
Simulation of a System's Behaviour and Its Physical Environment:
How to Master Tool Integration

Rainer Gerlich
BSSE System and Software Engineering

Auf dem Ruhbuehl 181
D-88090 Immenstaad, Germany

Phone +49/7545/91.12.58 Mobile: +49/171/80.20.659 Fax +49/7545/91.12.40
e-mail: gerlich@t-online.dewww: http://home.t-online.de/home/gerlich/

Abstract: This paper describes why and how two
different types of simulation need to be integrated:
event-driven simulation (applied to the system's
behaviour and asynchronous environmental parts) on
one side and time-discrete or multi -rate simulation
(applied to the system's control part and synchronous
environmental parts) on the other side.

This work has been carried out in the course of the
ESPRIT project CRISYS [1] which deals with critical
distributed automation systems. Simulation is used to
verify and validate such systems already in an early
development phase.

The example application includes asynchronous parts
related to overall , high-level system control and
supervision, and synchronous parts at the lower levels.
Based on this example the benefits of an integrated
simulation environment are discussed together with
organisational measures which ease tool integration.

Keywords: behavioural simulation, multi -rate
simulation, tool integration, event-driven simulation,
continous simulation, time-discrete simulation,
synchronous languages, Lustre, SDL, CRISYS

1. INTRODUCTION

Verification and validation of a system in an early
development phase [2,3,4,5] requires representative
system simulation and an adequate tool envrionment.
Available simulation tools mainly focus on one of the
following simulation types only: behavioural/discrete
event simulation [6,7], continuous/time-discrete/multi -
rate simulation (CDM)1 [8,9], performance simulation
[10,11,12].

In the past simulation was performed separately for each
type. Possibly, simulation was restricted to such
applications or parts of it for which appropriate tools
existed. Hence, simulation could not be applied to verify
and validate a complete system.

When we look on automotive applications in (most of)
the current cars no sophisticated high level system
control exists which needs to be simulated. Coordination
of breaks, gear and engine was/is only controlled by the
driver. This will change for the near future.

1 In the following the abbreviation "CDM" is used for
continuous, time-discrete and multi-rate simulation.

Also, in the space area simulation was only applied to
parts of subsystems, e.g. to attitude and orbit control,
guidance and navigation control, thermal and power
supply systems based on CDM simulation.

With the increasing number of low level components
(LLC) and the demand for a higher degree of
automation the need for a "high level" control system
arises which coordinates the lower levels. To verify and
validate such a system correctly a broader simulation
environment is needed which covers all three simulation
types: behavioural/event-driven, CDM and performance.

Such a simulation environment allows to develop and
test a new version of a hardware-software combined
system without the need to manufacture the hardware
before the design is settled. This way the hardware and
software may be changed until an optimum design is
achieved. This is of importance not only for space area,
but e.g. also in the area of automation.

Integration of event-driven and performance simulation
tools [2,3,13] and of event-driven and CDM tools [14]
have already been performed in the past. Now, in the
course of the CRISYS project an integration of event-
driven, performance and CDM simulation has been
done.

This paper explains the theoretical background and the
techniques which were applied to tool integration, the
example application and the capabiliti es of the tools and
the integrated environment.

In chapter 2 the example application is introduced and
the relevant problems w.r.t. simulation are identified.
Chapter 3 analyses the integration, verification and
validation issues from a principal point of view. The
tool environment is described by chapter 4. Chapter 5
discusses organisational issues of tool integration and
chapter 6 describes the system's partitioning in the
integrated tool envrionment. Finally, chapter 7
concludes on the performed work.

2. THE APPLICATION

In the CRISYS project we derived from a complex
application a representative, simpli fied distributed
application which shall be subject of our investigations:
it is a system which transports, sorts and distributes
parts. The system consists of three belt sections and a
switch for sorting. Fig. 2-1 shows in the upper part the
principal elements: the belt sections, the switch, the part
feeder and the overall monitoring and control processor

(MCP). The components of the belt sections are shown
by the lower part of Fig. 2-1. The environment is added
to each of the components: the feeder on top level, the
motor drives on belt level.

