
- 1 -

(C) All Rights Reserved Rainer Gerlich 1995

Use of an Extended SDL Environment for Specification and Design of On-Board
Operations

"Systems Engineering Workshop"

ESTEC, Noordwijk, The Netherlands

November 28 - 30, 1995

Rainer Gerlich

Dornier Satellitensysteme GmbH

Thomas Stingl, Yankin Tanurhan

FZI
Forschungszentrum Informatik

RST16 ESM
Haid-und-Neu-Strasse 10-14

D-88039 Friedrichshafen D-76131 Karlsruhe
Phone: +49/7545/8-2124 Phone: +49/721/9654-152

Fax +49/7545/8-5626
e-mail: gerlich@space-elec.dofn.de

Fax: +49/721/9654-159
e-mail: stingl@fzi.de

Christoph Schaffer Frederic Teston, Giovanni Martinelli
Institute for System Sciences (CRC) WSC

Johannes-Kepler-University ESTEC
Altenbergstrasse 69 P.O.Box 299
A-4040 Linz, Austria

Phone: +43/732/2468-9200
Fax: +43/732/2468-893

NL-2200 AG Noordwijk, The Netherlands
Phone: +31/1719/8-5088

Fax: +31/1719/8-4295

- 2 -

(C) All Rights Reserved Rainer Gerlich 1995

Use of an Extended SDL Environment for Specification and Design of On-Board
Operations

Rainer Gerlich Thomas Stingl, Y. Tanurhan
RST 16 FZI

Dornier Satellitensysteme GmbH Forschungszentrum Informatik (FZI)
Haid-und-Neu-Strasse 10-14

D-88039 Friedrichshafen, Germany D-76131 Karlsruhe
Germany

Phone +49/7545/8-2124
Fax +49/7545/8-5626

e-mail: gerlich@space-elec.dofn.de

Phone +49/721/9654-152
Fax +49/721/9654-159
e-mail: stingl@fzi.de

Christoph Schaffer Frederic Teston, Giovanni Martinelli
Institute for System Sciences (CRC) ESTEC, WSC

Johannes-Kepler-University
Altenbergstrasse 69 P.O.Box 299

A-4040 Linz, Austria
Phone: +43/732/2468-9200

Fax: +43/732/2468-893

NL-2200 AG Noordwijk, The Netherlands
Phone: +31/1719/8-5088

Fax: +31/1719/8-4295

Abstract: At the beginning of system development system engineering has to ensure that the goals given by the
customer will be met at the end of development. All system aspects have to be considered in a coherent manner.
Properties and interfaces can be expressed in a manner human beings can understand in case of e.g. mechanical
structures or electrical circuits. However, system operations do not have a physical shape. Hence it is difficult to
understand what a system will really do before components are integrated and a system is in operation.

Therefore the goal of the OMBSIM study [1] was to define an approach (called EaSyVaDe: Early System
Validation of Design) for early validation of system operations, i.e. validation at the beginning of a development
lifecycle. System operations are identified by specification, represented by a design, and provided by hardware
and software. Their services must be available right in time and they must correctly interact over time. Also, they
must ensure that a system is dependable and remains it in case of non-nominal conditions.

A system's feedback is the "shape" which we need to assess whether a system fulfills a user's needs or not. Such a
feedback must be provided in an understandable manner by executable hardware and software components in
order to be able to prove a system's correctness and completeness for all such aspects during specification and
design.

In the OMBSIM project it was decided to use SDL for implementation of executable behavioural models during
specification and design. This allows to prove correctness of operations either by execution of operational
scenarios or by automated analysis of state transitions. To cover performance and resource aspects and to
introduce a system's architecture performance models are used in addition. As SDL is a formal language w.r.t.
interfaces and behaviour tools can support the verification process.

The coherent use of SDL for specification and design allows a consistent transition from specification to design
and from design to specification when refining a system's hierarchy. Moreover, a model represents a system
property, not hardware or software. The hardware-software trade-off can be postponed to a later time. System
development can be done more coherently. There is no need for separate lifecycles for hardware and software
right from top level.

This development approach has been applied to an excercise and first results are available now. Mapping of the
methodology onto the tool environment had to be defined. Decisions had to be made how the correct behaviour
can be specified and how the architecture and hardware properties have to be introduced when making the
transition from specification to design. Subcontracting can be eased if it is accepted that such models serve as
contractual specifications and entities instead of informal textual requirements.

