmental or
operational constraints even if the goal of system design
is to synchronise all parts as far as possible.

From a simulation point of view a master clock may be
introduced which drives the locd clocks of the belts.
This way different phases between the locd clocks can
be generated.

The synchronous approach does not know progress of
time, but only progressin terms of clock periods. Thisis
not a problem as far as we model a "closed" system for
which everything progresses acording to the dock:
inputs are read at the beginning of a period, exeaution is
terminated before the end of the dock cycle. Even
timeouts could be expressed by clock cycles.

However, we get a problem if the dock periods are
different (e.g. if abelt is gopped) or vary (slowly) over
time. Then the locd time scde may not be refered to for
exchange of information with other (remote) parts of the
system.

For modelling this means that we neel a central time
manager which drives the synchronous parts (with
possbly varying clock periods) and a monitor which is
cgpable to exeaute acording to the global, universal
time scde and is independent of any of the loca clocks.
Obvioudly, the time manager and the monitor are of
asynchronous nature and cannot be modeled by a
synchronous environment.

Consequently, a pure synchronous environment cannot
cover al moddling isaues and we nedl to integrate the
asynchronous and the synchronous world.

In case of our example gpli cation the time manager, the
MCP and the feeder are modeled in the aynchronous
modelli ng environment, the LLC's and the motor drive
in the synchronous environment.

The task of the time manager is to synchronise both
worlds. It processes asynchronous time events and
clocks. In both environments time progresses by timer
reguests. in case of the asynchronous modelli ng part the
time manger is informed about a future event and the
time of its occurence (e.g. a timeout), for the
synchronous part the scheduling request for the next
clock cycle is sent to the time manager.

This way the aynchronous and the synchronous parts
can coherently progress in tifie
3.3.3 Verification and Validation | ssues

Due to its deterministic nature verificaion and
validation (V&V) of a synchronous g/stem (or parts of

2 We do not want ot discusshere the problems related to
interadive debuggng and its impad on synchronisation
of both environments.

it) is less criticd than of the aynchronous part: in a
synchronous g/stem no pdential conflicts due to
concurrency exist. Therefore the synchronous approach
should be applied as far as possible.

However, we have seen that a distributed system and its
environment canot completely be implemented in a
synchronous approach becaise of the ever-occuring
asynchronous events (e.g. exceptions) and pdential loss
of synchronisation.

In case of our applicaion V&V of two synchronous
system parts which run at the same period, but encounter
a shift of the docks may be more difficult, but still
possible in a synchronous simulation environment.

If the dock periods are different and vary over time the
spedfic asaumptions on synchronicity ceannot be
applied: it may happen that for one (or a number of)
period(s) no input is receved while for another period
two (or more) inputs are aquired. This violates the
asamptions about synchronicity and invaidates the
V&V results obtained for a pure synchronous system.

Hence, for representative system simulation we need (@)
to cover synchronous and asynchronous properties and
(b) to provide gpropriate verification and validation
means.

A synchronous smulation and V&V environment takes
advantage of the deterministic exeaution and data
exchange. It will not suppat V&V of asynchronous
behaviour. Vice versa, an asynchronous environment
cannot take into acount simplificaion due to
synchronous exeaution. Consequently, an asynchronous
and a synchronous environment need to be integrated for
representative system verfication and vadiation by
simulation, so that the alvantages of ead environment
are fully available for V&V of each type.

4. THE TOOL ENVIRONMENT

In the CRISYS projed the ObjedGEODE tod [6] is
applied to the asynchronous g/stem part and the SCADE
too [9] to the synchronous part of the distributed
system. Both tools are supplied by Verilog.

4.1 ObjectGEODE, EaSySim Il and SCADE

ObjedGEODE is based on SDL, which is a broadly
applied formal method (and language) in the aea of
telecommunicaion. SCADE is based on Lustre [15] and
is an outcome of projeds in the aeaof nuclea power
plants and aircraft manufacturing.