For our further considerations it is essential to mention
that this application is distributed which means the
system includes several independent clocks. Of course,
we could try to synchronise all clocks, but the question
is if this is always possible under normal and anomalous
conditions. As we will see later, continuous
synchronisation is not possible in case of our application
due to environmental or operational impacts.

Motor
Drive Scanner

Bar Code
Scanner
OCRLight

Barrier 1
Light

Barrier N

LLC's of Belt Section 1

Motor
Drive

Light
Barrier 1

Light
Barrier N

LLC's of Belt Section 2/3

Feeder

MCP

Switch
Belt Section 3

Belt Section 2
Belt Section 1

Switch

Fig. 2-1: The Part Sorting and Distribution System

The parts are put on the initial belt section 1 and
identified by an OCR system and a bar code reader.
Their positions relative to the environment are
monitored by light barriers. The light barriers are
intelli gent and do not only provide a dark/light signal,
but perform plausibilit y checks on a part's dimensions
and hence inlcude a control part. Also, the scanners, the
switch and the motor drive have own controllers.

Depending on the information received from the OCR
system and/or the bar code reader the switch directs a
part to final belt section 2 or 3. The drive of each belt is
independently controlled by a speedometer. The
operator may stop each belt or all belts by an emergency
button. Such a stop and the following restart disturbs
synchronisation of the three belt sections: the different
mechanical and physical properties of each belt section
require independent control of speed during start and
stop.

The monitoring and control processor (MCP) supervises
the low level components (LLC) (internals of the three
belt sections and the switch) and responds to their
service requests. It has typically an asynchronous
behaviour: the sequence of the parts is not equidistant,
the belt may even be empty for some time, hence
requests concerning such parts are not predictable. Also,
exceptions occur randomly from the LLC's e.g. in case
of a jam or removal of parts from the belt. The event

rate of the MCP is (mainly) related to the flow of the
parts on the belt.

The LLC's are of synchronous nature: they continuously
sample sensor values (light barriers, tachometer) and
derive actions which are either input to the MCP, the
belt drive, the switch or a following LLC. Their
sampling frequency depends on the speed of belt
movement and the required resolution of a part's
position. If the (average) length of a part is 300mm and
the required resolution is 3 mm, the sampling frequency
of the LLC's is 2 kHz.

The physical environment requires CDM simulation in
case of the motor drive and event-driven simulation for
the feeder. It is assumed that the drive's speed is
correlated with the local clock of each belt section.

Following exceptions concerning transportation and
part's identification may occur: two parts are not clearly
separated and hence identified as one part, a part may
get lost, the position of the parts on the belt changes
relative to the other parts during transportation, the
distance between two consecutive parts is too small to
change the switch position, the belts run at different
speed. A belt may even be stopped while the other ones
are still moving.

The clocks of each section may differ in frequency and
may have a non-zero phase shift.

There are similarities between this application and a
space application which also includes a mission and
monitoring system at high level with asynchronous
behaviour like MCP and sensors and actuators of
AOCS/GNC and TCS which are of synchronous nature
and are running at different and independent clock
frequencies. Hence, the integration issues as discussed
for the example application are also of relevance for a
distributed space application.

3. INTEGRATION ISSUES

When discussing about integration of simulation
environments of different types, first it should be
clarified if such an integration is meaningful or not.
After discussion of the characteristics of event-
driven/behavioural and CDM simulation, this chapter
will discuss about such integration issues.

3.1 CDM and Synchronous Simulation

Typically, CDM simulation is applied to problems
which necessarily require intermediate steps in time to
move from instant t1 to t2: if t1 and t2 are arbitrarily
selected it is not possible in general to derive the system
state at t2 directly from the state at t1. Usually, the
system function is non-linear (e.g. differential equations
need to be solved) and requires intrapolation to get the
state at t2 at suff icient accuracy. Such systems need
time-discrete simulation.