- 3 -

(C) All Rights Reserved Rainer Gerlich 1995

Keywords: Specification, design, on-board operations, verification & validation, hardware-software co-design,
simulation, executable specification and design components, formal methods,

1. INTRODUCTION

Via operations a spacecraft provides the capability to a user to define and control the success of a mission. Its
operations are implemented by hardware and software. For correct implementation different aspects like desired
functionality, behaviour under nominal and non-nominal conditions, and consumption of timing and sizing
resources have to be considered.

Implementation of larger systems must be managed by decomposition of a system into smaller components,
which may be subcontracted. The development lifecycle starts with specification of system capabilities from a
user's point of view and continues with design which describes fully the actually provided capabilities.

Currently, the hardware-software trade-off is done rather early causing separate development of hardware and
software with final integration at the end. Specification is given in terms of textual requirements which do not
allow to provide a feed-back on what they represent really. Also, software design concentrates on the functional
aspects, leaving the proof for correct performance up to the final lifecycle phases.

The current development approach bears a reasonable risk not to meet the requirements or to have given wrong
or incomplete requirements due to late validation. In the OMBSIM study [1] it was investigated how the current
development approach can be improved. Main aspects were coherent consideration of functionality, behaviour
and performance, hardware and software, and a coherent transition between specification and design and
traversing through system hierarchy levels.

In the course of the OMBSIM study the methodology EaSyVaDe was defined and the supporting tool
environment EaSySim was implemented. As no tools were available on commercial market which covered
sufficiently functional and performance aspects together with aspects of verification and validation two tools
were coupled. For behavioural and functional aspects the SDL-tool GEODE [2] from Verilog is used extended
by the performance simulation tool SES/workbench [3]. Add-on software had to be developed to complement the
tools by additonal validation capabilities and to provide tool coupling [4]. By a pilot application the consistency
of the methodology and its mapping onto the tool environment were investigated.

The methodology and the tool environment are introduced in chapter 2. In chapter 3 the pilot application is
described and results are presented. Feedback from the pilot application is given in chapter 4. Chapter 5
summarizes the experience.

2. THE EASYVADE APPROACH

The approach deals with the methodology EaSyVaDe and the tool environment EaSySim supporting the
methodology.

2.1 The Methodology EaSyVaDe

EaSyVaDe means "Early Validation of Design", i.e. the methodology aims to give an early proof that the system
under development will meet the user needs later on. It guides an engineer how to do stepwise system validation
during successive specification and design phases.

The cornerstones of EaSyVaDe are:
1. models are executed with scenarios right from the beginning
2. a feedback is provided on system operations by model execution
3. a system is hierarchically decomposed into sub-components
4. object-oriented principles are applied for definition of components
5. all system aspects are addressed:

- functionality and behaviour
- operations (in terms of user interaction)
- interfaces between system components
- performance and resources needs and consumption

- 4 -

(C) All Rights Reserved Rainer Gerlich 1995

- interference of functions over time (phasing)
- dependability

in terms of
-- formalisation of interfaces and behaviour over time and related verification
-- consideration of nominal and non-nominal cases

with powerful non-destructive analysis capabilities by simulation
6. formalisation of sub-contracting

by means of formal models instead of informal textual requirements
7. unique consideration of hardware and software both expressed by executable models
8. automation of code generation and hardware manufacturing from design.

Steps 3 and 4 are compliant with the principal ideas of HOOD [5].

2.2 The Tool Environment EaSySim

The proof for correctness and consistency of specification and design shall be given by execution of models and
operational scenarios, i.e. by means of simulation. Four principal aspects have to be considered:

1. functional and behavioural simulation

2. performance simulation

3. verification and validation

4. derivation of target code and VHDL code from the validated models.

No commerical tool is currently available which covers sufficiently all four aspects. Therefore candidate tools
were evaluated and two tools were finally selected: GEODE/SDL for

- functional and behavioural verification by formal checks,

- validation of behaviour by execution of operational scenarios

and SES/workbench for

- validation of performance by execution of test scenarios and performance models.