In SDL a system is hierarchicdly decmmposed into
blocks (nodes of the system treg which again include
proceses (leaves of the system tred. Processes are
excutable units. Their behaviour is defined by Finite
State Machines (FSM).

A processmay have anumber of states. Upon reception
of an input the receéved data and the status data ae
interpreted and processed during a "state transition”. At

the end of a state transition the process either remainsin
the same state or enters another state where it again
waits for an input.

EaSySim |l extends SDL/ObjectGEODE towards
performance simulation. Therefore it provides a global
time manager (which is aso accessable from SDL-
external processes) into which the SCADE scheduler
can easily be integrated.

The EaSySim Il peformance extension to
ObjectGEODE alows to assign time to data
transmission and execution of state transitions during
simulation. It also provides means to track the data flow
for such data channels which are not directly supported
by SDL/ObjectGEODE like TCP/IP, ISDN/WAN or
RS232. The related instrumentation is automatically
removed by an EaSySim Il tool when code is generated
for the target system.

In SCADE and Lustre a system is also hierarchically
decomposed into "operators' which may include other
operators. So an operator is the generic unit of
modelling. At the lowest modelling level basic entitities
like logical gates, comparators, mathematical operators
etc. are provided which allow to graphically synthesize
an operator out of other existing atomic or non-atomic
components. For data exchange between operators
specific routines need to be added by the user for which
templates are generated by SCADE.

ObjectGEODE and SCADE alow for simulation,
verification (according to SDL and Lustre methodol ogy)
and code generation.

4.2 TheIntegration Approach

Integration of the asynchronous and the synchronous
part is based on EaSySim Il capabilities which are
needed to communicate with SCADE. EaSySim I
provides the global time management and the functions
needed for routing of data between SCADE and
EaSySim Il / ObjectGEODE.

From the asynchronous SDL part the synchronous
SCADE part is just considered as another process and
the same communication means are applied as used
internally by EaSySim 11.

This SCADE process consists of a shell which organises
the communication with EaSySim Il, decodes and
encodes the messages and schedules the synchronous
program(s) (top level operators) as generated by
SCADE.

5. ORGANISATIONAL ISSUES

Having identified the need for integration of
asynchronous and synchronous simulation environments
the next question is how easy is it to merge them. This
depends on the openness of the environments (tools),
but aso on the architecture and standards of the
software implementation.

5.1 Time M anagement

Execution in the synchronous and asynchronous part
must be synchronised due to the interaction by data flow
and events. When an event is raised at a certain instant
in one part it must be received at (nearly3) the same
instant in the other part. Consequently, synchronisation
points must be defined between the two worlds and the
time scales must be harmonised.

Therefore a time manager is introduced which manages
events from both worlds: it inserts time reguests in one
single queue and notifies the clients at the desired
instant.

The synchronous part will ask for clock events, while
the asynchronous part will request for any events related
to decisions according to the actual system state and
consumption of resources.

It is not needed that the synchronous part will ask for
every clock event: it may be sufficient that only each n.
clock period a scheduling request is issued. This will
allow to proceed at a higher rate in the synchronous part
if required for accuracy reasons without exposing the
time manger to this high rate.

Then the n cycles are executed sequentially by a non-
synchronised loop and after completion of the loop the
synchronous part waits for the next synchronisation
point (assuming that the execution time in the real
system does not exceed the estimated time of n loop
executions during simulation). How large n can be
depends on the accuracy of interaction: during a
duration of n*<clock period> an exchange of
information between the asynchronous and the
synchronous part is not possible. Hence, n is
determinned by <the smallest time interval during which
no interaction is allowed> / <clock period>.

In the synchronous part data from synchronous elements
are feed in at the beginning of a cycle. Data to be
exchanged with other elements which are procuded
during a cycle are stored when they produced and
processed by the next cycle. This way no notion of time
is needed in the synchronous part.