Moreover, the numerical methods usually require
equidistant steps in time, which leads to periodic

sampling of sensor values, calculation of system states
and actuator commands. Some parts of the system may
execute at larger periods (which are fixed over time)
being multiples of the basic (smallest) period.

If the period changes from to time during simulation and
operation, this type is called multi -rate simulation. A
singular case is an infinite period, e.g. when the operator
stops a belt drive. In a periodic or multi -rate approach
all system steps are executed synchronously to a clock.

Lustre [15] supports implementation and verification of
synchronous systems. System properties may formally
be proved or checked during simulation.

In the synchronous approach inputs are always read at
the beginning of a period and execution is/must be
completed until the end of the period. In fact, an
absolute notion of time is not needed: everything
happens within a clock period, the system is completely
driven by the clock, all elements are synchronously
progressing with the clock, even if the clock's period
may vary over time.

A belt section (as part of the environment) of our
application is a typical example of a synchronous
system: the belt, the parts on the belt, the signals from
light barriers and scanners are synchronously following
the clock of the drive.

Typically, the controllers of the drive, the scanner and
the light barriers are also driven by a belt clock: hence, a
belt's motor drive and its other internals can be
completely modeled by a CDM simulation environment.

3.2 Event-Driven Simulation

In case of event-driven simulation two following events
may be separated by an arbitrary time interval, no
intrapolation is needed. The next system state can be
directly derived from the previous state or is possibly
independent of it. E.g. at t1 a timeout may be set which
suddenly changes the system state if it occurs at t2. No
intermediate instants in time need to be entered.

From a simulation point of view the advantage of event-
driven simulation is that it can rapidly progress in time
as required by the occurence of events, not being
constrained by accuray problems.

In our application the mean time between two events
triggered by a sensor along the belt is ∆T=L/v, where L
is the average distance between the beginning of two
consecutive parts on the belt and v is the speed of the
belt. For L=300mm and v=3m/s we get ∆T=100 ms.

The period of a sensor needs to be at most half
(according to Shannon's theorem) of ∆t'=∆s/v where ∆s
=3mm is the required resolution. Hence we get ∆t=1/2 •
∆t'=500 µs which is smaller than ∆T by a factor of 200.

3.3 Why to Keep Things in Their Specific
Environment

We now analyse whether it is possible to cover all parts
of a distributed system by one simulation type and tool.
As the synchronous / periodic approach is the best
approach from a reliabilit y and safety point of view we
start to analyse whether or not to take the synchronous
approach for the whole distributed system.

3.3.1 Performance Issues

The large difference in rates of R=1/(500µs
/100ms)=200 looks like a good reason to separate event-
driven from CDM simulation because then we do not
need to run the behavioural part at 2 kHz. However, as
we will see this is not completely true in any case and
we need further arguments to keep things separate.

What is ignored in above comparison is that a number of
sensors may generate events which need to be processed
by the behavioural part of a system. Now, if we have N
sensors per belt, each sensor may generate an event.
This decreases the mean time between (asynchronous)
events down to ∆τ=∆T/N. For large N ∆τ may become
smaller than ∆t, and hence it may be better to poll the
sensors for events at the rate of the synchronous clock.
The break even point is N=2 L/∆s which is 200 in our
case.

This result may be interpreted as: if the mean density of
sensors per part is higher than the required resolution of
position, it is better to poll the sensors in order to limit
the overhead by processing of asynchronous events.

Above limitation of the reaction time of asynchronous
events does not lead to degradation of system
performance, because the period ∆τ represents the
accuracy limit as given by the resolution ∆s. Hence, a
shorter reaction time ∆τ<∆t is really not required.
Consequently, in such a case polli ng of asynchronous
events can coexist with cyclic execution.