The two commercial tools of EaSySim can still be operated in stand-alone mode. In this mode SDL/GEODE
verifies interfaces and behaviour, SES/workbench allows to evaluate architectures and visualisation of system
activities over time. The main starting point is modeling and verification with GEODE. After that complete
system validation is performed in coupled mode.

By simulation nominal and non-nominal cases can be
executed and evaluated. Add-on software extends the
functionality of the tools towards execution of operational
scenarios, model reuse and implementation of tool
coupling. Fig. 2-1 lists the operating modes of EaSySim as
seen from SDL.

The SDL environment is the master environment from
which the target system (target code or VHDL code) are
derived. Specification and design models are expressed by
SDL. Specification models are refined to Design Models by
replacing an SDL block (process) by another SDL block.
This procedure introduces Specification Models for the
next lower level which are included in the block of the
Design Model. The selected mapping process for the tool
environment ensures stability of interfaces when refining
blocks or changing their internals.

The architecture and timing and sizing budgets are
represented by SES/workbench models. It is master of time. The SDL modelling enviroment can be modified or
enhanced in the following manner when SES/workbench is attached:

- an SDL process may be replaced by a corresponding performance model,

Verification Steps

SDL stand-alone

SDL extended

SDL coupled

as defined by engineer

as defined by engineer
+

preparation for coupling

as defined by engineer
+

preparation for coupling
+

activation of coupling

Figure 2-1: EaSySim Operating Modes

- 5 -

(C) All Rights Reserved Rainer Gerlich 1995

- an SDL channel may be replaced by a performance model,

- an SDL task may be replaced by a performance model,

- an SDL timer may be mapped onto a delay in SES/workbench.

A user just has to specify the mapping between SDL entities and performance models. The SDL source code is
prepared automatically for tool coupling by EaSySim. Routing of commands and data from SDL to the
performance simulation environment and back to SDL is done automatically by the add-on software.

GEODE allows to generate code from SDL with interfaces to real-time operating systems. SES/workbench
allows to generate behavioural VHDL. Recently, a step has been made by Dornier towards an automated
transition from SDL to VHDL [6] from a system's point of view based on the experience from previous activities
[7,8].

More information about EaSySim can be found in [4] and [9].

3. THE PILOT APPLICATION

As pilot application the FDIR component of the
CLUSTER Data Management System (DMS) was
selected. Although this component represents only a
small part of the CLUSTER on-board DMS, the
complete DMS had to be modeled in a representative
manner. This includes uplink and downlink with
telecommand and telemetry units, power subsystem, all
the other subsystems and payloads as complementing
parts of the spacecraft, and the DMS itself consisting of
command decoder, tape recorder, processor, OBDH
bus and connected devices. Consequently, all principal
on-board operations had to be considered.
Specification Models were estabished on top system
level based on CLUSTER documentation. Then these
models (SDL processes) were refined to next lower
level level (subsystem level). For each SDL process a
Finite State Machine (FSM) was implemented.

Message Sequence Charts (MSC)
were defined for specification of
the data and command flow.
By execution of the SDL models
MSC's were generated. The
specified MSC's were compared
with the obtained MSC's to check
for compliance of implementation
with specification. Fig. 4-2 shows a
sample MSC generated by
execution of models. It describes
the command flow from uplink via
command decoder, command
processing and distribution to
payloads.

Several operational scenarios for
initialisation, data acquisition and
fault injection with reconfiguration
were defined and fed into the SDL
environment. After logical
validation, i.e. validation of system
behaviour w.r.t. functional,
interface and operational

TC TM

WBD

DMS

Interface

CTU

Command
Decoder

Data Bus

TR /

S/S's

S/S

other

Power

P/L's
other

SSR

Figure 4-1: CLUSTER DMS (High Level View)

1)
hw_emu_inp_p(-

PROCESS

_inp_p
inst_1_hw_emu-

uplink_p(1)
PROCESS

inst_1_uplink_p

cmd_dec_p(1)
PROCESS

c_p
inst_1_cmd_de-

cmd_proc_p(1)
PROCESS

oc_p
inst_1_cmd_pr-

data_dist_p(1)
PROCESS

t_p
inst_1_data_dis-

pl_wbd_p(1)
PROCESS

p
inst_1_pl_wbd_-

pl_other_p(1)
PROCESS

_p
inst_1_pl_other-

cmd_uplink((. 3,2,im,pl_wbd,5100,cmd_pl_wbd,0 .))