For exchange of data with the asynchronous system part
the same mechanism is applied: data coming from the
asynchronous part will be feeded into a synchronous
element at the beginning of its next cycle. Vice versa,
data to be transmitted from the synchronous part to the
asynchronous part will be transmitted at the end of each
cycle or beginning of next cycle respectively.

The approach for synchronous data communication
implies that two synchronous SCADE operators O1 and
O2 running at different clock periods T and m*T, but
completely synchronous to one clock, can only exchange
data with a period of m*T. This aso applies to the
communication with the asynchronous part. It is a matter

3 "nearly" addresses the required accuracy.

of system design whether such a potential large delay is
acceptable or not.

5.2 Interfaces

For integration of both simulation environments
(EaSySim Il / ObjectGEODE and SCADE) introduction
of generic input and output layers is very important.
This has to be considered by the overall system design.
Experience with generic architectures shows that such
generic layers are not only of advantage for integration
of simulation environments. They bring in a significant
increase of flexibility to react on architectural changes
or extensions.

The approach as supported by EaSySim 1l is described
below. It addresses mainly the communication within
the asynchronous part (ObjectGEODE, EaSySim I1) and
between the asynchronous and the synchronous part as a
matter of inter-process communication (different address
spaces). The communication within the synchronous
part occurs within one process only (intra-process
comunication) and can easily be managed by moving
data between data structures.

5.2.1 Data Exchange

A generic approach requires a standardisation of the
data exchange format. This standard format is used for
all communication channels. Its main components are:
an identifier ("command") describing the purpose of the
message, its source and destination, and the message
type. Two principal types are used: a short and an
extended type. The extended type alowsto add arbitrary
information by a message trailer (up to a certain
maximum length®) like ASCII text or binary records as
indicated by the message type field.

Data transmission and reception is based on a generic
input / output approach which provides a common entry
point for data output and another common entry point
for datainput (Fig. 5-1).

The output messages are routed through logical
channels. Logical channels define a set of redundant
and/or non-redundant (or a combination of both)
physica channels like OBDH bus, Ethernet, 1SDN
(Integrated Services Digital Network), RS232. Specific
routines of the EaSySim |l library are forwarding the
messages through the right physical channel.

Vice versa, on reception of such messages the system
architecture allows to feed in data coming from different
physical channels to one single entry point which is the
starting point of data processing.

4 Message trailers which execeed the maximum length
need to be partitioned

Send

Logical
Output
Channel

Physical
Channéls

Data

Communication Media .
Processing

Physical
- Channdls
Logical
Input
Channel
Receive

Fig. 5-1: I/O Interface Standardisation

This mechanism makes it easy to integrate the two
different simulation environments. Data can be
distributed arbitrarily in a sysem, and the
communication channels may be changed (even at run-
time) without effecting other parts of the application.

This communication approach is similar to CORBA
[16]. But it does not need general encoding or decoding
of data like by IDL (Interface Description Language),
because the transmission of data is transparent to the
distributing functions: only the sender and the receiver
need to know about the used format of the message
trailer.

The whole communication is uniquely based on this
standard format. In principle only one structured
(subprogram) parameter is awasy exchanged inside and
between the processes instead of a number of
subprogram parameters®.

5.2.2 Traceability Needs

The EaSySim Il approach described above extends the
basic mechanisms of SDL and ObjectGEODE.
However, such extensions are not considered by the
V&V means of SDL which only know about the normal
SDL communication channels.

5 This approach has been influenced by the SDL
communication mechanism between processes based on

messages.

To be &le to trad the data flow completely, so that the
V&YV tods of ObjedGEODE can also consider the SDL
non-standard communicaion channels, functions were
added which generate an output of the complete data
flow which can be procesed for verification and
validation.

This extenson is posshle becaise (1) the
ObjedGEODE verifier uses the standardised textual
MSC (Message Sequence Charts) syntax and (2)
EaSySim |l applies the standardised 1/0 approach of
Fig. 5-1.