So it really depends on the actual system configuration
whether separate processing of asynchronous and
synchronous events brings an advantage of performance
or not.

However, in our case asynchronous processing of events
will be of advantage because we have only a few LLC's
in the whole system.

3.3.2 Modelling Issues

We have seen that each belt section can be considered as
a closed system concerning the low-level components
and the environment. But each belt section may have its
own characteristics w.r.t. to the other ones: the local belt
clocks may differ in phase and period. If a belt is
stopped while the others are still running the correlation
of events is even lost.

Such deviations are a consequence of a distributed
system where each system part is more or less
independent of the other ones by the environmental or
operational constraints even if the goal of system design
is to synchronise all parts as far as possible.

From a simulation point of view a master clock may be
introduced which drives the local clocks of the belts.
This way different phases between the local clocks can
be generated.

The synchronous approach does not know progress of
time, but only progress in terms of clock periods. This is
not a problem as far as we model a "closed" system for
which everything progresses according to the clock:
inputs are read at the beginning of a period, execution is
terminated before the end of the clock cycle. Even
timeouts could be expressed by clock cycles.

However, we get a problem if the clock periods are
different (e.g. if a belt is stopped) or vary (slowly) over
time. Then the local time scale may not be refered to for
exchange of information with other (remote) parts of the
system.

For modelli ng this means that we need a central time
manager which drives the synchronous parts (with
possibly varying clock periods) and a monitor which is
capable to execute according to the global, universal
time scale and is independent of any of the local clocks.
Obviously, the time manager and the monitor are of
asynchronous nature and cannot be modeled by a
synchronous environment.

Consequently, a pure synchronous environment cannot
cover all modelli ng issues and we need to integrate the
asynchronous and the synchronous world.

In case of our example application the time manager, the
MCP and the feeder are modeled in the asynchronous
modelli ng environment, the LLC's and the motor drive
in the synchronous environment.

The task of the time manager is to synchronise both
worlds. It processes asynchronous time events and
clocks. In both environments time progresses by timer
requests: in case of the asynchronous modelli ng part the
time manger is informed about a future event and the
time of its occurence (e.g. a timeout), for the
synchronous part the scheduling request for the next
clock cycle is sent to the time manager.

This way the asynchronous and the synchronous parts
can coherently progress in time2.

3.3.3 Verification and Validation Issues

Due to its deterministic nature verification and
validation (V&V) of a synchronous system (or parts of

2 We do not want ot discuss here the problems related to
interactive debugging and its impact on synchronisation
of both environments.

it) is less critical than of the asynchronous part: in a
synchronous system no potential conflicts due to
concurrency exist. Therefore the synchronous approach
should be applied as far as possible.

However, we have seen that a distributed system and its
environment canot completely be implemented in a
synchronous approach because of the ever-occuring
asynchronous events (e.g. exceptions) and potential loss
of synchronisation.

In case of our application V&V of two synchronous
system parts which run at the same period, but encounter
a shift of the clocks may be more diff icult, but still
possible in a synchronous simulation environment.

If the clock periods are different and vary over time the
specific assumptions on synchronicity cannot be
applied: it may happen that for one (or a number of)
period(s) no input is received while for another period
two (or more) inputs are acquired. This violates the
assumptions about synchronicity and invalidates the
V&V results obtained for a pure synchronous system.

Hence, for representative system simulation we need (a)
to cover synchronous and asynchronous properties and
(b) to provide appropriate verification and validation
means.

A synchronous simulation and V&V environment takes
advantage of the deterministic execution and data
exchange. It will not support V&V of asynchronous
behaviour. Vice versa, an asynchronous environment
cannot take into account simpli fication due to
synchronous execution. Consequently, an asynchronous
and a synchronous environment need to be integrated for
representative system verfication and valdiation by
simulation, so that the advantages of each environment
are fully available for V&V of each type.