cmd_uplink((. 3,2,im,pl_other,5600,cmd_pl_other,0 .))

cmd_uplink((. 3,2,im,pl_wbd,5100,cmd_pl_wbd,0 .))

cmd_uplink((. 3,2,im,pl_other,5600,cmd_pl_other,0 .))

cmd_dec((. 3,2,im,pl_wbd,5100,cmd_pl_wbd,0 .))

cmd_dec((. 3,2,im,pl_other,5600,cmd_pl_other,0 .))

cmd_dec((. 3,2,im,pl_wbd,5100,cmd_pl_wbd,0 .))

cmd_dec((. 3,2,im,pl_other,5600,cmd_pl_other,0 .))

cmd_pl_wbd((. cmd_pl_wbd,0,0 .))

cmd_pl_other((. cmd_pl_other,0,0 .))

Fig. 4-2: Generated MSC

- 6 -

(C) All Rights Reserved Rainer Gerlich 1995

requirements, the performance models were attached by replacing the simple SDL channels by performance
models of buses, processors and devices.

This allowed to create timing diagrams of command and data flow through components like command decoder,
data acquisition, data monitoring, buses and devices. Also, histograms and statistics were created on latencies of

data acquisition, length of exchanged messages and queue
lengths.

Correct behaviour of the models and their FSM's was
verified by exhaustive simulation, a capability provided by
GEODE. A feed-back on the actual implementation was
possible by MSC's, timing diagrams, histograms and
statistics. Faults were injected into the processor and the
bus. Reconfiguration was initiated after a fault was detected
and its correctness was verified by visualisation means.

Validation was done by execution of scenarios causing
execution of system operations. They were derived from
command flow charts like the one shown in Fig. 4-3. Such a
flowchart gives a rough idea of what has to be done e.g.
during DMS initialisation. For validation this sequence has
to be more accurate because for modeling one needs exactly
to know what to do. Therefore the command flow has been
refined to a sequence shown in Fig. 4-4. This flow formed
the input for the operational scenario fed into the system.

Visualisation of system operations is very important for
validation. Timing diagrams are very powerful for
visualisation. They inform on the state of the DMS
components like power unit, command decoders (nominal
and redundant one), RTU, the OBDH bus, CTU's, tape
recorder and solid state recorder. Fig. 4-5 to 4-7 show what
is happening in the system. For sake of good demonstration

the time has been compressed from minutes to seconds for the non-interesting operational phases like "wait's".
Therefore the timing of Fig. 4-4 is rescaled. The time units on the X-axis if figures 4-5 - 4-7 mean "milliseconds"
Figures 4-5 - 4-7 have been generated by execution of SDL models and routing of the SDL signals to

performance models by which the activities are visualised.

other CTU ON

SET TDA-Mode 1

SET TDA-Mode 90

DUMP CHRONO
HISTTORY BUFFER

SET TDA-Mode 1

RTU ON

CTU ON

stay in
Red.Surv.Mode

no

yes
STOP

1

3

10

12

17

Figure 4-3: Validation Scenario

Fig. 4-4: Refined Command Flow

1) Set RTU ON

send PAPCMD: RTU_ON
Priority 1 Mode 1/2 commands

2) wait 1 second (for RTU power on)

3) Set CTU ON

send PAPCMD: CTU_ON
Priority 1 Mode 1/2 commands

4) Wait 1 Minute
(to complete CTU Bootstrap and Initialization run)

send PAPCMD: TDA_MODE11
send PAPCMD: FDIR_PAR
send PAPCMD: ACQ_T_E
send PAPCMD: MON_T_E

5) CTU now in Reduced Survival Mode, TDA-11

no TM link available
6) Set TDA-Mode 1 to get TM contact

send TDA_MODE1
7) wait 15 seconds to get TM (VC0 frames)

8) Verify VC0 data

CDMU current
RTU current
CHB - number of entries = 2
DH quality word

9) RSM (Reduced Survival Mode) is reached

CTU Switch Over disabled
CTU Reboot disabled
RTU Switch Over disabled

10) If target mode is NM (Nominal Mode) then switch CTU, Priority 1, mode 1/2.