It is even possble (and intended) to trad the data flow
of both parts, the asynchronous and the synchronous
one, by a global MSC

6. MODELLING RESULTS

All parts of the example gplication were asdgned to an
asynchronous and synchronous part in the following
manner (Fig. 6-1):
- asynchronous part
-- MCP (system)
-- feeder (envionment)

- synchronous part
-- belt control (system)
including LLC's and their controllers
3 instances in total
-- belt motor drive (environment)
3 instances in total

The @aynchronous parts are modelled within the
EaSySim Il / ObjectGEODE environment.

A belt sedion (control and environmental part) is
represented by a SCADE operator and decomposed into
a control and environmental operator and so on.

Each of the three synchronous «ts consisting of belt
control, belt motor drive and sensors are represented as
an independent synchronous program. Eac belt sedion
program is exeatted acwording to an own timeline
defining the period and the phase w.r.t. the other belt
programs. Each timeline is managed by the time
manager of EaSySim |I.

The ausrrent system model is already exeautable in the
simulation environment, but its verificaion and
validation is not started yet. It is planned to apply the
SCADE/Lustre verificaion means to the belt sedions
separately and then to apply the SDL verificaion and
validation means to the whole system. Each of the
synchronous belt sedions is considered as a bladk box
which generates and consumes data and events. The
interagion of the three belt sedions is monitored,
verified and validated by the aynchronous part of the
simulation environment.

Faults will be injeded by EaSySim Il covering
generation of illegal messages and loss of messages.
Also, variation of phases and of clock periods of the
synchronous parts hall be initiated by the aynchronous
part of the system.

By reaording of the complete data flow in terms of MSC
files the verificaion capabiliti es of ObjedGEODE can
even be gplied to the whole system taking the belt
section programs as white boxes.

Due to representative modelli ng of time in the EaSySim
Il environment and the capability for model exeaution
the gplicaion cannot not only be verified, but also be
validated.

EaSySim Il
ObjectGEODE / SDL / MSC EaSySim Il SCADE
Interface Lustre
Asynchronous World
- Asynchronous Belt Section [L Synchronous World
Time Manage Time World »
| Time | Belt Section 2 Synchronous World
Feeder) (MCP Data ™
(|) (I) ~(Belt Section 3 Synchronous World

Fig. 6-1: Asynchronous - Synchronous Partitioning

7. CONCLUSIONS

The intention of this paper istwofold: (1) to explain why
separate modelling and verificaion reeds to be
performed on the asynchronous and synchronous part of
a system and its envrionment, (2) to demonstrate the
feasibility of simple integration of asynchronous with
synchronous tools.

It has been outlined that distribution (separation) and
independent operation of synchronous gstem parts
bring in an asynchronous behaviour. This requires
asynchronous capabilities for simulation, verificaion
and validation (including fault injedion) which cannot
be provided by synchronous tool environments.
Consequently, this leads to integration of existing
methods and tods to efficiently reuse of what is

avail able on the market. This approach not only yields a
cost-effective, but also a time-efficient solution.

Integration was sgnificantly eased by the open
architedure of EaSySim |1, ObjedGEODE and SCADE,
EaSySim Il standardisation of data exchange
procedures, its global time management and
communication support library.

Althoughan extension of SDL is needed, the interfaceto
the ObjedGEODE verificaion tod could completely be
kept by providing some glueing functions in addition
thanks to the standardisation and openness of SDL and
MSC languages.

Also, the SCADE open interface eaed significantly
integration: just the top level operators needed to be
cdled from the generic processas provided by EaSySim
1.

The aurrent status alows for a first step of verificaion
and validation of the example gplicaion which shall be
done during the next months. It is expeded that the
results will encourage to refine the system so that future
versions of the red system can be modelled, analysed,
verified and vaidated in such an integrated
environment.