4. THE TOOL ENVIRONMENT

In the CRISYS project the ObjectGEODE tool [6] is
applied to the asynchronous system part and the SCADE
tool [9] to the synchronous part of the distributed
system. Both tools are supplied by Verilog.

4.1 ObjectGEODE, EaSySim II and SCADE

ObjectGEODE is based on SDL, which is a broadly
applied formal method (and language) in the area of
telecommunication. SCADE is based on Lustre [15] and
is an outcome of projects in the area of nuclear power
plants and aircraft manufacturing.

In SDL a system is hierarchically decomposed into
blocks (nodes of the system tree) which again include
processes (leaves of the system tree). Processes are
excutable units. Their behaviour is defined by Finite
State Machines (FSM).

A process may have a number of states. Upon reception
of an input the received data and the status data are
interpreted and processed during a "state transition". At

the end of a state transition the process either remains in
the same state or enters another state where it again
waits for an input.

EaSySim II extends SDL/ObjectGEODE towards
performance simulation. Therefore it provides a global
time manager (which is also accessable from SDL-
external processes) into which the SCADE scheduler
can easily be integrated.

The EaSySim II performance extension to
ObjectGEODE allows to assign time to data
transmission and execution of state transitions during
simulation. It also provides means to track the data flow
for such data channels which are not directly supported
by SDL/ObjectGEODE like TCP/IP, ISDN/WAN or
RS232. The related instrumentation is automatically
removed by an EaSySim II tool when code is generated
for the target system.

In SCADE and Lustre a system is also hierarchically
decomposed into "operators" which may include other
operators. So an operator is the generic unit of
modelling. At the lowest modelling level basic entitities
like logical gates, comparators, mathematical operators
etc. are provided which allow to graphically synthesize
an operator out of other existing atomic or non-atomic
components. For data exchange between operators
specific routines need to be added by the user for which
templates are generated by SCADE.

ObjectGEODE and SCADE allow for simulation,
verification (according to SDL and Lustre methodology)
and code generation.

4.2 The Integration Approach

Integration of the asynchronous and the synchronous
part is based on EaSySim II capabilities which are
needed to communicate with SCADE. EaSySim II
provides the global time management and the functions
needed for routing of data between SCADE and
EaSySim II / ObjectGEODE.

From the asynchronous SDL part the synchronous
SCADE part is just considered as another process and
the same communication means are applied as used
internally by EaSySim II.

This SCADE process consists of a shell which organises
the communication with EaSySim II, decodes and
encodes the messages and schedules the synchronous
program(s) (top level operators) as generated by
SCADE.

5. ORGANISATIONAL ISSUES

Having identified the need for integration of
asynchronous and synchronous simulation environments
the next question is how easy is it to merge them. This
depends on the openness of the environments (tools),
but also on the architecture and standards of the
software implementation.

5.1 Time Management

Execution in the synchronous and asynchronous part
must be synchronised due to the interaction by data flow
and events. When an event is raised at a certain instant
in one part it must be received at (nearly3) the same
instant in the other part. Consequently, synchronisation
points must be defined between the two worlds and the
time scales must be harmonised.

Therefore a time manager is introduced which manages
events from both worlds: it inserts time requests in one
single queue and notifies the clients at the desired
instant.

The synchronous part will ask for clock events, while
the asynchronous part will request for any events related
to decisions according to the actual system state and
consumption of resources.

It is not needed that the synchronous part will ask for
every clock event: it may be sufficient that only each n.
clock period a scheduling request is issued. This will
allow to proceed at a higher rate in the synchronous part
if required for accuracy reasons without exposing the
time manger to this high rate.

Then the n cycles are executed sequentially by a non-
synchronised loop and after completion of the loop the
synchronous part waits for the next synchronisation
point (assuming that the execution time in the real
system does not exceed the estimated time of n loop
executions during simulation). How large n can be
depends on the accuracy of interaction: during a
duration of n*<clock period> an exchange of
information between the asynchronous and the
synchronous part is not possible. Hence, n is
determinned by <the smallest time interval during which
no interaction is allowed> / <clock period>.