If CTU A is ON: send command CTU B ON
If CTU B is ON: send command CTU A ON

11) Wait 1 minute (to complete CTU Bootstrap and Initialization run)

12) CTU is now in Nominal Mode with TDA-11

no TM link available
13) Set TDA-Mode 1 to get TM contact

14) wait 15 seconds to get TM (VC0 frames)

15) Verify VC0 data

CDMU current
RTU current
CHB - number of entries = 4
DH quality word

16) switch over and Reboot Condition settings

CTU Switch Over disabled
CTU Reboot disabled
RTU Switch Over disabled

17) Set TDA Mode 90

18) Dump CHB

- 7 -

(C) All Rights Reserved Rainer Gerlich 1995

Fig. 4-5 shows activation and deactivation of components and processing of the commands of step 4 of Fig. 4-4
on the active processor CTUA.

"Low level" of the status trace means that the component is deactivated, in case of "medium level" a component
is powered, but not ready, "high level" means it is ready. Most of the components (except the tape recorder)
switch automatically over into the ready state after a delay when powered. The occurence of commands on
CTUA is visible by a peak caused by their processing time.

Fig. 4-6 shows details of tape recorder operations. The top trace (00) represents its status. Four states are
indicated by the trace. "zero" means it is depowered. "1/3" level means it is powered. In powered mode it
receives a "reassign" command which causes an immediate switch to "2/3" level. After some delay it
automatically switches in stand-by mode indicated by "highest" level.

Samples
00 status:dev_power_un

01 status:dev_cmd_dec_

02 status:dev_cmd_dec_

03 status:dev_rtu{0}

04 status:bus_ir_obdh_b

05 status:bus_rs_obdh_b

06 status:dev_ctu_a{0}

07 status:dev_ctu_b{0}

08 status:dev_tape_rec_

09 status:dev_ssr{0}

11 cmd_tda,dev_ctu_a{0

12 fdir,dev_ctu_a{0}

13 acq,dev_ctu_a{0}

14 mon,dev_ctu_a{0}

15 cmd_tr,dev_ctu_a{0}

1E04 2E04 3E04 4E04 5E04

Fig. 4-5: Visualisation of Initialisation Command Sequence

Samples
00 status:dev_tape_rec_

01 kill_device:dev_tape_

02 wrong_command:dev

03 rec_repro:dev_tape_r

04 rec_data,dev_tape_re

05 rep_data,dev_tape_re

06 FF_REW:dev_tape_re

07 buffer_usage:dev_tap

08 status:dev_ssr{0}

09 wrong_command:dev

10 rec_repro:dev_ssr{0}

11 rec_data,dev_ssr{0}

12 rep_data,dev_ssr{0}

13 FF_REW:dev_ssr{0}

14 buffer_usage:dev_ssr

15 ops,dev_cmd_dec_a{

16 ops,dev_cmd_dec_b{

17 ops,dev_rtu{0}

0 1E04 2E04 3E04 4E04 5E04

Time

Fig. 4-6: Tape Recorder Commanding

- 8 -

(C) All Rights Reserved Rainer Gerlich 1995

The next two traces (01, 02) show anomalies like (desired) fault injection or (unexpected) wrong commands, i.e.
commands which are not compatible with the current state.

The fourth (03) trace shows the status of recording and retrieval (reproduction) of data. Medium level means
stand-by mode, in high level data are recorded and in low level data are retrieved. When the tape recorder
receives a "recording" or "reproduction" command it switches in an intermediate state before it automatically
reaches the final state after some delay. Such parameters as delay can be specified by data file for each
component.

The two next lower traces (04, 05) indicate data recording or reproduction. Trace 07 shows the amount of data
("buffer_usage") already stored. At the time for which wrong commands occur the first time (see trace 02) the
storage capacity (see 07) is exhausted and the tape recorder switches back into stand-by mode (see 03). But in
stand-by mode no data recording is allowed. Therefore the following recording commands are wrong
commands(see 02).

Later on, the recorder is switched into reproduce mode and data are read: the amount of data decreases (see 07).
Now, data are read until the storage is exhausted: the tape recorder switches automatically after some delay back
to stand-by mode (see 03). Therefore the following reproduce command are illegal and marked as erroneous (see
events in 02). Some time later again it is switched into recording mode and the amount of data increases again
(see 07). At about t=29000 ms a fault is injected (see second trace 01) which causes the tape recorder to fail
completely ("kill device") (see trace 00). The state switches down to "power off".