8. REFERENCES

[1] CRISYS (Criticd Instrumentation and Control
System) ESPRIT project EP 25514
Tean members: Schneider Eledronics (prime),
Aerospatidle, BSSE, CEA, EIf, GMD, NP
Tedhnology, Siemens Eledrocom, University of
Grenoble (UJF), Verilog, Verimag

[2] R.Gerlich, V.Debus, Ch.Schaffer, Y.Tanurhan:
EaSyVaDe: Early Vaidation of System Design
by Behavioura Simulation, ESTEC 3rd
Workshop on "Simulators for European Space

Programmes" Noordwijk, November 15-17, 1994

[3] OMBSIM (On-Board Mangement System
Behavioural Simulation), ESTEC contrad no.
1043093/NL/FM(SC), Final Report Nov. 1995
Noordwijk, The Netherlands

[4] E.Conquet, G. Touer: Design and validate
embedded SW with the formal language SDL,
Procealings DASIA'98 - Data Systems in
Aerospace, May 25-28, 1998, Athens, Greece

[5] J-L.Terrallon: The benefits of formal
description techniques for space on-board
systems and their integration in an on-board
architecture,

Procealings DASIA'97 - Data Systems in
Aerospace, May 26-29, 1997, Sevilla, Spain

[6] ObjedGEODE SDL-Tod, Verilog, 150 rue
Vauquelin, F-31081 Toulouse Cedex, France

[7a] D. Harel: Statecharts: "A visual formalism for
complex systems’, Sci. of Comput. Prog., vol 8,
pp. 231-274, 1987

[7b] i-LOGIX Inc., 3 Riverside Drive, Anover
research Park, Andover, MA 01810, USA

[8] Integrated SystemsInc. (ISl), Healquartesrs, 201

Moffet Park Drive, Sunneyvale, CA 94089, USA

[9] SCADE todl, Verilog, 150 rue Vauquelin, F-
31081 Toulouse Cedex, France

[10] SES/workbench, Scientific and Engineeing
Software Inc., Building A, 4301 Westbank
Drive, Austin, Texas, 78746-6564, USA

[11] OPNET, MIL3 Inc., 3400 International Drive,
NW-Washington, DC 20008, USA

[12] BONES, Alta Group of Cadence Design Systems
Inc., Corporate HQ, 555 River Oaks Parkway,
San Jose, CA 95134, USA

[13] EaSySim Il environment, Rainer Gerlich BSSE,
Auf dem Ruhbuehl 181, D-88090 Immenstaad,
Germany

[148) Y.Tanurhan, S.Schmerler, K.D. Mueller-Glaser:
"Integrated Design Process with
MESA/MERLAN", IEEE I nternational
Conference on Control Applications 96

[140 S.Schmerler: "Coupling Statemate and MatrixX

by Code Integration”, 4.Dt. Statemate
Anwenderforum 96

[15] N.Halbwadhs: Lustre Languege Reference
Manual, V5, September 1997

[16) The Common Objed Request Broker

Architedure and Spedficaion, Rev. 2.0, Objed
Mangement Group (OMG), July 1995 updated
in July 1996

[17] ITU, Recommendation Z.100, Spedficaion and
Description Language, SDL, 1989 Geneva. Blue
Book, Vol. X.1, and appendices A, B, C, D, F1,
F2, F3

The work described above on integration of
asynchronous and synchronous methods and toodls has
been exeautted in the wurse of the ESPRIT projed
CRISYS (EP 25514. The paper expresss the idess and
conclusions of the author, not necessarily the opinion of
the team.

Acknowledgement: The aithor wants to thank Mr.
Axel Poigne axd Mr. Reinhard Budde from GMD
(Bonn) and Mr. Paul Caspi from Verimag (Grenoble)
for their valuable discussons about the synchronous
approach which helped to clarify the separation into
asynchronous and synchronous gystem parts of the
application. He furhter thanks Mr. Christian Hotte from
Verilog for his support for the SCADE tool.