In the synchronous part data from synchronous elements
are feed in at the beginning of a cycle. Data to be
exchanged with other elements which are procuded
during a cycle are stored when they produced and
processed by the next cycle. This way no notion of time
is needed in the synchronous part.

For exchange of data with the asynchronous system part
the same mechanism is applied: data coming from the
asynchronous part will be feeded into a synchronous
element at the beginning of its next cycle. Vice versa,
data to be transmitted from the synchronous part to the
asynchronous part will be transmitted at the end of each
cycle or beginning of next cycle respectively.

The approach for synchronous data communication
implies that two synchronous SCADE operators O1 and
O2 running at different clock periods T and m*T, but
completely synchronous to one clock, can only exchange
data with a period of m*T. This also applies to the
communication with the asynchronous part. It is a matter

3 "nearly" addresses the required accuracy.

of system design whether such a potential large delay is
acceptable or not.

5.2 Interfaces

For integration of both simulation environments
(EaSySim II / ObjectGEODE and SCADE) introduction
of generic input and output layers is very important.
This has to be considered by the overall system design.
Experience with generic architectures shows that such
generic layers are not only of advantage for integration
of simulation environments. They bring in a significant
increase of flexibility to react on architectural changes
or extensions.

The approach as supported by EaSySim II is described
below. It addresses mainly the communication within
the asynchronous part (ObjectGEODE, EaSySim II) and
between the asynchronous and the synchronous part as a
matter of inter-process communication (different address
spaces). The communication within the synchronous
part occurs within one process only (intra-process
comunication) and can easily be managed by moving
data between data structures.

5.2.1 Data Exchange

A generic approach requires a standardisation of the
data exchange format. This standard format is used for
all communication channels. Its main components are:
an identifier ("command") describing the purpose of the
message, its source and destination, and the message
type. Two principal types are used: a short and an
extended type. The extended type allows to add arbitrary
information by a message trailer (up to a certain
maximum length4) like ASCII text or binary records as
indicated by the message type field.

Data transmission and reception is based on a generic
input / output approach which provides a common entry
point for data output and another common entry point
for data input (Fig. 5-1).

The output messages are routed through logical
channels. Logical channels define a set of redundant
and/or non-redundant (or a combination of both)
physical channels like OBDH bus, Ethernet, ISDN
(Integrated Services Digital Network), RS232. Specific
routines of the EaSySim II library are forwarding the
messages through the right physical channel.

Vice versa, on reception of such messages the system
architecture allows to feed in data coming from different
physical channels to one single entry point which is the
starting point of data processing.

4 Message trailers which execeed the maximum length
need to be partitioned

Send

Receive

Physical
Channels

Physical
Channels

Logical

Channel
Output

Logical

Channel
Input

Data
Processing

Communication Media

Fig. 5-1: I/O Interface Standardisation

This mechanism makes it easy to integrate the two
different simulation environments. Data can be
distributed arbitrarily in a system, and the
communication channels may be changed (even at run-
time) without effecting other parts of the application.

This communication approach is similar to CORBA
[16]. But it does not need general encoding or decoding
of data like by IDL (Interface Description Language),
because the transmission of data is transparent to the
distributing functions: only the sender and the receiver
need to know about the used format of the message
trailer.

The whole communication is uniquely based on this
standard format. In principle only one structured
(subprogram) parameter is alwasy exchanged inside and
between the processes instead of a number of
subprogram parameters5.

5.2.2 Traceability Needs

The EaSySim II approach described above extends the
basic mechanisms of SDL and ObjectGEODE.
However, such extensions are not considered by the
V&V means of SDL which only know about the normal
SDL communication channels.

5 This approach has been influenced by the SDL
communication mechanism between processes based on
messages.

To be able to track the data flow completely, so that the
V&V tools of ObjectGEODE can also consider the SDL
non-standard communication channels, functions were
added which generate an output of the complete data
flow which can be processed for verification and
validation.