Therefore the redundant unit "SSR" (Solid State Recorder") is powered and switched to stand-by mode (08).
Again data are recorded (see 11) and the data storage gets data (see 14).

Trace 13 is an indicator for fast forward and rewind of the SSR. The medium level again indicates the stand-by
mode. The recorder receives first a Rewind and then a Fast-Forward command (see 13) before data are retrieved
(see 12). Again, a wrong command appears (see 09) because the storage is exhausted.

The lower traces show processing of commands in the command decoder (traces 15, 16 and 17).

An important feedback on recorder operations was that mostly it was forgotten to switch into stand-by mode
before a new mode command was issued. Then the "wrong command" traces indicated that a command and the
actual state were not compatible.

Each of such traces is also available in a more detailed manner, i.e. there are traces for which the name is
expanded by additional information like command type, source and destination of the command. So a lot of
information on propagation of data and commands can be obtained and visualised.

Samples
01 busy:dev_cmd_dec_a

02 busy:dev_cmd_dec_b

03 busy:dev_rtu{0}

04 busy:bus_ir_obdh_bu

05 busy:bus_rs_obdh_bu

06 busy:dev_ctu_a{0}

08 busy:dev_tape_rec_1

09 busy:dev_ssr{0}

10 cmd_gen,dev_ctu_a{0

1E04 2E04 3E04 4E04 5E04

Fig. 4-7: Busy Status of Components

- 9 -

(C) All Rights Reserved Rainer Gerlich 1995

Fig. 4-7 shows the busy state of components like command decoder, OBDH bus (interrogation and response bus),
CTU's and tape recorder. The RTU is inactive altough data are flowing through the bus. Obviously this is a fault,
probably a modelling bug. Hence, modelling faults are also visualised.

Above examples give an impression on the visualisation power of EaSySim. The traces can be correlated
arbitrarily in a figure and can be inserted into several figures. This allows to analyse correlation of events or to
detect missing or wrong correlation. By such patterns it is much easier to detect functional and timing
inconsistencies in a system wrong commanding sequences (scenarios).

The simulation environment allows to analyse more parameters and system properties than would be possible in a
real system.

4. FEEDBACK

Implementation of the pilot application gave a first feedback on modelling issues, use of the tool environment
and project management.

4.1 Modelling Issues

4.1.1 Abstraction from Hardware and Software

Some properties of a system like "to be powered" are mostly considered as a matter of architecture and design.
As a system or one of its components can only be powered when it is mapped to a physical component one could
believe "powering" is a matter of design or of representation of hardware.

However, the property of a component to provide a service or not does not depend really on a physical property.
It is an abstract system property which should already be considered during specification. For validation of a
specification and its related scenario it is essential to consider the state of a component. If not specified that it
must be activated it may mean it should be continusly be powered or the contractor may omit the activation
command even he should not do it.

Hence, for the correctness of a specification consideration of activation or de-activation is essential. Also, this
eases the transition from specification to design. If such a capability is already introduced during specification
there is no potential conflict concerning the system's structure in design. That part representing the state can just
be mapped onto an architectural item.

The difference between specification and design is the correlation with time. During specification each
component is independent concerning its activation or de-activation. Having introduced an architecture a
dependency is introduced when different system components are mapped e.g. onto the same chip. Then their
activation and de-activation is depending on the power supply of that chip. If components are on the same chip
they are powered or they fail simultaneously. If not, they are independent and may fail at different instants.

Similarly, it is with faults and fault injection. A fault analysis during specification considers only that a fault can
occur. Multiple faults can also be considered, of course. So the complete error scenario can already be executed.
After design the faults are correlated due to the architecture. Now the probability for combinations of faults may
be weighted by probabilities depending on the architecture.

To summarize: to avoid restructuring of a system decomposition and to enforce consideration of states and faults
already during specification, a system component shall be represented by the following three principal parts
which shall be separated from each other:

1. an operational component
which provides the desired functionality and performance,
e.g. the capability to transmit data in case of a bus

2. a management component
which represents the inherent physical state of a component not visible from an operational point of
view and possibly separated by architecture from the operational component,
e.g. power circuits which impact the operational component (activation and de-activation)

3. an environment or simulation component
which represents the environmental impacts or test management during validation by simulation,
e.g. the ability for fault injection or restart of simulation.

- 10 -

(C) All Rights Reserved Rainer Gerlich 1995

4.1.2 Allocation of Management and Simulation Components

In case a model shall be translated to hardware, management of the state (active, not active etc.) of a component
is no longer needed because it is directly driven by the hardware properties. When powered, the component is
alive, if not it does not respond. So the management and environmental components can/must be dropped. If
software is derived we would still need the part for management of a component.

Consequently, we have to care about some parts which may be removed later on together with their
communication channels. In order to reduce the effort needed to remove the additional parts and channels, the

operational channels shall be used for
communication with such parts. This means
that all such components have to be placed
at a central location from which the related
operational components can be accesed.

This location is the interface with ground in
case of an on-board DMS because all
components will directly or indirectly
receive commands via TC from ground or
deliver data via TM to ground. Fig. 4-8
shows the solution as used for the pilot
application for stand-alone and coupled
mode.

In stand-alone mode the "HW Emulation"
component manages itself the states. In
coupled mode such states are managed by
the performance models which are accessed
from "HW Emulation".

4.1.3 Reduction of Modelling Effort

A lot of effort was saved due to use of
model types in SES/workbench. In fact,
only three model types were needed to
represent all the DMS components from a
performance point of view. Fig. 4-9 shows
the correlation between model types and
derived instances. The advantage of using
types is that only at one place - in the type -
changes have to be made, if needed.

The operational part of type "device"
causes a delay according to the length of
incoming data. The bus type is similar but
the delay depends on the bus data rate.

Furthermore, one needs to monitor other properties or to generate other timing diagrams and histograms
compared to the device type. Therefore another model type was derived for the bus from the device type.

The tape recorder type needs more intelligence for proper and realistic operation. Therefore an own type had to
be created based on the templates taken from the device type.

In SDL, process instances can be derived from a process type.

4.2 Lessons Learned

CLUSTER was selected as pilot application because it was believed that an already existing DMS design would
allow a comparison of the new development approach with the conventional one. Specification should start with
the CLUSTER DMS specifications documents only. However, it was recognized rather soon that only few
detailed information on the FDIR component was included in CLUSTER specifications. Mainly, the FDIR
requirements were generic. Therefore the already available design documentation had to be considered in
addition.

TC

Parser

specification

Parser

design

WB

GEODE GEODE

operational events

HW0 . . . HWn

fault events

Event Injector

HW Emulation HW Emulation

scenario file

scenario file

TM TMTC

Figure 4-8: Organisation of Hardware Emulation

model type instances

device ctu_a, ctu_b, cmd_dec_a, cmd_dec_b

taperecorder tape_rec1, ssr

obdh bus ir_obdh_bus, rs_obdh_bus

Fig. 4-9: SES/WB models used in the PAP

- 11 -

(C) All Rights Reserved Rainer Gerlich 1995

However, the final design documentation was already too detailed and a lot of effort was needed to extract that
information which is adequate to enhance the CLUSTER specification of the FDIR component on top level. This
shows that in the conventional developement approach at least incomplete information is provided for a
specification, which is enhanced during the following phases by the contractor by interpretation of the general
(generic) requirements. Adding of more precise behavioural requirements is contractually based on the general
requirements, but may be ambigious. It also means that tasks are shifted from earlier development phases to later
ones. And the same happens for the risk because transformation of the possibly incomplete and/or inconsistent
generic requirements into detailed ones may cause conflicts with already existing requirements.

It was also recognized that more add-on software than planned was needed for better support of feeding in
operational scenarios. Therefore this functionality was added to EaSySim, when implementing the pilot
application.

As explained above some more effort was needed for finding of the right textual requirements as starting point
for formalisation. Also, additional effort was required to find the right mapping of EaSyVaDe to EaSySim. But
this is quite normal in case of a pilot application. This caused that the procedure for refinement from system level
to subsystem level and from specifcation to design could not be applied in the planned manner due to resource
and time limitations in the project. Therefore after definition of specification models on system level immediately
the subsystem level models were derived and the architecture was introduced. Logical validation of specification
and complete validation of design were done on subsystem level.

It is now planned to apply the full procedure to the telecommand and telemetry component to investigate and to
demonstrate the efficiency of the EaSyVaDe approach and of the EaSySim tool environment having now
available the required guidelines.