This extension is possible because (1) the
ObjectGEODE verifier uses the standardised textual
MSC (Message Sequence Charts) syntax and (2)
EaSySim II applies the standardised I/O approach of
Fig. 5-1.

It is even possible (and intended) to track the data flow
of both parts, the asynchronous and the synchronous
one, by a global MSC

6. MODELLING RESULTS

All parts of the example application were assigned to an
asynchronous and synchronous part in the following
manner (Fig. 6-1):

- asynchronous part
-- MCP (system)

-- feeder (environment)

- synchronous part
-- belt control (system)

including LLC's and their controllers
3 instances in total

-- belt motor drive (environment)
3 instances in total

The asynchronous parts are modelled within the
EaSySim II / ObjectGEODE environment.

A belt section (control and environmental part) is
represented by a SCADE operator and decomposed into
a control and environmental operator and so on.

Each of the three synchronous sets consisting of belt
control, belt motor drive and sensors are represented as
an independent synchronous program. Each belt section
program is executed according to an own timeline
defining the period and the phase w.r.t. the other belt
programs. Each timeline is managed by the time
manager of EaSySim II.

The current system model is already executable in the
simulation environment, but its verification and
validation is not started yet. It is planned to apply the
SCADE/Lustre verification means to the belt sections
separately and then to apply the SDL verification and
validation means to the whole system. Each of the
synchronous belt sections is considered as a black box
which generates and consumes data and events. The
interaction of the three belt sections is monitored,
verified and validated by the asynchronous part of the
simulation environment.

Faults will be injected by EaSySim II covering
generation of ill egal messages and loss of messages.
Also, variation of phases and of clock periods of the
synchronous parts shall be initiated by the asynchronous
part of the system.

By recording of the complete data flow in terms of MSC
files the verification capabiliti es of ObjectGEODE can
even be applied to the whole system taking the belt
section programs as white boxes.

Due to representative modelli ng of time in the EaSySim
II environment and the capabilit y for model execution
the application cannot not only be verified, but also be
validated.

SCADE
Lustre

Belt Section 1

Belt Section 2

Belt Section 3

EaSySim II
Interface

EaSySim II
ObjectGEODE / SDL / MSC

MCPFeeder

Time Manager

Data
Time

Time

Asynchronous World

Synchronous World

Synchronous World

Synchronous World

Asynchronous
World

Fig. 6-1: Asynchronous - Synchronous Partitioning

7. CONCLUSIONS

The intention of this paper is twofold: (1) to explain why
separate modelli ng and verification needs to be
performed on the asynchronous and synchronous part of
a system and its envrionment, (2) to demonstrate the
feasibilit y of simple integration of asynchronous with
synchronous tools.

It has been outlined that distribution (separation) and
independent operation of synchronous system parts
bring in an asynchronous behaviour. This requires
asynchronous capabiliti es for simulation, verification
and validation (including fault injection) which cannot
be provided by synchronous tool environments.
Consequently, this leads to integration of existing
methods and tools to eff iciently reuse of what is

available on the market. This approach not only yields a
cost-effective, but also a time-efficient solution.

Integration was significantly eased by the open
architecture of EaSySim II , ObjectGEODE and SCADE,
EaSySim II standardisation of data exchange
procedures, its global time management and
communication support library.

Although an extension of SDL is needed, the interface to
the ObjectGEODE verification tool could completely be
kept by providing some glueing functions in addition
thanks to the standardisation and openness of SDL and
MSC languages.

Also, the SCADE open interface eased significantly
integration: just the top level operators needed to be
called from the generic process as provided by EaSySim
II.

The current status allows for a first step of verification
and validation of the example application which shall be
done during the next months. It is expected that the
results will encourage to refine the system so that future
versions of the real system can be modelled, analysed,
verified and validated in such an integrated
environment.