4.3 Impacts on Project Management

The applied methodology uses executable, formal models for specification and design. They allow to express
customer requests and contractor response unambigously. Implementation of models requires more effort during
specification and design phase, but it saves time in later phases. It implies definition and execution of acceptance
tests. Therefore the later lifecycle phases will be shorter, especially when code is generated automatically from
the validated design models. Effort is shifted from later phases to earlier phases with a decrease of the total effort.

However, project management has to accept that

1. more effort and time has to be planned for the earlier phases,

2. executable models instead of informal, ambigous textual requirements are a contractual matter.

5. CONCLUSIONS

By the pilot application it has been shown that and how the methodology and the tool environment can be used.
Some iterations were needed to find the best way to implement a hierarchical object-oriented approach for the
system components and to combine both tools. The current GEODE version is based on SDL88 which provides
some object-oriented features like Abstract Data Types. It is expected that the next version ObjectGEODE which
implements SDL92 will better fit with the object-oriented ideas of the methodology.

An essential advantage of modeling and simulation is the visualisation of operational processes by MSC's, timing
diagrams, histograms, statistics and debuggers and the analysis of behaviour based on state transitions.
Experience is that a lot of indicators for faults exist which are provided by the visualisation menas. So it is easy
to detect occurence of a fault. But for identification of the fault one needs more details in most cases which
means that the internals of the performance models may have to be enhanced continously with increasing quality
of models (less bugs) and increasing complexity of remaining bugs.

For efficient modelling appropriate techniques have to be identified and applied. Especially, design for reuse is
essential, but not so easy to achieve. Therefore one has carefully to consider modelling progress and to introduce
better techniques, when needed. By the activities performed for OMBSIM and the previous HRDMS project [10]
sufficient experience on this subject is available now.

Moreover, it was identified that activation - deactivation of a component is not a matter of the architecure only,
but also a matter of design. This has to be applied consequently.

- 12 -

(C) All Rights Reserved Rainer Gerlich 1995

REFERENCES

[1] OMBSIM (On-Board Mangement System Behavioural Simulation, ESTEC contract no.
10430/93/NL/FM(SC), Noordwijk, The Netherlands

[2] GEODE SDL-Tool, Verilog, 150 rue Vauquelin, F-31081 Toulouse Cedex, France

[3] SES/workbench, Scientific and Engineering Software Inc., Building A, 4301 Westbank Drive, Austin,
Texas, 78746-6564, USA

[4] OMBSIM (On-Board Mangement System Behavioural Simulation, EaSyAdd Software User Manual,
ESTEC contract no. 10430/93/NL/FM(SC), Noordwijk, The Netherlands

[5] HOOD, Reference Manual, Masson, Paris, Prentice Hall, London, 1993

[6] M. Lehmann, master thesis, finalisation in September 1995, Dornier / FH Albstadt-Sigmaringen

[7] W. Glunz, G. Venzl, Using SDL for Hardware Design, Fifth SDL Forum, Glasgow, 1991, Elsevier
Publishers

B.Lutter, W.Glunz, F.J.Ramming, Using VHDL for Simulation of SDL Specifications, Proceedings of the
EURO-DAC/EURO-VHDL 92, Hamburg, Germany, Sept. 1992

W.Glunz, Th.Kruse, T.Roessel, D.Monjau, Integrating SDL and VHDL for System Level Hardware
Design, Proceedings of the CHDL, Ottawa, Canada, April 1993

W.Glunz,Hardware-Entwurf auf abstrakten Ebenen unter Verwendung von Methoden aus dem Software-
Entwurf, Dissertation, Paderborn/Muenchen, April 1994

[8] K. Kronloeff, Method Integration - Concepts and Case Studies, Wiley Professional Computing Series

[9] R.Gerlich, V.Debus, Ch.Schaffer, Y.Tanurhan: EaSyVaDe: Early Validation of System Design by
Behavioural Simulation, ESTEC 3rd Workshop on "Simulators for European Space Programmes"
Noordwijk, November 15-17, 1994

[10] HRDMS (Highly Reliable DMS and Simulation), ESTEC contract no. 9882/92/NL/JG(SC), Final Report
1993, Noordwijk, The Netherlands