8. REFERENCES

[1] CRISYS (Critical Instrumentation and Control
System) ESPRIT project EP 25514
Team members: Schneider Electronics (prime),
Aerospatiale, BSSE, CEA, Elf, GMD, NP
Technology, Siemens Electrocom, University of
Grenoble (UJF), Verilog, Verimag

[2] R.Gerlich, V.Debus, Ch.Schaffer, Y.Tanurhan:
EaSyVaDe: Early Validation of System Design
by Behavioural Simulation, ESTEC 3rd
Workshop on "Simulators for European Space
Programmes" Noordwijk, November 15-17, 1994

[3] OMBSIM (On-Board Mangement System
Behavioural Simulation), ESTEC contract no.
10430/93/NL/FM(SC), Final Report Nov. 1995,
Noordwijk, The Netherlands

[4] E.Conquet, G. Touer: Design and validate
embedded SW with the formal language SDL,
Proceedings DASIA'98 - Data Systems in
Aerospace, May 25-28, 1998, Athens, Greece

[5] J.-L.Terraill on: The benefits of formal
description techniques for space on-board
systems and their integration in an on-board
architecture,
Proceedings DASIA'97 - Data Systems in
Aerospace, May 26-29, 1997, Sevilla, Spain

[6] ObjectGEODE SDL-Tool, Verilog, 150 rue
Vauquelin, F-31081 Toulouse Cedex, France

[7a] D. Harel: Statecharts: "A visual formalism for
complex systems", Sci. of Comput. Prog., vol 8,
pp. 231-274, 1987

[7b] i-LOGIX Inc., 3 Riverside Drive, Anover
research Park, Andover, MA 01810, USA

[8] Integrated Systems Inc. (ISI), Headquartesrs, 201
Moffet Park Drive, Sunneyvale, CA 94089, USA

[9] SCADE tool, Verilog, 150 rue Vauquelin, F-
31081 Toulouse Cedex, France

[10] SES/workbench, Scientific and Engineering
Software Inc., Building A, 4301 Westbank
Drive, Austin, Texas, 78746-6564, USA

[11] OPNET, MIL3 Inc., 3400 International Drive,
NW-Washington, DC 20008, USA

[12] BONeS, Alta Group of Cadence Design Systems
Inc., Corporate HQ, 555 River Oaks Parkway,
San Jose, CA 95134, USA

[13] EaSySim II environment, Rainer Gerlich BSSE,
Auf dem Ruhbuehl 181, D-88090 Immenstaad,
Germany

[14a] Y.Tanurhan, S.Schmerler, K.D. Mueller-Glaser:
"Integrated Design Process with
MESA/MERLAN", IEEE International
Conference on Control Applications 96

[14b] S.Schmerler: "Coupling Statemate and MatrixX
by Code Integration", 4.Dt. Statemate
Anwenderforum 96

[15] N.Halbwachs: Lustre Language Reference
Manual, V5, September 1997

[16] The Common Object Request Broker
Architecture and Specification, Rev. 2.0, Object
Mangement Group (OMG), July 1995, updated
in July 1996

[17] ITU, Recommendation Z.100, Specification and
Description Language, SDL, 1989, Geneva. Blue
Book, Vol. X.1, and appendices A, B, C, D, F1,
F2, F3

The work described above on integration of
asynchronous and synchronous methods and tools has
been executed in the course of the ESPRIT project
CRISYS (EP 25514). The paper expresses the ideas and
conclusions of the author, not necessarily the opinion of
the team.

Acknowledgement: The author wants to thank Mr.
Axel Poigne and Mr. Reinhard Budde from GMD
(Bonn) and Mr. Paul Caspi from Verimag (Grenoble)
for their valuable discussions about the synchronous
approach which helped to clarify the separation into
asynchronous and synchronous system parts of the
application. He furhter thanks Mr. Christian Hotte from
Verilog for his support for the SCADE tool.

